22
Vi Khanh Truong, PhD October 710, 2012 Atlanta, Georgia, USA Investigation of bacterial attachment patterns on microand nanorestricted surface topographies

Investigation of bacterial attachment patterns on micro

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Investigation of bacterial attachment patterns on micro‐ and 

nano‐ restricted surface topographies

Page 2: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Outline of presentation• Overview• Aims• Outcomes

Bacterial attachment behaviours on ultrafine grained titaniumBacterial attachment behaviours on subnano‐ and nano‐scale 

topographyBacterial attachment behaviour on self‐cleaning surfacesImprovement of anti‐biofouling properties

• Conclusion• Practical outcomes

Page 3: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Utilisation of titanium in biomedical industry• Benefits:

Biocompatible – non‐toxic

Light

Strong

Corrosion resistant

• Medical applications:

Dental implants

Orthopaedic implants

Surgical instruments

Page 4: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Infections associated with implants

Staphylococcus aureus (34%)

1 µm diameter; non‐motile; cell surface adhesin proteins, other EPS

Pseudomonas aeruginosa (8%)

0.5‐0.8 µm x 1.5‐3.0 µm; flagellum; fimbriae, polysaccharide capsule, EPS Frequency of main pathogenic species among 

orthopaedic clinical isolates of implant‐associated infections (Campocia, 2006)

Page 5: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Theoretical model of biofilm formation

Biofilm formation model (Greenberg, 2002)

Factors influencing biofilm formation on non‐biological surfaces

• Surface charges

• Hydrophobicity: thermodynamic approach, DLVO or extended DLVO theories.

• Surface topography

Page 6: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Aims of the research• Fabricate and investigate surfaces with topographic features ranging from 

micro‐scale to sub‐nanometric‐scale

• Conduct systematic and comprehensive studies to investigate the impact of micro‐/nano‐topography on of bacterial attachment

• Explicate bacterial attachment response to changes of the surface topography

• Development of anti‐biofouling coatings for titanium surfaces

Page 7: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Production of ultrafine‐grained titaniumPressure

Punch

SleeveHeater

Shaping insert

Preform

Stopper plate

ECAPAs‐received

Following with mechanical polishing and the combination of chemical and mechanical polishing

Page 8: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Bacterial attachment on ultrafine‐grained titanium

As-r

ecei

ved

Ti

EC

AP

Ti

SEM

1 µm4 µm

10 µm

1 µm4 µm

10 µm 10 µm

10 µm

AFM CLSM

P. aerug

inosa

S. aureus

S: S. aureusP: P. aeruginosa

Mechanical polishingChemico‐mechanical polishing

How does surface topography modulate bacterial attachment?

Page 9: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Fabrication of Ti thin films

To control Ti thin film thicknesses at atomic scale, withaverage roughness 

ranging from1.2 nm—0.2 nm

Page 10: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Surface topography

Ra = 1.22 ± 0.27 nm

Rq = 1.61 ± 0.34 nm

Ra = 0.92 ± 0.06 nm

Rq = 1.16 ± 0.06 nm

Ra = 0.58 ± 0.08 nm

Rq = 0.73 ± 0.14 nm

Page 11: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Attachment of bacteria on Ti thin films P. aeruginosa S. aureus

Red: bacterial cells; Green: exopolysaccharide produced by bacteria

Ra (nm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Per

cent

age

of a

ttche

d ce

lls (%

)

0

2

4

6

8

10

S. aureus

P. aeruginosa

Page 12: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

P. aeruginosa and S. aureus on the surfaces with nano‐topographic features

Page 13: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Fabrication of hierarchical structures on titanium surfaces

Schematic of femtosecond laser ablation setup (Courtesy of Elena Fadeeva, Hannover Laser Zentrum)

10 pulses 20 pulses

Ripple effect

Page 14: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Surface topography and self‐cleaning effectAs‐received Structured

Page 15: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Attachment of bacteria on lotus‐like Ti surfaces

As‐received Ti Structured Ti As‐received Ti Structured TiP. aeruginosa S. aureus

Low attachment of P. aeruginosa on structured Ti Induced attachment of S. aureus on 

structured Ti

Page 16: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Localisation of spherical S. aureuson nano‐restricted surface topography

Attachment behaviour of S. aureus and P. aeruginosa on micro‐/nano‐topography

Increased surface area favourable for the attachment of spherical S. aureus, not of rod‐shaped P. aeruginosa

Page 17: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Improving anti‐biofouling properties for titanium surfaces

Plasma‐enhanced chemical vapour deposition system

Terpinen‐4‐ol

Page 18: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Performance of polyterpenol coatings on titanium surfaces

Green: viableRed: dead

Page 19: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

ConclusionSurface topography with dimensions ranging from micro‐ to subnano‐features may control the extent of bacterial attachment 

The extent of bacterial attachment on hierarchic structures of superhydrophobic surfaces is variable and dependant on the bacterial morphology

Bacterial attachment on the subnano‐/nano‐smooth surfaces cannot be explained by previously known mechanisms, e.g. flagella, fimbriae,  production of EPS, which are believed facilitating the bacterial attachment

Page 20: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Practical outcomesImprovement of anti‐biofouling properties achieved using polymerised terpinen‐4‐ol, main constitute of antibacterial tea tree oil

Understanding the relationship between bacterial attachment and surface roughness assisting in the design of biomaterials with minimum risk of bacterial infections 

To optimize the process of osseointegration on modified titanium surfaces, investigation of competitive colonization between eukaryotic and prokaryotic cells required in the future direction

Page 21: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

Acknowledgements

My supervisorsProf. Elena IvanovaDr. Francois MalherbeProf. Russell CrawfordProf. Christopher Berndt

Faculty of Life and Social SciencesDr. Hayden WebbMr. Jafar Hasan

Faculty of Engineering and Industrial SciencesDr. James Wang

Centre for MicrophotonicsProf. Saulius JuodkazisMr. Gediminas Gervinskas

Prof. Robert LambDr. Alex Wu

Dr. Mark TobinDr. Ljiljana Puskar

Dr. Manoj SridharMr. Douglas Mair

Prof. Yuri EstrinDr. Rimma Lapovok

Prof. Boris ChichkovMs. Elena Fadeeva

A/Prof. Jacob MohanDr. Katia Bazaka

Page 22: Investigation of bacterial attachment patterns on micro

Vi Khanh Truong, PhDOctober 7‐10, 2012 • Atlanta, Georgia, USA

References• VK Truong, HK Webb, E Fadeeva, BN Chichkov, AHF Wu, R Lamb, RJ Crawford, J Wang, EP Ivanova (2012) 

Biofouling, 28:539:550.• RJ Crawford, HK Webb, VK Truong, J Hasan, EP Ivanova (2012) Advances in Colloids and Interface Science, 

179‐182:142‐149.• HK Webb, VK Truong, J Hasan, C Fluke, RJ Crawford, EP Ivanova (2012) Scanning, in press.• EP Ivanova, VK Truong, HK Webb, VA Baulin, JY Wang, N Mohammodi, F Wang, C Fluke, RJ Crawford (2011) 

Scientific Reports (Nature Publishers), • HK Webb, J Hasan, VK Truong, RJ Crawford, EP Ivanova (2011) Current Medicinal Chemistry, 18:3367‐3375.• K Bazaka, MV Jacob, VK Truong, RJ Crawford, EP Ivanova (2011) Polymers, 3:388‐404. • E Fadeeva, VK Truong, M Stiesch, BN Chichkov, RJ Crawford, J Wang, EP Ivanova. (2011) Langmuir, 

27:3012‐3019.• Y Estrin, EP Ivanova, A Michalska, VK Truong, R Lapovok, R Boyd. (2011) Acta Biomaterialia, 7:900‐906.• K Bazaka, MV Jacob, VK Truong, F Wang, WAA Pushpamali, JY Wang, AV Ellis, CC Berndt, RJ Crawford, EP 

Ivanova. (2010) Biomacromolecules, 11:2016‐2026.• VK Truong, R Lapovok, Y Estrin, S Rundell, JY Wang, D Barnes, C Fluke, RJ Crawford, EP Ivanova (2010)

Biomaterials, 31:367‐3683.• EP Ivanova, VK Truong, JY Wang, CC Bendt, R Jones, H Schmidt, I Yusuf, I Peake, C Fluke, D Barnes, RJ 

Crawford (2010) Langmuir, 26:1973‐1982.• VK Truong, S Rundell, R Lapovok, Y Estrin, JY Wang, CC Berndt, D Barnes, C Fluke, RJ Crawford, EP Ivanova

(2009) Applied Microbial and Biotechnology, 83:925‐937.