Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

Embed Size (px)

Citation preview

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    1/69

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    2/69

    Example !ortgage denial and ra"e

    #he Boston $ed %!D& data set

    "ndividual applications for single-family mortgagesmade in ! # in the greater Boston area

    $% observations, collected under 'ome ortgageisclosure *ct (' *)

    Variables

    ependent variable:o "s the mortgage denied or accepted+

    "ndependent variables:o income, wealth, employment statuso

    other loan, property characteristics -$

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    3/69

    o race of applicant

    -%

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    4/69

    #he 'inear robability !odel(SW Se"tion 9. )

    * natural starting point is the linear regression modelwith a single regressor:

    Y i = # ! X i uiBut:

    hat does ! mean when Y is binary+ "s ! =Y

    X

    +

    hat does the line # ! X mean when Y is binary+ hat does the predicted value .Y mean when Y is binary+ /or e0ample, what does .Y = #1$2 mean+

    -3

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    5/69

    #he linear probability model* "td.

    Y i = # ! X i ui

    4ecall assumption 5!: E (ui6 X i) = #, so

    E (Y i6 X i) = E ( # ! X i ui6 X i) = # ! X i

    hen Y is binary,

    E (Y ) = ! 7r( Y =!) # 7r( Y =#) = 7r( Y =!)so

    E (Y 6 X ) = 7r( Y =!6 X )

    -8

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    6/69

    #he linear probability model* "td.hen Y is binary, the linear regression model

    Y i = # ! X i uiis called the linear probability model 1

    9he predicted value is a probability :o E (Y 6 X = x) = 7r( Y =!6 X = x) = prob1 that Y = ! given xo .Y = the predicted probability that Y i = !, given X

    ! = change in probability that Y = ! for a given x:

    ! = 7r( !6 ) 7r( !6 )Y X x x Y X x x

    = = + = =

    0ample: linear probability model, ' * data-2

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    7/69

    !ortgage denial +. ratio o, debt payments to in"ome( - ratio) in the %!D& data set (s/bset)

    -;

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    8/69

    'inear probability model %!D& data

    deny = -1# 12#3 P/I ratio (n = $%)

    (1#%$) (1# &)

    hat is the predicted value for P/I ratio = 1%+

    7r( !6 < 1%)deny P Iratio= = = -1# 12#3 1% = 1!8! alculating >effects:? increase P/I ratio from 1% to 13:7r( !6 < 13)deny P Iratio= = = -1# 12#3 13 = 1$!$9he effect on the probability of denial of an increasein P/I ratio from 1% to 13 is to increase the probability

    by 1#2!, that is, by 21! percentage points (what? )1

    -&

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    9/69

    @e0t include black as a regressor:

    deny = -1# ! 188 P/I ratio 1!;; black

    (1#%$) (1# &) (1#$8)

    7redicted probability of denial:

    for black applicant with P/I ratio = 1%:

    7r( !)deny = = -1# ! 188 1% 1!;; ! = 1$83 for white applicant, P/I ratio = 1%:

    7r( !)deny = = -1# ! 188 1% 1!;; # = 1#;;

    difference = 1!;; = !;1; percentage points oefficient on black is significant at the 8A level Still plenty of room for omitted ariable bias!

    -

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    10/69

    #he linear probability model S/mmary

    odels probability as a linear function of X *dvantages:

    o simple to estimate and to interpreto inference is the same as for multiple regression

    (need heteroskedasticity-robust standard errors)

    isadvantages:o oes it make sense that the probability should be

    linear in +o 7redicted probabilities can be C# or D!E

    -!#

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    11/69

    9hese disadvantages can be solved by using a nonlinear probability model: probit and logit regression

    robit and 'ogit Regression(SW Se"tion 9.0)

    9he problem with the linear probability model is that it

    models the probability of Y =! as being linear:

    7r( Y = !6 X ) = # ! X

    "nstead, we want:

    # F 7r( Y = !6 X ) F ! for all X 7r( Y = !6 X ) to be increasing in X (for ! D#)

    -!!

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    12/69

    9his reGuires a nonlinear functional form for the probability1 'ow about an >S-curve?H

    -!$

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    13/69

    9he probit model satisfies these conditions:

    # F 7r( Y = !6 X ) F ! for all X

    -!%

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    14/69

    7r( Y = !6 X ) to be increasing in X (for ! D#)

    -!3

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    15/69

    Probit regression models the probability that Y =! usingthe cumulative standard normal distribution function,

    evaluated at " = # ! X :

    7r( Y = !6 X ) = ( # ! X )

    is the cumulative normal distribution function1 " = # ! X is the > " -value? or > " -inde0? of the probit model1

    Example : Suppose # = -$, ! = %, X = 13, so

    7r( Y = !6 X =13) = (-$ % 13) = (-#1&)7r( Y = !6 X =13) = area under the standard normal densityto left of " = -1&, which isH

    -!8

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    16/69

    7r( # F -#1&) = 1$!!-!2

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    17/69

    robit regression* "td.

    hy use the cumulative normal probability distribution+

    9he >S-shape? gives us what we want:o # F 7r( Y = !6 X ) F ! for all X

    o 7r( Y = !6 X ) to be increasing in X (for ! D#)

    asy to use I the probabilities are tabulated in thecumulative normal tables

    4elatively straightforward interpretation:o " -value = # ! X o #

    . !. X is the predicted " -value, given X

    -!;

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    18/69

    o ! is the change in the " -value for a unit changein X

    -!&

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    19/69

    S$%$% Example : ' * data

    . probit deny p_irat, r;

    Iteration 0: log likelihood = -872.0853 We ll di!"#!! thi! later

    Iteration $: log likelihood = -835.%%33Iteration 2: log likelihood = -83$.8053&Iteration 3: log likelihood = -83$.7'23&

    (robit e!ti)ate! *#)ber o+ ob! = 2380 Wald "hi2 $ = &0.%8 (rob "hi2 = 0.0000/og likelihood = -83$.7'23& (!e#do 2 = 0.0&%2

    ------------------------------------------------------------------------------ 1 ob#!t deny 1 oe+. td. 4rr. ( 1 1 6'5 on+. Inter al9------------- ---------------------------------------------------------------- p_irat 1 2.'%7'08 .&%53$$& %.38 0.000 2.055'$& 3.87''0$ _"on! 1 - 2.$'&$5' .$%&'72$ -$3.30 0.000 -2.5$7&'' -$.87082

    ------------------------------------------------------------------------------7r( !6 < )deny P Iratio= = (-$1! $1 ; P/I ratio ) (1!2) (13;)

    -!

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    20/69

    S$%$% Example : ' * data, ctd17r( !6 < )deny P Iratio= = (-$1! $1 ; P/I ratio )

    (1!2) (13;)

    7ositive coefficient: does this make sense + Standard errors have usual interpretation 7redicted probabilities:

    7r( !6 < 1%)deny P Iratio= = = (-$1! $1 ; 1%)= (-!1%#) = 1# ;

    ffect of change in P/I ratio from 1% to 13: 7r( !6 < 13)deny P Iratio= = = (-$1! $1 ; 13) = 1!87redicted probability of denial rises from 1# ; to 1!8

    -$#

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    21/69

    robit regression with m/ltiple regressors

    7r( Y = !6 X ! , X $) = ( # ! X ! $ X $)

    is the cumulative normal distribution function1 " = # ! X ! $ X $ is the > " -value? or > " -inde0? of the probit model1

    ! is the effect on the " -score of a unit change in X ! ,holding constant X $

    -$!

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    22/69

    S$%$% Example : ' * data

    . probit deny p_irat bla"k, r;

    Iteration 0: log likelihood = -872.0853

    Iteration $: log likelihood = -800.8850&Iteration 2: log likelihood = -7'7.$&78Iteration 3: log likelihood = -7'7.$3%0&

    (robit e!ti)ate! *#)ber o+ ob! = 2380 Wald "hi2 2 = $$8.$8 (rob "hi2 = 0.0000/og likelihood = -7'7.$3%0& (!e#do 2 = 0.085'

    ------------------------------------------------------------------------------ 1 ob#!t deny 1 oe+. td. 4rr. ( 1 1 6'5 on+. Inter al9------------- ---------------------------------------------------------------- p_irat 1 2.7&$%37 .&&&$%33 %.$7 0.000 $.87$0'2 3.%$2$8$ bla"k 1 .708$57' .083$877 8.5$ 0.000 .5&5$$3 .87$2028

    _"on! 1 -2.258738 .$588$%8 -$&.22 0.000 -2.5700$3 -$.'&7&%3------------------------------------------------------------------------------

    &e'll go through the estimation details later!

    -$$

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    23/69

    S$%$% Example : predicted probit probabilities. probit deny p_irat bla"k, r;

    (robit e!ti)ate! *#)ber o+ ob! = 2380 Wald "hi2 2 = $$8.$8 (rob "hi2 = 0.0000/og likelihood = -7'7.$3%0& (!e#do 2 = 0.085'

    ------------------------------------------------------------------------------ 1 ob#!t deny 1 oe+. td. 4rr. ( 1 1 6'5 on+. Inter al9------------- ----------------------------------------------------------------

    p_irat 1 2.7&$%37 .&&&$%33 %.$7 0.000 $.87$0'2 3.%$2$8$ bla"k 1 .708$57' .083$877 8.5$ 0.000 .5&5$$3 .87$2028 _"on! 1 -2.258738 .$588$%8 -$&.22 0.000 -2.5700$3 -$.'&7&%3------------------------------------------------------------------------------

    . !"a $ = _b6_"on!9 _b6p_irat9 .3 _b6bla"k9 0;

    . di!play

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    24/69

    S$%$% Example : ' * data, ctd17r( !6 < , )deny P I black =

    = (-$1$2 $1;3 P/I ratio 1;! black ) (1!2) (133) (1#&)

    "s the coefficient on black statistically significant+

    stimated effect of race for P/I ratio = 1%:

    7r( !61%,!)deny = = (-$1$2 $1;3 1% 1;! !) = 1$%%7r( !61%,#)deny = = (-$1$2 $1;3 1% 1;! #) = 1#;8

    ifference in reJection probabilities = 1!8& (!81&

    percentage points)

    Still plenty of room still for omitted ariable bias!

    -$3

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    25/69

    'ogit regression

    Logit regression models the probability of Y =! as thecumulative standard logistic distribution function,

    evaluated at " = # ! X :

    7r( Y = !6 X ) = ( ( # ! X )

    ( is the cumulative logistic distribution function:

    ( ( # ! X ) =# !( )

    !! X e

    ++

    -$8

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    26/69

    'ogisti" regression* "td.

    7r( Y = !6 X ) = ( ( # ! X )

    where ( ( # ! X ) =# !( )

    !! X e

    ++ 1

    Example : # = -%, ! = $, X = 13,

    so # ! X = -% $ 13 = -$1$ so

    7r( Y = !6 X =13) = !

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    27/69

    S$%$% Example : ' * data. logit deny p_irat bla"k, r;

    Iteration 0: log likelihood = -872.0853 /ater>Iteration $: log likelihood = -80%.357$

    Iteration 2: log likelihood = -7'5.7&&77Iteration 3: log likelihood = -7'5.%'52$Iteration &: log likelihood = -7'5.%'52$

    /ogit e!ti)ate! *#)ber o+ ob! = 2380 Wald "hi2 2 = $$7.75 (rob "hi2 = 0.0000/og likelihood = -7'5.%'52$ (!e#do 2 = 0.087%

    ------------------------------------------------------------------------------ 1 ob#!t deny 1 oe+. td. 4rr. ( 1 1 6'5 on+. Inter al9------------- ---------------------------------------------------------------- p_irat 1 5.3703%2 .'%33&35 5.57 0.000 3.&822&& 7.258&8$ bla"k 1 $.272782 .$&%0'8% 8.7$ 0.000 .'8%&33' $.55'$3 _"on! 1 -&.$25558 .3&5825 -$$.'3 0.000 -&.8033%2 -3.&&7753------------------------------------------------------------------------------

    . di!

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    28/69

    7redicted probabilities from estimated probit and logitmodels usually are very close1

    -$&

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    29/69

    Estimation and n,eren"e in robit (and 'ogit)!odels (SW Se"tion 9.1)

    7robit model:

    7r( Y = !6 X ) = ( # ! X )

    stimation and inferenceo 'ow to estimate # and ! +o hat is the sampling distribution of the estimators+

    o hy can we use the usual methods of inference+ /irst discuss nonlinear least s)uares (easier to e0plain)

    -$

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    30/69

    9hen discuss maximum likelihood estimation (what isactually done in practice)

    -%#

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    31/69

    robit estimation by nonlinear least s2/ares4ecall KLS:

    # !

    $

    , # !!min M ( )N

    n

    b b i ii Y b b X = +

    9he result is the KLS estimators #. and !.

    "n probit, we have a different regression function I thenonlinear probit model1 So, we could estimate # and !

    by nonlinear least squares :

    # !

    $, # !

    !min M ( )N

    n

    b b i ii

    Y b b X = +

    Solving this yields the nonlinear least squares estimatorof the probit coefficients1

    -%!

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    32/69

    3onlinear least s2/ares* "td.

    # !

    $

    , # !!min M ( )N

    n

    b b i ii Y b b X = +

    'ow to solve this minimiOation problem+

    alculus doesnPt give and e0plicit solution1 ust be solved numerically using the computer, e1g1 by >trial and error? method of trying one set of valuesfor ( b#,b! ), then trying another, and another,H

    Better idea: use specialiOed minimiOation algorithms"n practice, nonlinear least sGuares isnPt used because itisnPt efficient I an estimator with a smaller variance isH

    -%$

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    33/69

    robit estimation by maxim/m li4elihood

    9he likelihood function is the conditional density of Y ! ,H, Y n given X ! ,H, X n, treated as a function of the

    unknown parameters # and ! 1

    9he ma0imum likelihood estimator ( L ) is the valueof ( #, ! ) that ma0imiOe the likelihood function1

    9he L is the value of ( #, ! ) that best describe thefull distribution of the data1

    "n large samples, the L is:o consistento normally distributed

    -%%

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    34/69

    o efficient (has the smallest variance of all estimators)

    Spe"ial "ase the probit !'E with no X

    Y =! with probability

    # with probability !

    p

    p (Bernoulli distribution)

    ata: Y ! ,H, Y n, i1i1d1

    erivation of the likelihood starts with the density of Y ! :

    7r( Y ! = !) = p and 7r( Y ! = #) = !I pso

    7r( Y ! = y! ) = ! !!(! ) y y p p ( erify this for y *+,- *. )

    -%3

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    35/69

    Qoint density of ( Y ! ,Y $):Because Y ! and Y $ are independent,

    7r( Y ! = y! ,Y $ = y$) = 7r( Y ! = y! ) 7r( Y $ = y$)

    = M ! !!(! ) y y p p NM $ $!(! ) y y p p N

    Qoint density of ( Y ! ,11,Y n):

    7r( Y ! = y! ,Y $ = y$,H, Y n = yn)

    = M ! !!(! ) y y p p NM $ $!(! ) y y p p NH M !(! )n n y y p p N

    = ( )!! (! )nn

    ii ii

    n y y

    p p =

    =

    9he likelihood is the Joint density, treated as a function ofthe unknown parameters, which here is p:

    -%8

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    36/69

    f ( pRY ! ,H, Y n) = ( )!! (! )nn

    ii iin Y Y

    p p ==

    9he L ma0imiOes the likelihood1 "ts standard to workwith the log likelihood, lnM f ( pRY ! ,H, Y n)N:

    lnM f ( pRY ! ,H, Y n)N =( ) ( )! !ln( ) ln(! )n ni ii iY p n Y p= =+

    !ln ( R ,111, )nd f p Y Y

    dp = ( ) ( )! !! !

    !

    n n

    i ii iY n Y p p= =

    + = #Solving for p yields the L R that is, . /0E p satisfies,

    -%2

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    37/69

    ( ) ( )! !! !. .!n n

    i i /0E /0E i iY n Y

    p p= = + = #

    or

    ( ) ( )! !! !. .!n n

    i i /0E /0E i iY n Y

    p p= ==

    or

    . .! !

    /0E

    /0E Y pY p= or

    . /0E p = Y = fraction of !Ps

    -%;

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    38/69

    9he L in the >no- X ? case (Bernoulli distribution):. /0E p = Y = fraction of !Ps

    /or Y i i1i1d1 Bernoulli, the L is the >natural?estimator of p, the fraction of !Ps, which is Y

    e already know the essentials of inference:o "n large n, the sampling distribution of . /0E p = Y is

    normally distributedo 9hus inference is >as usual:? hypothesis testing via

    t -statistic, confidence interval as !1 2 SE

    S9*9* note: to emphasiOe reGuirement of large- n, the printout calls the t -statistic the " -statisticR instead of the ( -statistic, the chi1s)uared statstic (= ) ( )1

    -%&

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    39/69

    #he probit li4elihood with one X 9he derivation starts with the density of Y ! , given X ! :

    7r( Y ! = !6 X ! ) = ( # ! X ! )

    7r( Y ! = #6 X ! ) = !I ( # ! X ! )

    so

    7r( Y ! = y! 6 X ! ) = ! !!# ! ! # ! !( ) M! ( )N y y X X + +

    9he probit likelihood function is the Joint density of Y ! ,

    H, Y n given X ! ,H, X n, treated as a function of #, ! :

    f( #, ! RY ! ,H, Y n6 X ! ,H, X n)= ! !!# ! ! # ! !( ) M! ( )N

    Y Y X X + + T

    H !# ! # !( ) M! ( )Nn nY Y

    n n X X + + T

    -%

    h b l l h d

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    40/69

    #he probit li4elihood ,/n"tion :

    f( #, ! RY ! ,H, Y n6 X ! ,H, X n)

    = ! !!# ! ! # ! !( ) M! ( )NY Y X X + + T

    H !# ! # !( ) M! ( )Nn nY Y

    n n X X + + T

    anPt solve for the ma0imum e0plicitly ust ma0imiOe using numerical methods *s in the case of no X , in large samples:

    o #. /0E , !.

    /0E are consistent

    o #. /0E , !.

    /0E are normally distributed (more laterH)o 9heir standard errors can be computedo 9esting, confidence intervals proceeds as usual

    /or multiple X Ps, see S *pp1 1$-3#

    h l i li lih d i h

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    41/69

    #he logit li4elihood with one X

    9he only difference between probit and logit is thefunctional form used for the probability: isreplaced by the cumulative logistic function1

    Ktherwise, the likelihood is similarR for details seeS *pp1 1$

    *s with probit,o #

    . /0E , !. /0E are consistent

    o #. /0E , !. /0E are normally distributedo 9heir standard errors can be computedo 9esting, confidence intervals proceeds as usual

    -3!

    ! / i

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    42/69

    !eas/res o, ,it9he 2 $ and $ 2 donPt make sense here ( why? )1 So, twoother specialiOed measures are used:

    !1 9he fraction correctly predicted = fraction of Y Ps forwhich predicted probability is D8#A (if Y i=!) or is

    C8#A (if Y i=#)1

    $1 9he pseudo-R 0 measure the fit using the likelihoodfunction: measures the improvement in the value ofthe log likelihood, relative to having no X Ps (see S*pp1 1$)1 9his simplifies to the 2 $ in the linearmodel with normally distributed errors1

    -3$

    ' 5 di ib/ i h !'E ( i SW )

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    43/69

    'arge5 n distrib/tion o, the !'E ( not in SW )

    9his is foundation of mathematical statistics1 ePll do this for the >no- X ? special case, for which p is

    the only unknown parameter1 'ere are the steps:

    !1 erive the log likelihood (> ( p)?) (done)1$1 9he L is found by setting its derivative to OeroR

    that reGuires solving a nonlinear eGuation1%1 /or large n, . /0E p will be near the true p ( p true ) so this

    nonlinear eGuation can be appro0imated (locally) by

    a linear eGuation (9aylor series around ptrue

    )131 9his can be solved for . /0E p I p true 181 By the Law of Large @umbers and the L9, for n

    large, n ( . /0E p I p true ) is normally distributed1-3%

    !1 i th l lik lih d

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    44/69

    !1 erive the log likelihood 2ecall : the density for observation 5! is:

    7r( Y ! = y! ) = ! !!(! ) y y p p (density)

    so

    f ( pRY ! ) = ! !!(! )Y Y p p (likelihood)

    9he likelihood for Y ! ,H, Y n is,

    f ( pRY ! ,H, Y n) = f ( pRY ! ) H f ( pRY n)so the log likelihood is,

    ( p) = ln f ( pRY ! ,H, Y n)

    = lnM f ( pRY ! ) H f ( pRY n)N=

    !

    ln ( R )n

    ii

    f p Y =

    $1 Set the derivative of ( p) to Oero to define the L :-33

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    45/69

    31 S l thi li 0i ti f ( /0E I true )

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    46/69

    31 Solve this linear appro0imation for ( . /0E p I p true ):

    ( )true p

    p p

    L

    $

    $

    ( )

    true p

    p p

    L

    ( . /0E

    p I ptrue

    ) #

    so$

    $

    ( )

    true p

    p

    p

    L( . /0E p I p true ) I

    ( )true p

    p

    p

    L

    or

    ( . /0E p I p true ) I

    !$

    $

    ( )

    true p

    p

    p

    L ( )

    true p

    p

    p

    L

    -32

    81 S bstit te things in and appl the LL@ and L91

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    47/69

    81 Substitute things in and apply the LL@ and L91

    ( p) =!

    ln ( R )n

    ii

    f p Y =

    ( )true p

    p p

    L =

    !

    ln ( R )true

    ni

    i p

    f p Y p=

    $

    $

    ( )

    true p

    p

    p

    L =

    $

    $!

    ln ( R )

    true

    ni

    i p

    f p Y

    p=

    so

    ( . /0E p I p true ) I

    !$

    $

    ( )

    true p

    p

    p

    L ( )true

    p

    p

    p

    L

    =

    !$

    $!

    ln ( R )

    true

    ni

    i p

    f p Y p

    =

    !

    ln ( R )true

    ni

    i p

    f p Y p=

    -3;

    ultiply through by :

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    48/69

    ultiply through by n :

    n ( . /0E p I p true )

    !$

    $!

    ! ln ( R )true

    n

    i

    i p

    f p Y n p

    =

    !

    ! ln ( R )true

    n

    i

    i p f p Y pn =

    Because Y i is i1i1d1, theith terms in the summands are alsoi1i1d1 9hus, if these terms have enough ($) moments, thenunder general conditions (not Just Bernoulli likelihood):

    $

    $!

    ! ln ( R )

    true

    ni

    i p

    f p Y n p=

    p

    a (a constant) ( LL@)

    !

    ! ln ( R )true

    ni

    i p

    f p Y pn =

    d 3 (#,

    $ln f ) ( L9) ( &hy? )

    7utting this together,-3&

    ( /0E p I true )

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    49/69

    n ( . p I p true )

    !$

    $

    !

    ! ln ( R )

    true

    ni

    i p

    f p Y n p

    =

    !

    ! ln ( R )true

    ni

    i p

    f p Y pn =

    $

    $!

    ! ln ( R )

    true

    ni

    i p

    f p Y n p=

    p

    a (a constant) ( LL@)

    !

    ! ln ( R )true

    ni

    i p

    f p Y pn =

    d 3 (#,

    $ln f ) ( L9) ( &hy? )

    son ( . /0E p I p true )

    d 3 (#,

    $ln f

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    50/69

    4ecall: f ( pRY i) = !(! )i iY Y p p

    so

    ln f ( pRY i) = Y iln p (!I Y i)ln(!I p)and

    ln ( , )i f p Y p

    =

    !!

    i iY Y p p

    =(! )

    iY p p p

    and$

    $

    ln ( , )i f p Y p

    = $ $

    !(! )

    i iY Y p p

    = $ $!

    (! )i iY Y

    p p +

    -8#

    enominator term first:

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    51/69

    enominator term first:$

    $

    ln ( , )i f p Y p

    = $ $

    !(! )

    i iY Y p p +

    so$

    $!

    ! ln ( R )

    true

    ni

    i p

    f p Y n p=

    = $ $!! !

    (! )

    ni i

    i

    Y Y n p p=

    +

    = $ $!

    (! )Y Y

    p p+

    p

    $ $!

    (! ) p p p p

    + (LL@)

    =! !

    ! p p+ =

    !(! ) p p

    -8!

    @e0t the numerator:

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    52/69

    @e0t the numerator:

    ln ( , )i f p Y

    p

    = (! )

    iY p

    p p

    so

    !

    ! ln ( R )

    true

    ni

    i p

    f p Y

    pn =

    =

    !

    !

    (! )

    ni

    i

    Y p

    p pn =

    =!

    ! !( )

    (! )

    n

    ii

    Y p p p n =

    d 3 (#,

    $

    $M (! )NY

    p p )

    -8$

    7ut these pieces together:

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    53/69

    7ut these pieces together:

    n ( . /0E p I p true )!

    $

    $!

    ! ln ( R )true

    n

    i

    i p

    f p Y n p

    =

    !

    ! ln ( R )true

    n

    i

    i p

    f p Y pn =

    where$

    $!

    ! ln ( R )

    true

    n

    ii p

    f p Y n p=

    p

    !

    (! ) p p

    !

    ! ln ( R )true

    ni

    i p

    f p Y pn =

    d 3 (#,

    $

    $M (! )NY

    p p )

    9hus

    n ( . /0E p I p true )d

    3 (#, $

    Y )

    S/mmary probit !'E* no5 X "ase-8%

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    54/69

    9he L : . /0E p = Y

    orking through the full L distribution theory gave:

    n ( . /0E p I p true )d

    3 (#, $

    Y )

    But because p true = 7r( Y = !) = E (Y ) = Y , this is:

    n (Y I Y )d

    3 (#, $

    Y )

    * familiar result from the first week of classE

    -83

    #he !'E deri+ation applies generally

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    55/69

    #he ! E deri+ation applies generally

    n ( . /0E p I p true )d

    3 (#,$ln f

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    56/69

    S/mmary distrib/tion o, the ! E(Why did do this to yo/6)

    9he L is normally distributed for large n e worked through this result in detail for the probit

    model with no X Ps (the Bernoulli distribution)

    /or large n, confidence intervals and hypothesis testing proceeds as usual

    "f the model is correctly specified, the L is efficient,that is, it has a smaller large- n variance than all other

    estimators (we didnPt show this)1 9hese methods e0tend to other models with discretedependent variables, for e0ample count data (5crimes

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    57/69

    &ppli ation to the Boston %!D& Data(SW Se"tion 9.7)

    ortgages (home loans) are an essential part of buying a home1

    "s there differential access to home loans by race+

    "f two otherwise identical individuals, one white andone black, applied for a home loan, is there adifference in the probability of denial+

    -8;

    #he %!D& Data Set

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    58/69

    #he %!D& Data Set

    ata on individual characteristics, propertycharacteristics, and loan denial

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    59/69

    #he loan o,,i er8s de ision

    Loan officer uses key financial variables:o P/I ratioo housing e0pense-to-income ratioo loan-to-value ratioo personal credit history

    9he decision rule is nonlinear:o loan-to-value ratio D A

    o loan-to-value ratio D 8A (what happens in default+)o credit score

    -8

    Regression spe"i,i"ations

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    60/69

    Regression spe i,i ations7r( deny=!6black , other X Ps) = H

    linear probability model probit

    ain problem with the regressions so far: potential

    omitted variable bias1 *ll these (i) enter the loan officerdecision function, all (ii) are or could be correlated withrace:

    wealth, type of employment

    credit history family status

    Wariables in the ' * data setH-2#

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    61/69

    -2!

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    62/69

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    63/69

    -2%

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    64/69

    -23

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    65/69

    -28

    S/mmary o, Empiri"al Res/lts

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    66/69

    y , p

    oefficients on the financial variables make sense1 4lack is statistically significant in all specifications 4ace-financial variable interactions arenPt significant1 "ncluding the covariates sharply reduces the effect of

    race on denial probability1 L7 , probit, logit: similar estimates of effect of race

    on the probability of denial1

    stimated effects are large in a >real world? sense1

    -22

    Remaining threats to internal* external +alidity

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    67/69

    g y

    "nternal validity!1 omitted variable bias

    what else is learned in the in-person interviews+$1 functional form misspecification (noH)

    %1 measurement error (originally, yesR now, noH)31 selection

    random sample of loan applications

    define population to be loan applicants81 simultaneous causality (no) 0ternal validity

    9his is for Boston in ! #- !1 hat about today+-2;

    S/mmary

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    68/69

    y(SW Se"tion 9. )

    "f Y i is binary, then E (Y 6 X ) = 7r( Y =!6 X ) 9hree models:

    o linear probability model (linear multiple regression)o probit (cumulative standard normal distribution)o logit (cumulative standard logistic distribution)

    L7 , probit, logit all produce predicted probabilities ffect of X is change in conditional probability that

    Y =!1 /or logit and probit, this depends on the initial X 7robit and logit are estimated via ma0imum likelihood

    o oefficients are normally distributed for large n

    -2&

    o Large- n hypothesis testing, conf1 intervals is as usual

  • 8/14/2019 Introduction to Econometrics- Stock & Watson -Ch 9 Slides.doc

    69/69

    g yp g