Introduction to Finite Element Methods.pdf

Embed Size (px)

Citation preview

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    1/34

    Need for Computational Methods Solutions Using Either Strength of Materials or Theory ofElasticity Are Normally Accomplished for Regions and

    Loadings With Relatively Simple Geometry

    Many Applicaitons Involve Cases with Complex Shape,Boundary Conditions and Material Behavior

    Therefore a Gap Exists Between What Is Needed in

    Applications and What Can Be Solved by Analytical Closed-

    form Methods

    This Has Lead to the Development of SeveralNumerical/Computational Schemes Including: Finite

    Difference, Finite Element and Boundary Element Methods

    Introduction to Finite Element Methods

    M.THIRUMALAIMUTHUKUMARAN AP/MECH Dr.NGPIT

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    2/34

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    3/34

    Advantages of Finite Element Analysis

    - Models Bodies of Complex Shape

    - Can Handle General Loading/Boundary Conditions

    - Models Bodies Composed of Composite and Multiphase Materials

    - Model is Easily Refined for Improved Accuracy by Varying

    Element Size and Type (Approximation Scheme)

    - Time Dependent and Dynamic Effects Can Be Included

    - Can Handle a Variety Nonlinear Effects Including Material

    Behavior, Large Deformations, Boundary Conditions, Etc.

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    4/34

    Basic Concept of the Finite Element Method

    Any continuous solution field such as stress, displacement,

    temperature, pressure, etc. can be approximated by a

    discrete model composed of a set of piecewise continuous

    functions defined over a finite number of subdomains.

    Exact Analytical Solution

    x

    T

    Approximate Piecewise

    Linear Solution

    x

    T

    One-Dimensional Temperature Distribution

    M.THIRUMALAIMUTHUKUMARAN AP/MECH Dr.NGPIT

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    5/34

    Two-Dimensional Discretization

    -1-0.5

    00.5

    11.5

    22.5

    3

    1

    1.5

    2

    2.5

    3

    3.54

    -3

    -2

    -1

    0

    1

    2

    xy

    u(x,y)

    Approximate Piecewise

    Linear Representation

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    6/34

    Discretization Concepts

    x

    T

    Exact T emperatu re Dis tributio n, T( x)

    Fin ite E lem en t D isc retization

    Li near In terpo lat ion Mo del (Four Elements)

    Quadratic Interpolation M odel (Two Elements)

    T1

    T2 T2T3 T3

    T4 T4T5

    T1

    T2

    T3T4 T5

    Piece wi se Linear Ap proxim ation

    T

    x

    T1

    T2T3 T3

    T4 T5

    T

    T1

    T2

    T3T4 T5

    Piece wi se Qua dra tic Approxim ati on

    x

    Temperature Continuous but with

    Discon tinu ous T emp erature G radients

    Temperature and Temp erature Gradients

    Continuous

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    7/34

    Common Types of Elements

    One-Dimensional Elements

    Line

    Rods, Beams, Trusses, Frames

    Two-Dimensional ElementsTriangular, Quadrilateral

    Plates, Shells, 2-D Continua

    Three-Dimensional Elements

    Tetrahedral, Rectangular Prism (Brick)

    3-D Continua

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    8/34

    Discretization Examples

    One-Dimensional

    Frame Elements

    Two-Dimensional

    Triangular Elements

    Three-Dimensional

    Brick Elements

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    9/34

    Basic Steps in the Finite Element Method

    Time Independent Problems- Domain Discretization

    - Select Element Type (Shape and Approximation)

    - Derive Element Equations (Variational and Energy Methods)

    - Assemble Element Equations to Form Global System

    [K]{U} = {F}

    [K] = Stiffness or Property Matrix

    {U} = Nodal Displacement Vector

    {F} = Nodal Force Vector

    - Incorporate Boundary and Initial Conditions

    - Solve Assembled System of Equations for Unknown Nodal

    Displacements and Secondary Unknowns of Stress and Strain Values

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    10/34

    Common Sources of Error in FEA

    Domain Approximation

    Element Interpolation/Approximation

    Numerical Integration Errors

    (Including Spatial and Time Integration)

    Computer Errors (Round-Off, Etc., )

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    11/34

    Measures of Accuracy in FEA

    Accuracy

    Error = |(Exact Solution)-(FEM Solution)|

    Convergence

    Limit of Error as:

    Number of Elements (h-convergence)

    or

    Approximation Order (p-convergence)

    IncreasesIdeally, Error 0 as Number of Elements or

    Approximation Order

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    12/34

    Two-Dimensional Discretization Refinement

    (Discretization with 228 Elements)

    (Discretization with 912 Elements)

    (Triangular Element)

    (Node)

    M.THIRUMALAIMUTHUKUMARAN AP/MECH Dr.NGPIT

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    13/34

    One Dimensional Examples

    Static Case

    1 2

    u1 u2

    Bar Element

    Uniaxial Deformation of Bars

    Using Strength of Materials Theory

    Beam Element

    Deflection of Elastic Beams

    Using Euler-Bernouli Theory

    1 2

    w1 w2

    q2

    q1

    dx

    duau

    qcuaudx

    d

    ,

    :ionSpecificatCondtionsBoundary

    0)(

    :EquationalDifferenti

    )(,,,

    :ionSpecificatCondtionsBoundary

    )()(

    :EquationalDifferenti

    2

    2

    2

    2

    2

    2

    2

    2

    dx

    wdb

    dx

    d

    dx

    wdb

    dx

    dww

    xf

    dx

    wdb

    dx

    d

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    14/34

    Two Dimensional Examples

    u1

    u2

    1

    2

    3 u3

    v1

    v2

    v3

    1

    2

    3

    f1

    f2

    f3

    Triangular Element

    Scalar-Valued, Two-DimensionalField Problems

    Triangular Element

    Vector/Tensor-Valued, Two-Dimensional Field Problems

    yx ny

    nxdn

    d

    yxfyx

    ,

    :ionSpecificatCondtionsBoundary

    ),(

    :EquationialDifferentExample

    2

    2

    2

    2

    yxy

    yxx

    y

    x

    n

    y

    vC

    x

    uCn

    x

    v

    y

    uCT

    nx

    v

    y

    uCn

    y

    vC

    x

    uCT

    Fy

    v

    x

    u

    y

    Ev

    Fy

    v

    x

    u

    x

    Eu

    221266

    661211

    2

    2

    ConditonsBoundary

    0)1(2

    0)1(2

    entsDisplacemofTermsinEquationsFieldElasticity

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    15/34

    Development of Finite Element Equation The Finite Element Equation Must Incorporate the Appropriate Physicsof the Problem

    For Problems in Structural Solid Mechanics, the Appropriate Physics

    Comes from Either Strength of Materials or Theory of Elasticity

    FEM Equations are Commonly Developed UsingDirect, Variational-

    Virtual Work or Weighted ResidualMethods

    Variational-Virtual Work Method

    Based on the concept of virtual displacements, leads to relations between internal and

    external virtual work and to minimization of system potential energy for equilibrium

    Weighted Residual Method

    Starting with the governing differential equation, special mathematical operations

    develop the weak form that can be incorporated into a FEM equation. This

    method is particularly suited for problems that have no variational statement. For

    stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that

    found by variational methods.

    Direct Method

    Based on physical reasoning and limited to simple cases, this method is

    worth studying because it enhances physical understanding of the process

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    16/34

    Simple Element Equation Example

    Direct Stiffness Derivation

    1 2k

    u1 u2

    F1 F2

    }{}]{[

    rmMatrix Foinor

    2NodeatmEquilibriu

    1NodeatmEquilibriu

    2

    1

    2

    1

    212

    211

    FuK

    F

    F

    u

    u

    kk

    kk

    kukuF

    kukuF

    Stiffness Matrix Nodal Force Vector

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    17/34

    Common Approximation Schemes

    One-Dimensional Examples

    Linear Quadratic Cubic

    Polynomial Approximation

    Most often polynomials are used to construct approximation

    functions for each element. Depending on the order of

    approximation, different numbers of element parameters are

    needed to construct the appropriate function.

    Special Approximation

    For some cases (e.g. infinite elements, crack or other singular

    elements) the approximation function is chosen to have special

    properties as determined from theoretical considerations

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    18/34

    One-Dimensional Bar Element

    udVfuPuPedV jjii

    }]{[:LawStrain-Stress

    }]{[}{][

    )(:Strain

    }{][)(:ionApproximat

    dB

    dBdN

    dN

    EEe

    dx

    dux

    dx

    d

    dx

    due

    uxu

    k

    kk

    k

    kk

    L

    TT

    j

    iTL

    TTfdxA

    P

    PdxEA

    00][}{}{}{][][}{ NdddBBd

    L

    TL

    TfdxAdxEA

    00][}{}{][][ NPdBB

    VectorentDisplacemNodal}{

    VectorLoading][}{

    MatrixStiffness][][][

    0

    0

    j

    i

    LT

    j

    i

    LT

    u

    u

    fdxAP

    P

    dxEAK

    d

    NF

    BB

    }{}]{[ FdK

    M.THIRUMALAIMUTHUKUMARAN AP/MECH Dr.NGPIT

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    19/34

    One-Dimensional Bar Element

    A = Cross-sectional Area

    E = Elastic Modulusf(x) = Distributed Loading

    dVuFdSuTdVe iV

    iS

    i

    n

    iijV

    ijt

    Virtual Strain Energy = Virtual Work Done by Surface and Body Forces

    For One-Dimensional Case

    udVfuPuPedV jjii

    W

    (i) (j)

    Axial Deformation of an Elastic Bar

    Typical Bar Element

    dx

    duAEP ii

    dx

    duAEP

    j

    j iu ju

    L

    x

    (Two Degrees of Freedom)

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    20/34

    Linear Approximation Scheme

    VectorentDisplacemNodal}{

    MatrixFunctionionApproximat][

    }]{[1

    )()(

    1

    2

    1

    2

    1

    21

    2211

    2112

    1

    212

    11

    21

    d

    N

    dN

    ntDisplacemelasticeApproximat

    u

    u

    L

    x

    L

    x

    u

    u

    u

    uxux

    uL

    xu

    L

    xx

    L

    uuuu

    Laau

    au

    xaau

    x (local coordinate system)(1) (2)

    iu ju

    L

    x(1) (2)

    u(x)

    x(1) (2)

    y 1(x) y 2(x)

    1

    y k(x) Lagrange Interpolation Functions

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    21/34

    Element EquationLinear Approximation Scheme, Constant Properties

    VectorentDisplacemNodal}{

    1

    1

    2][}{

    11

    1111

    1

    1

    ][][][][][

    2

    1

    2

    1

    02

    1

    02

    1

    00

    u

    u

    LAf

    P

    Pdx

    L

    xL

    x

    AfP

    PfdxAP

    P

    L

    AEL

    LL

    L

    LAEdxAEdxEAK

    oL

    o

    L T

    LT

    LT

    d

    NF

    BBBB

    1

    1

    211

    11}{}]{[

    2

    1

    2

    1 LAf

    P

    P

    u

    u

    L

    AE oFdK

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    22/34

    Quadratic Approximation Scheme

    }]{[

    )()()(

    42

    3

    2

    1

    321

    332211

    2

    3213

    2

    3212

    11

    2321

    dN

    ntDisplacemeElasticeApproximat

    u

    u

    u

    u

    uxuxuxu

    LaLaau

    LaLaau

    au

    xaxaau

    x(1) (3)

    1u 3u

    (2)

    2u

    L

    u(x)

    x(1) (3)(2)

    x(1) (3)(2)

    1

    y 1(x) y 3(x)

    y 2(x)

    3

    2

    1

    3

    2

    1

    781

    8168

    187

    3F

    F

    F

    u

    u

    u

    L

    AE

    quationElement

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    23/34

    Lagrange Interpolation FunctionsUsing Natural or Normalized Coordinates

    11

    (1) (2))1(

    2

    1

    )1(2

    1

    2

    1

    )1(2

    1

    )1)(1(

    )1(21

    3

    2

    1

    )1)(3

    1)(

    3

    1(

    16

    9

    )3

    1)(1)(1(

    16

    27

    )3

    1)(1)(1(

    16

    27

    )

    3

    1)(

    3

    1)(1(

    16

    9

    4

    3

    2

    1

    (1) (2) (3)

    (1) (2) (3) (4)

    ji

    jiji

    ,0,1)(

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    24/34

    Simple ExampleP

    A1,E1,L1 A2,E2,L2

    (1) (3)(2)

    1 2

    0000

    011

    011

    1ElementEquationGlobal

    )1(

    2

    )1(1

    3

    2

    1

    1

    11 P

    P

    U

    U

    U

    L

    EA

    )2(

    2

    )2(

    1

    3

    2

    1

    2

    22

    0

    110

    110

    000

    2ElementEquationGlobal

    P

    P

    U

    U

    U

    L

    EA

    3

    2

    1

    )2(

    2

    )2(

    1

    )1(

    2

    )1(1

    3

    2

    1

    2

    22

    2

    22

    2

    22

    2

    22

    1

    11

    1

    11

    1

    11

    1

    11

    0

    0

    EquationSystemGlobalAssembled

    P

    P

    P

    P

    PP

    P

    U

    U

    U

    L

    EA

    L

    EA

    L

    EA

    L

    EA

    L

    EA

    L

    EAL

    EA

    L

    EA

    0

    LoadingedDistributZeroTake

    f

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    25/34

    Simple Example Continued

    P

    A1,E1,L1 A2,E2,L2

    (1) (3)(2)

    1 2

    0

    0ConditionsBoundary

    )2(

    1

    )1(

    2

    )2(

    2

    1

    PP

    PP

    U

    P

    P

    U

    U

    L

    EA

    L

    EA

    L

    EA

    L

    EA

    L

    EA

    L

    EA

    LEA

    LEA

    0

    0

    0

    0

    EquationSystemGlobal Reduced

    )1(

    1

    3

    2

    2

    22

    2

    22

    2

    22

    2

    22

    1

    11

    1

    11

    1

    11

    1

    11

    PU

    U

    L

    EA

    L

    EA

    LEA

    LEA

    LEA

    0

    3

    2

    2

    22

    2

    22

    2

    22

    2

    22

    1

    11

    LEA ,,Properties

    mFor Unifor

    PU

    U

    L

    AE 0

    11

    12

    3

    2

    PPAE

    PLU

    AE

    PLU )1(132 ,

    2,Solving

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    26/34

    One-Dimensional Beam ElementDeflection of an Elastic Beam

    2

    2423

    1

    1211

    2

    2

    2

    4

    2

    2

    2

    3

    12

    2

    21

    2

    2

    1

    ,,,

    ,

    ,

    dx

    dwuwu

    dx

    dwuwu

    dx

    wdEIQ

    dx

    wdEI

    dx

    dQ

    dx

    wd

    EIQdx

    wd

    EIdx

    d

    Q

    I = Section Moment of Inertia

    E = Elastic Modulus

    f(x) = Distributed Loading

    W

    (1) (2)

    Typical Beam Element

    1w

    L

    2w1 2

    1M2M

    1V 2V

    x

    Virtual Strain Energy = Virtual Work Done by Surface and Body Forces

    wdVfwQuQuQuQedV 44332211

    L

    TL

    dVfwQuQuQuQdxEI0

    443322110

    ][}{][][ NdBB T

    (Four Degrees of Freedom)

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    27/34

    Beam Approximation FunctionsTo approximate deflection and slope at each

    node requires approximation of the form3

    4

    2

    321)( xcxcxccxw

    Evaluating deflection and slope at each node

    allows the determination ofci thus leading to

    FunctionsionApproximatCubicHermitethearewhere

    ,)()()()()( 44332211

    i

    uxuxuxuxxw

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    28/34

    Beam Element Equation

    LT

    L

    dVfwQuQuQuQdxEI0443322110

    ][}{][][ NdBB T

    4

    3

    2

    1

    }{

    u

    u

    u

    u

    d ][][

    ][ 4321

    dx

    d

    dx

    d

    dx

    d

    dx

    d

    dx

    d

    NB

    22

    22

    30

    233

    3636

    323

    3636

    2][][][

    LLLL

    LL

    LLLL

    LL

    L

    EIdxEI

    L

    BBK T

    L

    LfL

    Q

    Q

    Q

    Q

    u

    u

    u

    u

    LLLL

    LL

    LLLL

    LL

    L

    EI

    6

    6

    12

    233

    3636

    323

    3636

    2

    4

    3

    2

    1

    4

    3

    2

    1

    22

    22

    3

    L

    LfLdxfdxf

    LLT

    6

    6

    12][

    0

    4

    3

    2

    1

    0N

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    29/34

    FEA Beam Problem

    f

    a b

    UniformEI

    0

    0

    0

    0

    6

    6

    12

    000000

    000000

    00/2/3/1/3

    00/3/6/3/6

    00/1/3/2/3

    00/3/6/3/6

    2)1(

    4

    )1(

    3

    )1(

    2

    )1(

    1

    6

    5

    4

    3

    2

    1

    22

    2323

    22

    2323

    Q

    Q

    Q

    Q

    a

    a

    fa

    U

    U

    U

    U

    U

    U

    aaaa

    aaaa

    aaaa

    aaaa

    EI

    1Element

    )2(

    4

    )2(

    3

    )2(

    2

    )2(

    1

    6

    5

    4

    3

    2

    1

    22

    2323

    22

    2323

    0

    0

    /2/3/1/300

    /3/6/3/600

    /1/3/2/300

    /3/6/3/600

    000000

    000000

    2

    Q

    Q

    Q

    Q

    U

    U

    U

    U

    U

    U

    bbbb

    bbbb

    bbbb

    bbbbEI

    2Element

    (1) (3)(2)

    1 2

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    30/34

    FEA Beam Problem

    )2(

    4

    )2(

    3

    )2(

    2

    )1(

    4

    )2(

    1

    )1(

    3

    )1(

    2

    )1(

    1

    6

    5

    4

    3

    2

    1

    23

    2

    232233

    2

    2323

    0

    0

    6

    6

    12

    /2

    /3/6

    /1/3/2/2

    /3/6/3/3/6/6

    00/1/3/2

    00/3/6/3/6

    2

    Q

    Q

    QQ

    QQ

    Q

    Q

    a

    a

    fa

    U

    U

    U

    U

    U

    U

    a

    aa

    aaba

    aababa

    aaa

    aaaa

    EI

    SystemAssembledGlobal

    0,0,0 )2(4)2(

    3

    )1(

    12

    )1(

    11 QQUwU

    ConditionsBoundary

    0,0 )2(2)1(

    4

    )2(

    1

    )1(

    3 QQQQ

    ConditionsMatching

    0

    0

    0

    0

    0

    0

    6

    12

    /2

    /3/6

    /1/3/2/2

    /3/6/3/3/6/6

    2

    4

    3

    2

    1

    23

    2

    332233

    afa

    U

    U

    U

    U

    a

    aa

    aaba

    aababa

    EI

    SystemReduced

    Solve System for Primary Unknowns U1,U2,U3,U4

    Nodal Forces Q1and Q2Can Then Be Determined

    (1) (3)(2)

    1 2

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    31/34

    Special Features of Beam FEA

    Analytical Solution Gives

    Cubic Deflection Curve

    Analytical Solution Gives

    Quartic Deflection Curve

    FEA Using Hermit Cubic InterpolationWill Yield Results That Match Exactly

    With Cubic Analytical Solutions

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    32/34

    Truss ElementGeneralization of Bar Element With Arbitrary Orientation

    x

    y

    k=AE/L

    cos,sin cs

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    33/34

    Frame ElementGeneralization of Bar and Beam Element with Arbitrary Orientation

    W

    (1) (2)

    1w

    L

    2w1 2

    1M2M

    1V 2V

    2P1P1u 2u

    4

    3

    2

    2

    1

    1

    2

    2

    2

    1

    1

    1

    22

    2323

    22

    2323

    460

    260

    6120

    6120

    0000

    260

    460

    6120

    6120

    0000

    QQ

    P

    Q

    Q

    P

    w

    u

    w

    u

    L

    EI

    L

    EI

    L

    EI

    L

    EIL

    EI

    L

    EI

    L

    EI

    L

    EI L

    AE

    L

    AEL

    EI

    L

    EI

    L

    EI

    L

    EIL

    EI

    L

    EI

    L

    EI

    L

    EIL

    AE

    L

    AE

    Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation

  • 8/14/2019 Introduction to Finite Element Methods.pdf

    34/34

    Some Standard FEA References

    Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995.

    Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers,John Wiley, 1993

    Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990.

    Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987.

    Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002.

    Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rdEd., John Wiley,

    1989.

    Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979.

    Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001.

    Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986.

    Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rdEd., John Wiley, 1994.

    Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993.

    Logan, D.L., A First Course in the Finite Element Method, 2ndEd., PWS Engineering, 1992.

    Moaveni, S., Finite Element Analysis Theory and Application with ANSYS,2ndEd., Pearson Education, 2003.

    Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992.

    Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986.

    Rao, S.S., Finite Element Method in Engineering, 3rdEd., Butterworth-Heinemann, 1998.

    Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993.Ross, C.T.F., Finite Element Methods in Engineering Science,Prentice-Hall, 1993.

    Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985.

    Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.