14
INTRODUCTION TO MECHATRONIC DESIGN J. EDWARD CARRYER R. MATTHEW OHLINE THOMAS W. KENNY Mechanical Engineering Stanford University Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

INTRODUCTION TO MECHATRONIC DESIGN - GBV

  • Upload
    others

  • View
    19

  • Download
    1

Embed Size (px)

Citation preview

Page 1: INTRODUCTION TO MECHATRONIC DESIGN - GBV

INTRODUCTION TO MECHATRONIC DESIGN

J. EDWARD CARRYER R. MATTHEW OHLINE THOMAS W. KENNY

Mechanical Engineering Stanford University

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Page 2: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents

Preface Trademark Acknowledgments About the Authors

19 23 25

PART 1 INTRODUCTION 27

CHAPTER 1 Introduction

1.1 Philosophy 1.2 The Organization of This Book 1.3 Who Should Study Mechatronics? 1.4 How to Use This Book 1.5 Summary

27

29 29 30 30 31

PART 2 SOFTWARE 33

CHAPTER 2 What's a Micro?

CHAPTER 3

2.1 2.2 2.3 2.4 2.5

2.6 2.7 2.8 2.9 2.10 2.11

2.12 2.13

Introduction What's a Micro? Microprocessors, Microcontrollers, Digital Signal Processors, and More Microcontroller Architecture The Central Processing Unit

2.5.1 Representing Numbers in the Digital Domain 2.5.2 The Arithmetic Logic Unit

The Data Bus and the Address Bus Memory Subsystems and Peripherals Von Neumann Architecture The Harvard Architecture Real World Examples

2.11.1 The Freescale MC9S12C32 Microcontroller 2.11.2 The Microchip PIC12F609 Microcontroller

Where to Find More Information Homework Problems

Microcontroller Math and Number Manipulation

3.1 Introduction 3.2 Number Bases and Counting 3.3 Representing Negative Numbers 3.4 Data Types 3.5 Sizes of Common Data Types 3.6 Arithmetic on Fixed Size Variables 3.7 Modulo Arithmetic 3.8 Math Shortcuts 3.9 Boolean Algebra 3.10 Manipulating Individual Bits 3.11 Testing Individual Bits 3.12 Homework Problems

33

33 33 34 36 37 37 38 39 40 41 43 45 47 47 50 52 53

55

55

55

59

61

62

62

63

65

66

66

68

69

5

Page 3: INTRODUCTION TO MECHATRONIC DESIGN - GBV

6 Contents

CHAPTER 4

CHAPTER 5

CHAPTER 6

Programming Languages

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Program

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11

Software

6.1 6.2 6.3

Introduction Machine Language Assembly Language High-Level Languages Interpreters Compilers Hybrid Compiler/Interpreters Integrated Development Environments (IDEs) Choosing a Programming Language Homework Problems

Structures for Embedded Systems

Background Event Driven Programming Event Checkers Services Building an Event Driven Program An Example Summary of Event Driven Programming State Machines A State Machine in Software The Cockroach Example as a State Machine Homework Problems

Design

Introduction Building as a Metaphor for Creating Software Introducing Some Software Design Techniques

6.4

6.5

6.6

6.3.1 Decomposition 6.3.2 Abstraction and Information Hiding 6.3.3 Pseudo-Code

Software Design Process 6.4.1 Generating Requirements

Defining the Program Architecture The Performance Specification The Interface Specification Detail Design Implementation Unit Testing Integration

The Sample Problem

6.5.1 Requirements for the Morse Code Receiver The Morse Code Receiver System Architecture The Morse Code Receiver Software Architecture The Morse Code Receiver Performance Specifications The Morse Code Receiver Interface Specification The Morse Code Receiver Detail Design The Morse Code Receiver Implementation The Morse Code Receiver Unit Testing The Morse Code Receiver Integration

6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 6.4.8

6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 6.5.7 6.5.8 6.5.9

Homework Problems

71

71 72 73 74 74 76 77 79 80 81

83

83 84 84 88 88 90 91 91 93 95 97

99

99 99 101 101 102 103 104 104 105 106 106 107 108 110 110 110 111 111 112 115 115 118 128 128 129 130

Page 4: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents 7

CHAPTER 7 Inter-Processor Communications 131

7.1 Introduction 131 7.2 Without a Medium, There Is No Message 132 7.3 Bit-Parallel and Bit-Serial Communications 133

7.3.1 Bit-Serial Communications 133 7.3.2 Bit-Parallel Communications 143

7.4 Signaling Levels 144 7.4.1 TTL/CMOS Levels 144 7.4.2 RS-232 144 7.4.3 RS-485 145

7.5 Communicating over Limited Bandwidth Channels 146 7.5.1 Limited Bandwidth and Modems 146

7.6 Communicating with Light 149 7.7 Communicating over a Radio 152

7.7.1 RF Remote Controls 152 7.7.2 RF Data Links 153 7.7.3 RF Networks 153

7.8 Homework Problems 153

CHAPTER 8 Microcontroller Peripherals 155

8.1 Accessing the Control Registers 155 8.2 The Parallel Input/Output Subsystem 156

8.2.1 The Data Direction Register 156 8.2.2 The Input/Output Register(s) 156 8.2.3 Shared Function Pins 157

8.3 Timer Subsystems 158 8.3.1 Timer Basics 159 8.3.2 Timer Overflow 160 8.3.3 Output Compare 161 8.3.4 Input Capture 162 8.3.5 Combining Input Capture and Output Compare

to Control an Engine 163 8.4 Pulse Width Modulation 164 8.5 PWM Using the Output Compare System 166 8.6 The Analog-to-Digital Converter Subsystem 167

8.6.1 The Process for Converting an Analog Input to a Digital Value 168

8.6.2 The A/D Converter Clock 168 8.6.3 Automating the A/D Conversion Process 169

8.7 Interrupts 169 8.8 Homework Problems 170

PART3 ELECTRONICS 171

CHAPTER 9 Basic Circuit Analysis and Passive Components 171

9.1 Voltage, Current, and Power 171 9.2 Circuits and Ground 173 9.3 Laying Down the Laws 175 9.4 Resistance 176

9.4.1 Resistors in Series and Parallel 177 9.4.2 The Voltage Divider 179

Page 5: INTRODUCTION TO MECHATRONIC DESIGN - GBV

8 Contents

9.5 Thevenin Equivalents 180 9.6 Capacitors 181

9.6.1 Capacitors in Series and Parallel 183 9.6.2 Capacitors and Time-Varying Signals 184

9.7 Inductors 185 9.7.1 Inductors and Time-Varying Signals 186

9.8 The Time and Frequency Domains 187 9.9 Circuit Analysis with Multiple Component Types 188

9.9.1 Basic RC Circuit Configurations 188 9.9.2 Low-Pass RC Filter Behavior in the Time Domain 189 9.9.3 High-Pass RC Filter Behavior in the Time Domain 192 9.9.4 RL Circuit Behavior in the Time Domain 193 9.9.5 Low-Pass RC Filter Behavior in the Frequency Domain 195 9.9.6 High-Pass RC Filter Behavior in the Frequency Domain 198 9.9.7 High-Pass RC Filter with a DC Bias 199

9.10 Simulation Tools 200 9.10.1 Limitations of Simulation Tools 200

9.11 Real Voltage Sources 201 9.12 Real Measurements 202

9.12.1 Measuring Voltage 202 9.12.2 Measuring Current 203

9.13 Real Resistors 204 9.13.1 A Model for a Real Resistor 204 9.13.2 Resistor Construction Basics 204 9.13.3 Carbon Film Resistors 205 9.13.4 Metal Film Resistors 206 9.13.5 Power Dissipation in Resistors 207 9.13.6 Potentiometers 209 9.13.7 Choosing Resistors 210

9.14 Real Capacitors 210 9.14.1 A Model for a Real Capacitor 211 9.14.2 Capacitor Construction Basics 211 9.14.3 Polar vs. Nonpolar Capacitors 212 9.14.4 Ceramic Disk Capacitors 213 9.14.5 Monolithic Ceramic Capacitors 214 9.14.6 Aluminum Electrolytic Capacitors 214 9.14.7 Tantalum Capacitors 215 9.14.8 Film Capacitors 216 9.14.9 Electric Double Layer Capacitors/Super Capacitors 216 9.14.10 Capacitor Labeling 217 9.14.11 Choosing a Capacitor 220

9.15 Homework Problems 221

CHAPTER 10 Semiconductors 224

10.1 Doping, Holes, and Electrons 225 10.2 Diodes 225

10.2.1 The V-I Characteristic for Diodes 226 10.2.2 The Magnitude of Vt 227 10.2.3 Reverse Recovery 227 10.2.4 Schottky Diodes 227 10.2.5 Zener Diodes 228 10.2.6 Light Emitting Diodes 230 10.2.7 Photo-Diodes 231

Page 6: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents 9

10.3

10.4 10.5

10.6 10.7

10.8

Bipolar Junction Transistors 231 10.3.1 The Darlington Pair 236 10.3.2 The Photo-Transistor 237

MOSFETs 238 Choosing between BJTs and MOSFETs 242

10.5.1 When Will a BJT Be the Best (or Only) Choice? 242 10.5.2 When Will a MOSFET Be the Best (or Only) Choice? 243 10.5.3 How Do You Choose When Either a MOSFET

or a BJT Could Work? 243 Multitransistor Circuits 243 Reading Transistor Data Sheets 245

10.7.1 Reading a BJT Data Sheet 245 10.7.2 Reading a MOSFET Data Sheet 247 10.7.3 A Sample Application 249 10.7.4 A Potpourri of Transistor Circuits 250

Homework Problems 251

CHAPTER 11 Operational Amplifiers

11.1 11.2 11.3 11.4

11.5

11.6

Op-Amp Behavior Negative Feedback The Idea Op-Amp Analyzing Op-Amp Circuits

11.4.1 11.4.2 11.4.3 11.4.4 11.4.5 11.4.6 11.4.7 11.4.8

The Golden Rules The Noninverting Op-Amp Configuration The Inverting Op-Amp Configuration The Unity Gain Buffer The Difference Amplifier Configuration The Summer Configuration The Trans-Resistive Configuration Computation with Op-Amps

The Comparator 11.5.1 Comparator Circuits

Homework Problems

257

257 258 258 259 259 259 261 264 266 267 268 269 270 272 275

CHAPTER 12 Real Operational Amplifiers and Comparators 277

12.1 Real Op-Amp Characteristics—How the Ideal Assumptions Fail 277 12.1.1 Noninfinite Gain 277 12.1.2 Variation in Open-Loop Gain with Frequency 278 12.1.3 Input Current Is Not Zero 279 12.1.4 The Output Voltage Source Is Not Ideal 281 12.1.5 Other Nonidealities 282

12.2 Reading an Op-Amp Data Sheet 284 12.2.1 Maxima, Minima, and Typical Values 285 12.2.2 The Front Page 285 12.2.3 The Absolute Maximum Ratings Section 285 12.2.4 The Electrical Characteristics Section 285 12.2.5 The Packaging Section 289 12.2.6 The Typical Applications Section 290

12.3 Reading a Comparator Data Sheet 290 12.3.1 Comparator Packaging 291

12.4 Comparing Op-Amps 291 12.5 Homework Problems 294

Page 7: INTRODUCTION TO MECHATRONIC DESIGN - GBV

10 Contents

CHAPTER 13 Sensors 296

.1 Introduction

.2 Sensor Output and Microcontroller Inputs

.3 Sensor Design 13.3.1 13.3.2 13.3.3

Measuring Temperature with a Thermistor Measuring Acceleration Definitions of Sensor Performance Characteristics

.4 Fundamental Sensors and Interface Circuits 13.4.1 13.4.2 13.4.3 13.4.4 13.4.5 13.4.6

.5 A Survey 13.5.1 13.5.2 13.5.3 13.5.4 13.5.5 13.5.6 13.5.7 13.5.8 13.5.9

Switches as Sensors Interfacing to Switches Resistive Sensors Interfacing to Resistive Sensors Capacitive Sensors Interfacing to Capacitive Sensors

of Sensors Light Sensors Strain Sensors Temperature Sensors Magnetic Field Sensors Proximity Sensors Position Sensors Acceleration Sensors Force Sensors Pressure Sensors

13.6 Homework Problems

296 296 297 297 298 299 307 307 308 310 312 316 316 318 319 328 332 336 340 341 349 352 354 355

CHAPTER 14 Signal Conditioning

14.1 Basic Operations in Signal Conditioning 14.2 Offset Removal

14.2.1 Amplification Relative to an Offset 14.2.2 Offset Removal by AC Coupling

14.3 Amplification 14.3.1 Multistage Amplification with DC Coupling 14.3.2 Multistage Amplification with AC Coupling

14.4 Filtering 14.4.1 Filter Terminology 14.4.2 What Is Noise and Where Does It Come From? 14.4.3 Passive Filters

14.5 Other Signal Conditioning Techniques 14.5.1 The Instrumentation Amplifier 14.5.2 Peak Detection

14.6 Case Studies 14.6.1 Information in the Amplitude 14.6.2 Information in the Timing

14.7 Homework Problems

359

359 360 360 362 363 364 365 365 365 367 368 369 370 372 373 373 374 376

CHAPTER 15 Active and Digital Filters

15.1 Active Filters 15.1.1 Phase Delay 15.1.2 Filter Response Characteristics 15.1.3 Active Filter Topologies

378

378 378 379 381

Page 8: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents 11

15.2 Digital Techniques 15.2.1 Digital Filtering 15.2.2 Digital Signal Processing 15.2.3 Synchronous Sampling

15.3 Homework Problems

386 387 389 390 391

CHAPTER 16 Digital Inputs and Outputs

16.1 16.2 16.3 16.4 16.5 16.6

16.7

16.8

16.9

Introduction Representing Logical States Ideal Behavior for Digital Devices Real Behavior of Digital Devices Reading Device Data Sheets Digital Inputs

16.6.1 Digital Input Voltage Requirements 16.6.2 Digital Input Current Requirements 16.6.3 Pull-Ups and Pull-Downs 16.6.4 Digital Input Timing Requirements

Digital Outputs 16.7.1 Digital Output Voltage and Current Specifications 16.7.2 Digital Output Timing Specifications

Output Meets Input 16.8.1 Evaluating Compatibility 16.8.2 Pull-Ups and Pull-Downs for Disconnectable

and Indeterminate Inputs 16.8.3 Interconnecting Incompatible Devices

Homework Problems

393

393 393 394 394 395 396 396 399 400 404 407 407 409 410 410

412 415 420

CHAPTER 17 Digital Outputs and Power Drivers

17.1

17.2

17.3

17.4

17.5

17.6

17.7 17.8

Totem-Pole Outputs 17.1.1 Totem-Pole Output Specifications

Open-Collector/Open-Drain Outputs 17.2.1 Open-Collector/Open-Drain Output

Specifications Three-State Outputs

17.3.1 Three-State Output Specifications Low Side Drivers

17.4.1 Low Side Driver Specifications High Side Drivers

17.5.1 High Side Driver Specifications Half-Bridges and Full-Bridges

17.6.1 Shoot-Through Currents and Dead Time 17.6.2 H-Bridge Specifications

Thermal Design Issues Homework Problems

424

424 424 427

428 429 431 431 433 433 434 435 436 437 437 440

CHAPTER 18 Digital Logic and Integrated Circuits

18.1 Basic Combinatorial Logic 18.1.1 Truth Tables 18.1.2 Describing Microcontroller Subsystems Using

Combinatorial Logic

442

442

443

444

Page 9: INTRODUCTION TO MECHATRONIC DESIGN - GBV

12 Contents

18.2

18.3 18.4

18.5 18.6

18.7

18.8

A Survey of Useful Functions Implemented with Combinatorial 18.2.1 The Digital Comparator 18.2.2 The Digital Multiplexer 18.2.3 The Decoder

Introduction to Sequential Logic A Survey of Useful Functions Implemented with Sequential LOJ

18.4.1 The D-Type Flip-Flop 18.4.2 The J-K Flip-Flop 18.4.3 The Counter 18.4.4 The Shift Register

Logic Families Using Available Logic Chips to Expand the Capabilities of a Microcontroller

18.6.1 Using a Multiplexer to Expand Input Capabilities Using a Decoder to Expand Output Capabilities Using Shift Registers to Expand Input Capabilities Using Shift Registers to Expand Output Capabilities Using the SPI Subsystem with Shift Registers

The 555 Timer 18.7.1 Inside the 555 Timer 18.7.2 Astable Operation 18.7.3 Mono-Stable Operation 18.7.4 Other Uses of the 555 Timer

Homework Problems

Logic

gic

18.6.2 18.6.3 18.6.4 18.6.5

445 445 445 446 447 448 448 448 449 451 452

453 453 454 455 457 458 458 458 458 460 461 462

CHAPTER 19 A-to-D and D-to-A Converters

19.1 Interfacing between Digital and Analog Domains 19.2 Digitizing Continuous Signals 19.3 A/D and D/A Converter Performance

19.3.1 Ideal A/D Converter Performance 19.3.2 Sources of Error for A/D Converters 19.3.3 Ideal D/A Converter Performance 19.3.4 Sources of Error for D/A Converters

19.4 D/A Converter Designs 19.4.1 Using Pulse Width Modulation to Generate Analog Voltaj 19.4.2 Summing Amplifier D/A Converters 19.4.3 String D/A Converters 19.4.4 R-2R Ladder D/A Converters

19.5 A/D Converter Designs 19.5.1 Single Slope and Dual Slope A/D Converters 19.5.2 Flash A/D Converters 19.5.3 Half-Flash A/D Converters 19.5.4 Successive Approximation Register A/D Converters 19.5.5 Sigma-Delta A/D Converters

19.6 Homework Problems

464

464

465

468

470 472 474 475 476

;es 476 477 481 482 484 484 486

490 492

CHAPTER 20 Voltage Regulators, Power Supplies, and Batteries

20.1 Introduction 20.2 Power Requirements and Power Sources 20.3 Voltage Regulators

20.3.1 Voltage Regulator Terms and Definitions 20.3.2 Linear Voltage Regulators 20.3.3 Switch-Mode (Switching) Voltage Regulators

494

494 494 495 496 499 507

Page 10: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents 13

20.4 Power Supplies 513 20.4.1 Linear Power Supplies 513 20.4.2 Switching Power Supplies 516

20.5 Batteries and Electrochemical Cells 519 20.5.1 Battery Performance and Characteristics 521 20.5.2 Primary Batteries 525 20.5.3 Secondary Batteries 526 20.5.4 Battery Safety and Environmental Issues 532

20.6 Homework Problems 533

CHAPTER 21 Noise, Grounding, and Isolation 536

21.1 Noise Coupling Channels 536 21.2 Conductively Coupled Noise 537

21.2.1 The Origins of the Conductive Coupling Channel 537 21.2.2 Reducing Conductively Coupled Noise 538 21.2.3 Reducing Noise at the Source: Decoupling 538 21.2.4 Reducing the Coupling of Conductive Noise 540 21.2.5 Reducing Conductive Noise at the Receptor:

Power Supply Filtering 541 21.2.6 Best Practices for Reducing Conductive Noise 542

21.3 Capacitively Coupled Noise 542 21.3.1 The Origins of the Capacitive Coupling Channel 542 21.3.2 Reducing Capacitively Coupled Noise 543 21.3.3 Reducing Capacitively Coupled Noise at the Source 545 21.3.4 Reducing the Coupling of Capacitively Coupled Noise 546 21.3.5 Shielding 546 21.3.6 Reducing Capacitively Coupled Noise at the Receiver 547 21.3.7 Best Practices for Reducing Capacitively Coupled Noise 548

21.4 Inductively Coupled Noise 549 21.4.1 The Origins of the Inductive Coupling Channel 549 21.4.2 Reducing Inductively Coupled Noise at the Source 549 21.4.3 Reducing the Coupling of Inductively Coupled Noise 550 21.4.4 Reducing Inductively Coupled Noise at the Receptor 550 21.4.5 Best Practices for Reducing Inductively Coupled Noise 550

21.5 Isolation 550 21.5.1 Optical Isolation 551 21.5.2 Capacitive Isolation 553 21.5.3 Inductive Isolation 553 21.5.4 Comparing Isolation Technologies 554

21.6 Homework Problems 554

PART 4 ACTUATORS 557

CHAPTER 22 Permanent Magnet Brushed DC Motor Characteristics 557

22.1 Introduction 557 22.2 Subfractional Horsepower Permanent Magnet Brushed DC Motors 557 22.3 Electrical Model 561 22.4 Back-EMF and the Generator Effect 562 22.5 Characteristic Constants for Permanent Magnet Brushed

DC Motors 562 22.6 Characteristic Equations for Constant Voltage 564 22.7 Power Characteristics 567

Page 11: INTRODUCTION TO MECHATRONIC DESIGN - GBV

14 Contents

22.8 DC Motor Efficiency 22.9 Gearheads 22.10 Homework Problems

CHAPTER 23 Permanent Magnet Brushed DC Motor Applications

23.1 23.2

23.3

23.4

23.5

Introduction Inductive Kickback

23.2.1 Inductive Kickback Summary Bidirectional Control of Motors

23.3.1 Commercially Available H-Bridge Integrated Circuits 23.3.2 H-Bridges for Higher Current Applications

Speed Control with Pulse Width Modulation Homework Problems

CHAPTER 24 Solenoids

24.1 Introduction 24.2 Solenoid Construction 24.3 Solenoid Performance 24.4 Driving a Solenoid 24.5 Mechanical Response Time 24.6 Applications 24.7 Homework Problems

CHAPTER 25 Brushless DC Motors

25.1 25.2 25.3

25.4 25.5 25.6 25.7 25.8

Introduction BLDC Motor Construction BLDC Motor Operation

25.3.1 Sensored Commutation 25.3.2 Sensor-less Commutation

Driving a BLDC Motor Commutating a BLDC Motor BLDC Motor Driver Integrated Circuits Comparing Brushed and Brushless DC Motors Homework Problems

CHAPTER 26 Stepper Motors

26.1 Introduction 26.2 Stepper Motor Construction 26.3 The Variable Reluctance Stepper Motor 26.4 The Hybrid Stepping Motor 26.5 Comparing Stepping Motor Types 26.6 Stepper Motor Internal Wiring 26.7 Driving Stepper Motors 26.8 Stepping Sequences for Stepper Motors 26.9 Generating the Drive Sequences for Stepper Motors 26.10 Stepper Motor Dynamics 26.11 Stepper Motor Performance Specifications 26.12 Optimizing Stepper Motor Performance with Drive Electronics 26.13 The Role of Snubbing in Performance 26.14 Homework Problems

569

573

575

578

578 578 586 587 590 592 593 598

601

601

601

603

606

608

608

609

614

614 614 616 617 618 619 620 620 623 624

626

626

626

629

630

631

632

634

635

640

641

643

646

648

649

Page 12: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents 15

CHAPTER 27 Other Actuator Technologies 652

27.1 Introduction 652 27.2 Pneumatic and Hydraulic Systems 652

27.2.1 Solenoid Valves 653 27.2.2 Servo Valves 657 27.2.3 Pneumatic and Hydraulic Actuators 658

662 663 665 670 674 674

677

677 677 678 679 680 681 683 685

687 689 692 692 693 697

PART 5 MECHATRONIC PROJECTS AND SYSTEMS ENGINEERING 699

CHAPTER 29 Rapid Prototyping 699

29.1 Introduction 699 29.2 Why Make Prototypes? 700 29.3 Prototyping Philosophies: Build or Simulate? 700 29.4 Rapid Prototyping of Mechanical Systems 701

29.4.1 Solid Modeling Tools 701 29.4.2 Modeling System Dynamics 702 29.4.3 Foamcore, X-Acto Knives, and Hot Glue 702 29.4.4 2-D Rapid Prototyping: Laser Cutting/LaserCAMM 706 29.4.5 2-D Rapid Prototyping, Cheap! 708 29.4.6 Tab and Slot Construction 708 29.4.7 Toys 708 29.4.8 3-D Rapid Prototyping: SLA, SLS, FDM,

and Soft-Mold Castings 710 29.5 Rapid Prototyping of Electrical Systems 713

29.5.1 Schematic Capture and Circuit Simulation Tools 713 29.5.2 Circuit Prototyping: Breadboards, Wire Wrap,

and Perf Boards 715

27.3 27.4

27.5 27.6 27.7

RC Servos Piezo Actuators

27.4.1 Types of Piezo Actuators Shape Memory Alloy Actuators Summary Homework Problems

CHAPTER 28 Basic Closed-Loop Control

28.1 28.2 28.3 28.4 28.5

28.6 28.7 28.8 28.9

Introduction Terminology Open-Loop Control On-Off Closed-Loop Control Linear Closed-Loop Control

28.5.1 Getting Started 28.5.2 Getting Smarter 28.5.3 Disturbance Rejection 28.5.4 Improving Performance Further by Adding

Derivative Control 28.5.5 Choosing the Right Gains

System Type and the Need for Integral Control Selecting the Control Loop Rate Ad Hoc Methods Homework Problems

Page 13: INTRODUCTION TO MECHATRONIC DESIGN - GBV

16 Contents

29.5.3 Prototype PCBs 29.5.4 Soldering Technique

29.6 Suppliers and Resources 29.7 Homework Problems

718 720 722 724

CHAPTER 30 Project Planning and Management

30.1 Introduction 30.2 Increasing Project Complexity and the Need for Managing

the Process 30.3 Planning and Executing a Project

30.3.1 System Requirements 30.3.2 Generating Design Candidates and Alternatives 30.3.3 Design Concept Evaluation: Prototypes

and Iteration 30.3.4 Specifications

30.4 Management Tools 30.4.1 Project Management 30.4.2 Systems Engineering

CHAPTER 31

CHAPTER 32

30.5 30.6 30.7

30.4.3 Concurrent Design Communication and Documentation Pitfalls and Suggestions Homework Problems

Troubleshooting

31.1 31.2 31.3

31.4 31.5 31.6

Introduction Staring into the Void An Ounce of Prevention Is Worth an AU-Nighter of Troubleshooting Troubleshooting Attitude Final Thoughts Homework Problems

Mechatronic Synthesis

32.1 32.2 32.3 32.4

Introduction The Project Description System Requirements Design Candidates and Alternatives

32.4.1 Team Zero's Concepts 32.4.2 Team InTheRuff s Concepts 32.4.3 Review of the Design Candidates

32.5 Morphology Charts 32.6 Design Concept Evaluation: Prototypes and Iteration 32.7 Implementation Phase

32.7.1 InTheRuff Drive Motor Choice 32.7.2 Team Zero Ball Release Motor Choice 32.7.3 Team Zero Beacon Sensor Circuit Evolution 32.7.4 Team Zero Support Stiffness Issue 32.7.5 Team Zero Compass Sensor Failure

32.8 The Completed Designs 32.8.1 Team InTheRuff 32.8.2 Team Zero

725

725

726 726 728 729

733 733 734 734 738 739 740 741 741

744

744 745

747 754 755 756

757

757 758 758 760 760 765 767 768 769 772 772 773 773 774 775 775 775 778

Page 14: INTRODUCTION TO MECHATRONIC DESIGN - GBV

Contents 17

32.9 Performance Results 778 32.10 Gems of Wisdom from the Students 779

Appendix A Resistor Color Code and Standard Values 781

Appendix В Sample С Code 783

Appendix С Project Description for the Chapter 32 Case Study 795

Index 799