54
Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P. Williams (Proudman Oceanographic Laboratory)

Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Introduction to the Earth Tides

Michel Van CampRoyal Observatory of Belgium

In collaboration with:Olivier Francis (University of Luxembourg)

Simon D.P. Williams (Proudman Oceanographic Laboratory)

Page 2: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tides – Getijden – Gezeiten – Marées… from old English and German « division of time »and (?) from Greek « to divide »

Page 3: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tides – Getijden – Gezeiten – Marées

Observing ET has not brought a lot on our knowledge of the Earth interior(e.g. polar motion better constrained by satellites or VLBI…)

But tides affect lot of geodetic measurements (gravity, GPS, Sea level, …)Present sub-cm or µGal accuracy would not be possible without a good knowledge of the Tides

Page 4: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Amazing Tides in the Fundy Bay (Nova Scotia) : 17.5 m

Page 5: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tidal force = differential force

“Spaghettification”

Newtonian Force ~1/R²Tidal force ~ 1/R3 R

Page 7: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Icy fragments of the Schoemaker-Levy comet ,1994Icy fragments of the Schoemaker-Levy comet ,1994

A victim of the Roche Limit

Page 8: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tidal structure in interacting galaxies

NGC4676 (“The mice”)

http://ifa.hawaii.edu/~barnes/saas-fee/mice.mpg

Page 9: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Io volcanic activity :due to the tidal forces of Jupiter, Ganymede and Europa

Page 10: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

CERN, Stanford

Stanford Linear Accelerator Center (SLAC): also Pacific ocean loading effect

3 km

http://encyclopedia.laborlawtalk.com/wiki/images/8/8a/Stanford-linear-accelerator-usgs-ortho-kaminski-5900.jpg

Periodic deformations of the Stanford and CERN accelerators 4.2 km

Page 11: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tides on the Earth:

• Periodic movements which are directly related in amplitude and phase to some periodic geophysical force

• The dominant geophysical forcing function is the variation of the gravitational field on the surface of the earth, caused by regular movements of the moon-earth and earth-sun systems.

- Earth tides- Ocean tide loading- Atmospheric tides

 In episodic surveys (GPS, gravity), these deformations can be aliased into the longer period deformations being investigated

Page 12: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Imbalance between the centrifugal force due to the Keplerian revolution (same everywhere) and the gravitational force ( 1/R²)

How does it come from?

Page 13: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Inertial reference frame RI :

F = maI

Non-inertial Earth’s reference frame RT :

F + Fcm - 2m[ v ] - 2m[ ( r ) ] = m aE

aE : acceleration in RT

Fcm= -macm : acceleration of the c.m. of the Earth in RI :includes the Keplerian revolution

: Earth’s rotation- 2m[ ( r ) ] = macentrifugal

If m at rest in RT : 2m[ v ] = 0 aE = 0

Then: F + Fcm + Fcentrifugal + Fcoriolis = m aE

Becomes:F - macm + macentrifugal = 0

Tidal Force

m

Page 14: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

F - macm + macentrifugal = 0

In RI :

F = m agt + m agMoon + f

= m agt + m agMoon - mg

So:

m agt + m agMoon - mg - macm + macentrifugal = 0

mg = m agt + m (agMoon - acm) + macentrifugal

Tidal force = m (agMoon - acm) [= 0 at the Earth’s c.m.]

Gravity g = Gravitational + Tidal + Centrifugal

!!!! Centrifugal: contains Earth rotation only

magtmagMoon

f = - mg : prevent from falling towards the centre of the Earth

m

Tidal Force ?

Page 15: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tides on the Earth

Center of mass of the system Earth-Moon

Center of mass of the Earth

Tidal force = m (agMoon - acm) More generally: Tidal force = m (ag_Astr - acm)

Differential effect between :

(1) The gravitational attraction from the Moon, function of the position on (in) the Earth and

(2) The acceleration of the centre of mass of the Earth (centripetal) Identical everywhere on the Earth (Keplerian revolution) !!!

Page 16: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tide and gravity

Gravity g = Gravitational + Tidal + Centrifugal

Tidal effect: 981 000 000 µGal

Usually, in gravimetry :Gravity g = Gravitational + Centrifugal

Centrifugal: 978 Gal (equator) 983 Gal (pole)

Page 17: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Gravitational and Centrifugal forces

Tidal force = m (agMoon - acm)

22 d

GM

r

GM

FF

mm

lcentrifugagMoon

r

d

Page 18: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

O

P

Md

rTidal Force

centripetal force

attractive force

( = lunar zenith angle)

The Potential at P on the Earth’s surface due to the Moon is M

M

GmPW )(

:cos2222 rddr

[ The gravitational force on a particle of unit mass is given by -grad Wp ]

Using

0

)(cos)(l

l

l

MM P

d

r

r

GmPW

Tidal potential

We have : WM (P) – (Wcentrifug. (P)+Wcentrifug.)

2

)(cosl

l

l

M Pd

r

r

Gm Tidal

potential

Page 19: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tidal potential

2

)(cosl

l

l

Mtid P

d

r

r

GmW

r/d = 1/60.3 (Earth-Moon) r/d = 1/25000 (Earth-Sun)

Rapid convergence : 32 WWWtid

W2 : 98% (Moon); 99% (Sun)Presently available potentials: l = 6 (Moon), l = 3 (Sun), l = 2 (Planets)

Sun effect = 0.46 * Moon effectVenus effect = 0.000054 * Moon effect

Page 20: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Doodson’s development of the tidal potential

tpaNapahasaarA

Pd

r

r

GmW

s

ll

lM

654321

2

'sin),,(

)(cos

Laplace : development of cos() as a function of the latitude, declination and right ascension Very complicated time variations due to the complexity of the orbital motions (but diurnal, semi-diurnal and long period tides appear clearly)

Doodson : Harmonic development of the potential as a sum of purely sinusoidal waves, i.e. waves having as argument purely linear functions of the time :

Page 21: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Doodson’s development of the tidal potential

tpaNapahasaarA

Pd

r

r

GmW

s

ll

lM

654321

2

'sin),,(

)(cos

: T ~ 24.8 hours (mean lunar day)s : T ~ 27.3 days (mean Lunar longitude)h : T ~ 365.2 days (tropical year)p : T ~ 8.8 years (Moon’s perigee)N’= -N : T ~ 18.6 years (Regression of the Moon’s node)p : T ~ 20942 years (perihelion)

Today: more than 1200 terms….(e.g. : Tamura 87: 1200, Hartmann-Wenzel 95: 12935)Among them:

Long period (fortnightly [Mf], semi-annual [Ssa], annual [Sa],….) Diurnal [O1, P1, Km

1, Ks1]

Semi-Diurnal [M2, S2] Ter-diurnal [M3] quarter-diurnal [M4]

Page 22: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tidal waves (Darwin’s notation)

Long periodM0

S0

Sa

Ssa

MSM

Mm

MSF

Mf 6 µGalMSTM

MTM

MSQM

DiurnalQ1

O1 35 µGalLK1

NO1

1

P1 16 µGalS1

Km1 33 µGal

KS1 15 µGal

1

1

J1

OO1

Semi-diurnal2N2

2

N2

2

M2 36 µGal2

T2

S2 17 µGalR2

Km2

Ks2

In red : largest amplitudes (at the Membach station)

Page 23: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

If:

• The moon’s orbit was exactly circular,

• There was no rotation of the Earth,

then we might only have to deal with Mf (13.7 days)

[and similarly SSa for the Sun (182.6 days)]

But, that’s not the case…….

Resulting periodic deformation

Page 24: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

• Taking the Earth’s rotation into account (23h56m),

• And keeping the Moon’s orbital plane aligned with the Earth’s equator,

Then we might only have to deal with M2 (12h25m): relative motion of the Moon as seen from the Earth

[and similarly S2 (12h00m)].

But, that’s not the case…….

The influence of the Earth’s rotation:M2, S2

Page 25: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

But

• The Moon’s orbital plane is not aligned with the earth’s equator,

• The Moon’s orbit is elliptic,

• The Earth’s rotational plane is not aligned with the ecliptic,

• The Earth’s orbit about the Sun is elliptic,

Therefore we have to deal with much more waves!

The influence of the Earth’s rotation, the motion of the Moon and the SunMuch more waves !

Page 26: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Why diurnal ?

M1+ M2

Would not exist if the Sun and the Moon were in the Earth’s equatorial plane !

No diurnal if declination = 0http://www.astro.oma.be/SEISMO/TSOFT/tsoft.html

Page 27: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

EarthSun

Total tidal ellipsoid

Sun’s tidal ellipsoid Moon’s tidal ellipsoid

New moon

Full moon

Spring Tide (from German Springen = to Leap up)

Syzygy

Page 28: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

EarthSun

Moon 1st quarter

Moon last quarter

Neap Tide

Lunar quadrature

Page 29: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

mvc

NB: you have to observe a signal for at least the beat period to be able to resolve the 2 contributing frequencies.

Beat period TSM

22

11

2

11

MSSM TTT

M2

S2

Neap Tide and Spring Tide

Page 30: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Equator: no diurnal½ diurnal maximum

Poles: long period only

Equator – mi-latitude – pole

Mid-latitude: diurnal maximum

Page 31: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Other properties… • Semi-diurnal: slows down the Earth rotation. Consequences: the Moon moves away. @ 475 000 km: length of the day ~2 weeks, the Moon and the Earth would present the same face.Slowing down the rotation is a typical tidal effect...even for galaxies!

• Diurnal: the torques producing nutations are those exerted by the diurnal tidal forces. This torque tends to tilt the equatorial plane towards the ecliptic

• Long period: Affect principal moment of inertia C : periodic variations of the length of the day. Its constant part causes the permanent tide and a slight increase of the Earth’s flattening

Page 32: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

“Elliptic” waves or “Distance” effect

d = 13 % 49% on the tidal force

Modulation of M2 gives N2 and L2

Modulation S of Ks1 gives S1 and 1

etc.

d

M2* effect of the distance

effect of the distance

L2N2

M2

“Fine structure”Or “Zeeman effect”

Page 33: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

e

+ Perturbations due to the Moon’s perigee, the node, the precession

Node: intercepts Moon’s orbital plane with the ecliptic, rotates in 18.6 years

ecliptic

Perigee: Moon’s orbit rotating in 8.85 years

Page 34: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

sdpw

• The period of the solar hour angle is a solar day of 24 hr 0 m.• The period of the lunar hour angle is a lunar day of 24 hr 50.47 m.• Earth’s axis of rotation is inclined 23.45° with respect to the plane of earth’s orbit about the sun. This defines the ecliptic, and the sun’s declination varies between d = ± 23.45°. with a period of one solar year.• The orientation of earth’s rotation axis precesses with respect to the stars with a period of 26 000 years.• The rotation of the ecliptic plane causes d and the vernal equinox to change slowly, and the movement called the precession of the equinoxes.• Earth’s orbit about the sun is elliptical, with the sun in one focus. That point in the orbit where the distance between the sun and earth is a minimum is called perigee. The orientation of the ellipse in the ecliptic plane changes slowly with time, causing perigee to rotate with a period of 20 900 years. Therefore Rsun varies with this period.• Moon’s orbit is also elliptical, but a description of moon’s orbit is much more complicated than a description of earth’s orbit. Here are the basics:

• The moon’s orbit lies in a plane inclined at a mean angle of 5.15° relative to the plane of the ecliptic. And lunar declination varies between d = 23.45 ± 5.15° with a period of one tropical month of 27.32 solar days.• The actual inclination of moon’s orbit varies between 4.97°, and 5.32°• The eccentricity of the orbit has a mean value of 0.0549, and it varies between 0.044 and 0.067.• The shape of moon’s orbit also varies.

First, perigee rotates with a period of 8.85 years. Second, the plane of moon’s orbit rotates around earth’s axis of rotation with a period of 18.613 years. Both processes cause variations in Rmoon.

Tidal waves: summary

Page 35: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

To calculate g induced by Earth tides:

we need a tidal potential, which takes into account the relative position of the Earth, the Moon, the Sun and the planets.

But also a tidal parameter set, which contains:

• The gravimetric factor ≈ 1.16 = gObserved / gRigid Earth

= Direct attraction (1.0) + Earth’s deformation (0.6) - Mass redistribution inside the Earth (0.44).

• The phase lag = (observed wave) - (astronomic wave)

Earth’s transfer function

Solid Earth tides (body tides): deformation of the Earth

The earth’s body tides is the periodic deformation of the earth due to the tidal forces caused by the moon and the sun (Amplitude range 40 cm typically at low latitude).

Page 36: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

The body deformation can be computed on the basis of an earth model determined from seismology (“Love’s numbers” : e.g. = 1 + h2 - 3/2k2 ~ 1.16).

The gravity body tide can be computed to an accuracy of about 0.1 µGal.

The remaining uncertainty is caused by the effects of the lateral heterogeneities in the earth structure and inelasticity at tidal periods.

Present Earth’s model: 0.1% for 0.01° for

On the other hand, tidal parameter sets can be obtained by performing a tidal analysis

Remark: tidal deformation ~1.3 mm/µGal

Tidal parameter set

Page 37: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Oceanic tides

Dynamic process (Coriolis...)Resonance effects

Ocean tides at 5 sites which have very different tidal regimes:

Karumba : diurnal

Musay’id : mixed

Kilindini : semidiurnal

Bermuda : semidiurnal

Courtown : shallow sea distortion

www.physical geography.net/fundamentals/8r.html

Page 38: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Oceanic tides : amphidromic points

M2

Page 39: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Ocean loadingThe ocean loading deformation has a range of more than 10 cm for the vertical displacement in some parts of the world.

2 cm (Brussels)20 cm (Cornwall)

Page 40: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

 To model the ocean loading deformation at a particular site we need models describing:

 1. the ocean tides (main source of error)2. the rheology of the Earth’s interior  

Error estimated at about 10-20%

In Membach, loading ~ 1.7 µGal 5 % on M2

error ~ 0.25 % on and 0.15° (18 s) on

Ocean loading

Page 41: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Correcting tidal effects

Using a solid Earth model (e.g. Wahr-Dehant)

...and an ocean loading model

Page 42: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

 Correcting tidal effects: Ocean tide models

Numerical hydrodynamic models are required to compute the tides in the ocean and in the marginal seas.

The accuracy of the present-day models is mainly determined by - the grid and bathymetry resolution - the approximations used to model the energy dissipation

 Data from TOPEX/Poseidon altimetry satellite:   - improved the maps of the main tidal harmonics in deep

oceans - provide useful constraints in numerical models of shallow

waters

Problem for coastal sites (within 100 km of the coasts) due to the resolution of the ocean tide model (1°x1°)

Page 43: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Ground Track of altimetric satellite

Page 44: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Recommended global ocean tides models

Schwiderski: working standard model for 10 years, based on tide gauges

resolution of 1°x1°includes long period tides Mm, Mf, Ssa

± 15 ocean tides models thanks to TOPEX/Poseidon mission

No model is systematically the best for all region amongst the best models:

- CSR3.0 from the University of Texasthe best coverageresolution of 0.5° x 0.5°

- FES95.2 from Grenoble representative of a family of four similar models

(includes the Weddell and Ross seas)

(recommended by T/P and Jason Science Working Team)

Page 45: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Ocean loading parameters

(Membach – Schwiderski)Component Amplitude PhasesM2 : 1.7767e-008 57.491sS2 : 5.7559e-009 2.923e+001 sK1 : 2.0613e-009 61.208sO1 : 1.4128e-009 163.723sN2 : 3.6181e-009 73.335sP1 : 6.5538e-010 74.449sK2 : 1.4458e-009 27.716sQ1 : 3.8082e-010 -128.093sMf : 1.4428e-009 4.551sMm : 4.4868e-010 -5.753sSsa : 1.0951e-010 1.178e+001

Page 46: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Examples of tidal effects and corrections(Data from the absolute gravimeter at Membach)

After correction of the solid Earth tide and the ocean loading effect

No correctionAfter correction of the solid Earth tide

Page 47: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Correcting tidal effects using observed tidesAdvantage: take into account all the local effects e.g. ocean loading Very useful in coastal stations

Disadvantage: a gravimeter must record continuously for 1 month at least

0.000000 0.249951 1.16000 0.0000 MF0.721500 0.906315 1.14660 -0.3219 Q10.9219141 0.940487 1.15028 0.0661 O10.958085 0.974188 1.15776 0.2951 M10.989049 0.998028 1.15100 0.2101 P10.999853 1.011099 1.13791 0.2467 K11.013689 1.044800 1.16053 0.1085 J11.064841 1.216397 1.15964 -0.0457 OO11.719381 1.872142 1.16050 3.6084 2N21.888387 1.906462 1.17730 3.1945 N21.923766 1.942754 1.18889 2.3678 M21.958233 1.976926 1.18465 1.0527 L21.991787 2.002885 1.19403 0.6691 S22.003032 2.182843 1.19451 0.9437 K22.753244 3.081254 1.06239 0.3105 M3

Ocean loading effect

Observed tidal parameter set (Membach):

Period (cpd)

Page 48: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Tidal analysis (ETERNA, VAV):

provides the “observed” tidal parameter set

Idea: astronomical perturbation well known

fitting the different known waves on the observations Allows us to resolve more waves than a spectral

analysis

Page 49: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

… 1.719380 1.823400 3N2     .971   1.12590   .01058   2.1258    .6060      1.825517 1.856953 EPS2   2.552   1.14145   .00444   3.4452    .2546      1.858777 1.859381 3MJ2   1.639   1.04673   .01183  -1.0228    .6780      1.859543 1.862429 2N2    8.809   1.14887   .00194   3.5877    .1110      1.863634 1.893554 MU2   10.763   1.16313   .00105   3.4913    .0602      1.894921 1.895688 3MK2   6.057   1.06175   .00315    .1165    .1805      1.895834 1.896748 N2    67.944   1.17253   .00025   3.1479    .0143      1.897954 1.906462 NU2   12.872   1.16949   .00087   3.2051    .0496      1.923765 1.942754 M2   359.543   1.18796   .00003   2.4554    .0018      1.958232 1.963709 LAMB   2.648   1.18656   .00418   2.3112    .2396      1.965827 1.968566 L2    10.205   1.19297   .00252   1.8996    .1445      1.968727 1.969169 3MO2   5.641   1.07195   .00678   -.0414    .3883      1.969184 1.976926 KNO2   2.535   1.18504   .01508   1.7954    .8639      1.991786 1.998288 T2     9.842   1.19562   .00118    .4525    .0679      1.999705 2.000767 S2   167.979   1.19293   .00007    .7631    .0041      2.002590 2.003033 R2     1.383   1.17356   .00668    .1530    .3828      2.004709 2.013690 K2    45.704   1.19399   .00033   1.0285    .0191      2.031287 2.047391 ETA2   2.548   1.19032   .00691    .8083    .3956      2.067579 2.073659 2S2     .408   1.14823   .04493  -2.9513   2.5747      2.075940 2.182844 2K2     .670   1.19573   .03444   -.7586   1.9731      2.753243 2.869714 MN3    1.097   1.05723   .00344    .3227    .1973      2.892640 2.903887 M3     4.005   1.05924   .00094    .4698    .0537      2.927107 2.940325 ML3     .234   1.09415   .01448   -.0586    .8297      2.965989 3.081254 MK3     .524   1.06465   .01050   1.0296    .6015      3.791963 3.833113 N4      .016    .99379   .12679 -86.7406   7.2653      3.864400 3.901458 M4      .017    .39703   .04408  51.5191   2.5255

Tidal analysis (ETERNA)

  adjusted tidal parameters :      from      to       wave   ampl. ampl.fac.   stdv. ph. lead    stdv.      [cpd]     [cpd]     [nm/s**2 ]                        [deg]    [deg]      .721499  .833113 SIGM    2.650   1.17718   .00988   -.9692    .5661       .851182  .859691 2Q1    8.914   1.15445   .00302   -.6510    .1732       .860896  .892331 SIGM  10.704   1.14852   .00247   -.5826    .1414       .892640  .892950 3MK1   2.632   1.10521   .01542   1.5440    .8834       .893096  .896130 Q1    66.963   1.14748   .00057   -.2157    .0325       .897806  .906315 RO1   12.706   1.14631   .00202    .0741    .1156       .921941  .930449 O1   350.360   1.14950   .00007    .1097    .0041       .931964  .940488 TAU1   4.609   1.15939   .00362    .0623    .2073       .958085  .965843 LK1   10.002   1.16063   .00568   -.0778    .3258       .965989  .966284 M1     8.042   1.07920   .00661    .5365    .3784       .966299  .966756 NO1   27.691   1.15522   .00213    .2379    .1222       .968565  .974189 CHI1   5.245   1.14413   .00473    .5885    .2712       .989048  .995144 PI1    9.543   1.15067   .00214    .2124    .1226       .996967  .998029 P1   163.108   1.15011   .00012    .2552    .0072       .999852 1.000148 S1      4.021   1.19925   .00744   4.0483    .4268      1.001824 1.003652 K1   487.579   1.13746   .00005    .2797    .0027      1.005328 1.005623 PSI1   4.242   1.26511   .00538   1.3458    .3082      1.007594 1.013690 PHI1     7.167   1.17411   .00290    .4751    .1663      1.028549 1.034467 TETA   5.272   1.15009   .00462    .2386    .2648      1.036291 1.039192 J1    27.849   1.16183   .00131    .1711    .0752      1.039323 1.039649 3MO1   2.994   1.10071   .01413    .2036    .8093      1.039795 1.071084 SO1    4.604   1.15789   .00587    .5912    .3364      1.072583 1.080945 OO1   15.154   1.15546   .00248    .0125    .1418      1.099161 1.216397 NU1    2.891   1.15149   .01258    .4449    .7208    …

W4

NDFW

W3

Analysis performed on data from the absolute gravimeter at Membach 1995-1999

Page 50: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

g

g

Measuring Earth tides

... Using a gravimeter (but also tiltmeters, strainmeters, long period seismometers)

Spring gravimeter Superconducting gravimeter (magnetic levitation)

Page 51: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

GWR Superconducting gravimeter

Page 52: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Advantages : Stability, weak drift (~ 4 µGal / year) Continuously recording

Disadvantages : Not mobile Relative Maintenance

GWR C021 Superconducting gravimeter at the Membach station

Page 53: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Data from the GWR C021 Superconducting gravimeter

Page 54: Introduction to the Earth Tides Michel Van Camp Royal Observatory of Belgium In collaboration with: Olivier Francis (University of Luxembourg) Simon D.P

Conclusions

Tidal effects can be corrected at the µGal level (and better) if:

- One uses a good potential (e.g. Tamura 1987)

- One uses observed tidal parameter set (esp. along the

coast)Or a tidal parameter set from a solid Earth model AND ocean loading parameters