35
Introductory lectures on Introductory lectures on Angle Angle - - resolved photoemission resolved photoemission spectroscopy (ARPES) spectroscopy (ARPES) and its application to the experimental study and its application to the experimental study of the of the electronic structure of solids electronic structure of solids Andr Andr é é s Felipe s Felipe Santander Santander - - Syro Syro Universit Universit é é Paris Paris - - Sud Sud and and Ecole Ecole Sup Sup é é rieure rieure de Physique et de Physique et Chimie Chimie Industrielles Industrielles - - Paris Paris

Introductory Lectures on Arpes-Santander

  • Upload
    pbm59

  • View
    145

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introductory Lectures on Arpes-Santander

Introductory lectures on Introductory lectures on AngleAngle--resolved photoemission resolved photoemission

spectroscopy (ARPES)spectroscopy (ARPES)and its application to the experimental study and its application to the experimental study

of the of the electronic structure of solidselectronic structure of solids

AndrAndréés Felipe s Felipe SantanderSantander--SyroSyroUniversitUniversitéé ParisParis--SudSud

andandEcoleEcole SupSupéérieurerieure de Physique et de Physique et ChimieChimie IndustriellesIndustrielles -- ParisParis

Page 2: Introductory Lectures on Arpes-Santander

Resources

BOOKS

• S. Hüfner. Photoelectron Spectroscopy – Principles and Applications, third edition, Springer (Berlin), 2003.

REVIEW ARTICLES

• F. Reinert and S. Hüfner, New Journal of Physics 7, 97 (2005).• A. Damascelli, Z.-X. Shen, S. Hussain, Rev. Mod. Phys. 75, 473 (2003).• J. C. Campuzano, M. R. Norman, M. Randeria, cond-mat/0209476.• J. Braun. The theory of angle-resolved ultraviolet photoemission and its application to ordered materials. Rep. Prog. Phys. 59, 1267-1338 (1996).

INTERNET

• www-bl7.lbl.gov/BL7/who/eli/SRSchoolER.pdf(by Eli Rotenberg, Advanced Light Source, Berkeley)

• www.physics.ubc.ca/~quantmat/ARPES/PRESENTATIONS/ Lectures/Exciting2003.pdf(by Andrea Damascelli, UBC)

• ftp://ftp.espci.fr/shadow/bontemps/cargese2005.zip(ARPES lectures by Ralph Claessen, Augsburg)

Page 3: Introductory Lectures on Arpes-Santander

1D

2D

3D

Many properties of solids are determined by electrons within a narrow energy slice (~kBT) around EF (dc conductivity, magnetism, superconductivity…)

Fermi Surface

Condensed (crystalline) matter in a nutshell

(at room temperature, kBT = 25 meV)Adapted from A. Damascelli’s Exciting-2003 lecture and E. Rotenberg’s lecture

Allowed electronic statesRepeated-zone scheme

-kF kF

Page 4: Introductory Lectures on Arpes-Santander

ARPES: energy and momentum conservation

x

y

z

e-θ

ϕ

Detector

Sample

Kinetic energy analyzer

, Av

νhEkin, W, θ, φ Measured

, Av

νh Fixed during experiment

θsin2 kinvacuum mE=||

khBE

In the solidIn the solid

||k

Bkin EWhE −−= νConservation laws

solidvacuum||||

kk =

Page 5: Introductory Lectures on Arpes-Santander

To make it work…

levels) core ng(interesti eV 1500

band) (Valence eV 10~

eV 52~

B

B

E

E

W

λesc = electron escape depth(Ekin~ 10 – 2000 eV)

Pull the electron out of its bound state

The electron has to make its way up to the sample’s surface

eV 200010~

0

−⇒

−−=<

ν

ν

h

EWhE Bkin

Fixed

Experimentally:

λ[10 – 2000 eV] ∼ 10 – 50 Å

PES is a surface technique: one needs clean surfaces and work under ultra-high vacuum

ARPES needs, furthermore, atomically-flat surfaces (for ideal conservation of surface-parallel momentum): prepare surfaces in-situ, cleave,…

Page 6: Introductory Lectures on Arpes-Santander

SUDDEN APPROXIMATIONThe ejected electron should be fast enough to neglect its

interaction with the hole left behind

Furthermore, one has to make sure that the photoemission process itself does not modify

the electronic structure of the material…

e- - e- interactionP

ee ωπτ 2

e- time of escapemEkin

esc2/λτ ≈

2

221

>>⇒<<

πωλττ Pesc

kinee mE1.0/

eV 1~≈⇒ ee

P

ττωh

At hν≈ 25 eV

Å 10~eV 20~

esc

kinEλ

For cuprates

Page 7: Introductory Lectures on Arpes-Santander

ARPES gives direct access to the single-particle electronic structure of a crystal:Band structure Spectral line-shapes and widths: electron scattering rate Interactions

EB [eV]

kx ky

ΓM

X

Y

0.63 π/a

Å 82.3CuO ==a

hν = 22 eV

When all of this works…

Bi2Sr2CaCu2O8+δ

Page 8: Introductory Lectures on Arpes-Santander

Instrumentation and implementation

x

y

z

e-θ

ϕ

Detector

Sample

Kinetic energy analyzer

, Av

νhLight source

• Sample’s surface preparation• Sample moving, rotating, cooling

Page 9: Introductory Lectures on Arpes-Santander

Radiation sourcesLaboratory sources

• Gas discharge lamps (hν ~ 20-50 eV)• X-ray tubes (hν ~ 1500 eV)

Synchrotron radiation• Tunable (hν ~ 10 eV – 10 keV)• Brilliant• Polarized (linear and circular)• Temporal structure (time-resolved experiments)

Laser• IR laser + 2*(frequency doubling): hν ~ 6 – 7 eV (Ekin ~ 1-2 eV)

☺ λesc ~ 50 – 100 ÅSudden approximation ?!Probes reciprocal space only near Γ-point

• Under development: UV and soft X-ray laser (IR laser + high-harmonic generation inside rare-earth gas)

Page 10: Introductory Lectures on Arpes-Santander

Electron energy analyzer

Adapted from A. Damascelli’s Exciting-2003 lecture

Page 11: Introductory Lectures on Arpes-Santander
Page 12: Introductory Lectures on Arpes-Santander

Interaction effects on ARPES spectra

( ) ( ) ( ) ( )ωωνω ,,,, 0 kAkk AfII = A(k,ω) = Probability of adding or removing one electron at (k,ω)

Binding energy EB

Σ’’(k,ω)(life-time)

Σ’(k,ω)(renormalization)

EF

εk(ω) I(k,ω)

EF

εk

k

( ) ( )( )[ ] ( )[ ]22 ,,

,1,ωωεω

ωπ

ωkk

kkk Σ′′+Σ′−−

Σ′′−=A 1 , =≡ hhωBE

Σ ′′Σ′ Energy renormalization

Lifetime of dressed e-Many-body physics

Page 13: Introductory Lectures on Arpes-Santander

Adapted from:T.-C. Chiang, Chemical Physics 251, 133-140 (2000)

Assuming Lorentzian line-shapes, the total (measured) width is given by:

ee

hhtot v

vΓ+Γ≈Γ

~ meV ~ eV

Spectrum dominated by final-state (photo-electron) line-widths, unless

⊥⊥ << eh vv

2D and 1D systems !

Adapted from R. Claessen’s Cargese-2005 lectures

Lifetime of the photo-electron and measured line-widths

Γtot

Page 14: Introductory Lectures on Arpes-Santander

Spectra analysis: EDCsLine-shapes and widths many-body physics

( ) ( )( )[ ] ( )[ ]22 ,,

,1,ωωεω

ωπ

ωkk

kkk Σ′′+Σ′−−

Σ′′−=A

EDC: Lorentzian if and only if

oft independen and ωΣ ′′Σ′

Page 15: Introductory Lectures on Arpes-Santander

Spectra analysis: MDCs

( ) ( )( )[ ] ( )[ ]22 ,,

,1,ωωεω

ωπ

ωkk

kkk Σ′′+Σ′−−

Σ′′−=A

MDC: Lorentzian if and only if

( )[ ]( ) 0

HWHM

0

/

/

F

FFc

vk

vkk

ω

ωω

Σ ′′=∆

Σ′−+=

Line-shapes and widths many-body physics

Page 16: Introductory Lectures on Arpes-Santander

Many-body physics – Effects of the interactions on the band structure:

Example of surface states of Mo(110)

T. Valla et al., PRL 83, 2085 (1999)

Mo(110) band along Mo(110) band along ΓΓNNT = 70 KT = 70 K

Γee ~ ω2

Γe-ph Eliashberg

Γe-imp = const

Page 17: Introductory Lectures on Arpes-Santander

Strongly-correlated electron systems

(brief recall)

Page 18: Introductory Lectures on Arpes-Santander

Transition-metal oxides: solid-state

SCES

∆MH ~ 1-2 eVCu O Cu

Page 19: Introductory Lectures on Arpes-Santander

Transition-metal oxidesStrongly-correlated electrons systems

New physics displaying exotic electronic states in a solid sample

Page 20: Introductory Lectures on Arpes-Santander

Crystal unit-cell

Antiferromagnetic unit cell

Cuprates: antiferromagnetic insulators that become high-Tc superconductors upon doping!

Page 21: Introductory Lectures on Arpes-Santander

Cuprates: (rough) phase diagram

Coexistence ?

Page 22: Introductory Lectures on Arpes-Santander

Electron-doped cuprates:

Generalities

Page 23: Introductory Lectures on Arpes-Santander

R2-xCexCuO4 : crystal structure

R/Ce

CuO2 plane

CuO2 plane

CuO2 plane

(R,Ce)2O2 block

(R,Ce)2O2 block

Page 24: Introductory Lectures on Arpes-Santander

• H. J. Kang et al., Nature Materials 6, 224 (Feb. 2007).• L. Shan et al., cond-mat/0703256 (March 2007).

Electron-doped cuprates: effects of Ce-doping and annealing

Page 25: Introductory Lectures on Arpes-Santander

Nd2-xCexCuO4 (x = 0.15) Tl2Ba2CuO6+d

M. Platé et al., PRL 95, 077001 (2005)N. P. Armitage et al., PRL 88, 257001 (2002)

Fermi surfaces, Brillouin zones and AF-zones: hole-doped vs electron-doped cuprates

Page 26: Introductory Lectures on Arpes-Santander

S. R. Park et al., cond-mat/0612419 (Dec. 2006)

Antiferromagnetic-induced band-folding in underdoped Sm2-xCexCuO4 (x = 0.14)

Page 27: Introductory Lectures on Arpes-Santander

Annealed

As-grown

Effects of annealing on band structure at optimal doping: the case of Pr1.85Ce0.15CuO4

P. Richard et al., cond-mat/0704.0453 (Apr. 2007)

Page 28: Introductory Lectures on Arpes-Santander

Electronic structure and signatures of interactions in

Sm1.84Ce0.16CuO4

Coworkers Coworkers -- collaboratorscollaborators

Takeshi Kondo, Adam KaminskiTakeshi Kondo, Adam Kaminski(Ames Lab (Ames Lab -- Iowa)Iowa)

StStééphanephane PailhPailhèèss (PSI and LLB)(PSI and LLB)Johan Chang, Ming Shi, Luc Johan Chang, Ming Shi, Luc PattheyPatthey (PSI)(PSI)

AlexandreAlexandre ZimmersZimmers(CSR (CSR –– Maryland and INP Maryland and INP –– P6)P6)

Bing Bing LiangLiang, , PengchengPengcheng Li, Rick GreeneLi, Rick Greene(CSR (CSR -- Maryland)Maryland)

Page 29: Introductory Lectures on Arpes-Santander

Γ

(π,π)

(π,0)

Γ

(π,π)

(π,0)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Momentum along AFZB [2-½π/a]

-0.4

-0.3

-0.2

-0.1

0.0

Bind

ing

ener

gy [e

V]Min

Max

Sm2-xCexCuO4 : Fermi surface and doping

Tight-binding fit

Doping from FS volume:x = 0.16 ± 0.01

Single-band FS (no band-folding)Suppressed spectral weight at “hot-spots”

Page 30: Introductory Lectures on Arpes-Santander

AN

N

-0.8

-0.6

-0.4

-0.2

0.0

Bin

ding

ene

rgy

[eV]

0.1 Å-1Min

Max

kAFZB

AN

-0.8

-0.6

-0.4

-0.2

0.0

Bin

ding

ene

rgy

[eV]

Min

Max

0.1 Å-1

kAFZB

N

Sm2-xCexCuO4 (x = 0.16) : Nodal vs anti-nodal ARPES spectra

Page 31: Introductory Lectures on Arpes-Santander

NAN

Relative momentum

0.1 Å-1

ω = 0 meV

ω = -100 meV

ω = -200 meVAN

Relative momentum

0.1 Å-1ω = 0 meV

ω = -100 meV

ω = -200 meVN

Sm2-xCexCuO4 (x = 0.16) : Nodal and anti-nodal MDCs

Anti-nodal and nodal MDCs are LorentziansMDC peak maximum gives the quasi-particle dispersionMDC width is proportional to quasi-particle scattering rate (self-energy)

Page 32: Introductory Lectures on Arpes-Santander

NAN

-0.8 -0.4 0.0Binding energy [eV]

AN

Anti-node• Peak-hump structure close to kF• Lorentzian EDCs at energies > 300 meV

Node• No clear peak-hump structure• EDCs are not Lorentzian

-0.8 -0.6 -0.4 -0.2 0.0 Binding energy [eV]

N

AN

AN

N

Hump

Sm2-xCexCuO4 (x = 0.16) : Nodal vs anti-nodal EDCs

Page 33: Introductory Lectures on Arpes-Santander

Sm2-xCexCuO4 (x = 0.16) : Nodal vs anti-nodal dispersions

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Bin

ding

ene

rgy

[eV]

Relative momentum

0.1 Å-1

NAN

AN

N

Page 34: Introductory Lectures on Arpes-Santander

0.4

0.3

0.2

0.1

0.0

Im(Σ

) [eV

]

-0.5 -0.4 -0.3 -0.2 -0.1 0.0

Binding energy [eV]

Sm2-xCexCuO4 (x = 0.16) : Nodal vs anti-nodal line-widths

( ) HWHM0 kvband ∆×=Σ ′′ ω

From EDC-widthN

AN

Page 35: Introductory Lectures on Arpes-Santander

ConclusionsWhen it works…

ARPES is a powerful technique for the study of the electronic structure of complex systems

Outlook (and dreams)

Detailed band structures and Fermi surfacesk-dependent Fermi velocity and effective massGapsMany-body effects in the QP dispersion

• Kinks• Fermi-surface nesting

Spin-resolved ARPESTime-resolved ARPESMicro-ARPES