30
Introduction to b-Tagging Andrew Bell HEP Postgraduate Lecture Course 21.11.17

Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

  • Upload
    others

  • View
    3

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

Introduction to b-Tagging

Andrew Bell

HEP Postgraduate Lecture Course 21.11.17

Page 2: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

2

Motivation

» Many interesting physics signatures produce a final-state b-quark: » Top decays (|Vtb| >> |Vts|), Higgs→bb, BSM physics searches,

precision standard model measurements etc.

» Final state b-quark will hadronise and shower » Reconstructed as a jet » What properties can we use to differentiate these jets from

others?

» Truth flavour label assigned in simulation using ΔR matching between hadron and jet:

» If b-hadron present, label as “b-jet” » Else if no b-hadron but c-hadron present, label as “c-jet” (c-hadrons have

similar properties to b-hadrons) » Else label as a “light-flavour jet”

Page 3: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

3

b-Hadron Properties» Final state b-quark fragments (production of hadrons from quarks) to excited b-hadrons:

» B*/B** ~87% of the time » These decay strongly or electromagnetically into a stable b-hadron (with a few additional

particles) (left figure) » b-quark fragmentation is quite hard:

» ~70% of b-quark energy goes to b-hadron (right figure) » b-hadrons typically decay to produce ~5 charged stable decay products

» c-hadrons typically decay to produce ~2 charged stable decay products

Weakly decaying B hadrons 0B +B 0

sB +cB 0

bΛ -bΞ 0

bΞ -bΩ -

bΣ 0bΣ +

Prod

uctio

n fra

ctio

n

0

0.1

0.2

0.3

0.4

0.5

Pythia8

PYTHIA6

Herwig++

HERWIG

ATLAS Simulation Preliminary

2|jet

/|pC

p⋅ jet

p≡z 0 0.2 0.4 0.6 0.8 1

1/N

dN

/dz

0

0.05

0.1

0.15

0.2

0.25ATLAS Simulation Preliminary Pythia8

PYTHIA6Herwig++HERWIG

t t→POWHEG pp R=0.4 b-jetstAnti-k

Page 4: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

[mm]τ c+B0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.0005 ) ±PYTHIA8 (0.4904 0.0005 ) ±Pythia6 (0.4620

0.0005 ) ±HERWIG (0.4942 0.0005 ) ±Herwig++ (0.5016

0.0004 ) ±EvtGen 2.0 (0.4919 0.0024)±PDG (0.4923

EvtGen (0.4920)

ATLAS Simulation Preliminary

4

b-Hadron Lifetimes» Lifetime of b-hadron is typically ~1.5 ps » Plots below compare decay distances of b-hadrons in a number of commonly used MC

generators » EvtGen is used throughout ATLAS as MC “afterburner”:

» Provide updated lifetime and decay information » More realistic modelling and improve the description of the particle decay modes

and multiplicities » Equivalent plots for c-hadrons in back-up

[mm]τ c0B0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.0005 ) ±PYTHIA8 (0.4591 0.0005 ) ±Pythia6 (0.4676

0.0005 ) ±HERWIG (0.4829 0.0005 ) ±Herwig++ (0.4608

0.0003 ) ±EvtGen 2.0 (0.4580 0.0021)±PDG (0.4557

EvtGen (0.4555)

ATLAS Simulation Preliminary

Page 5: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

semileptonic fraction+B0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0.0003 ) ±PYTHIA8 (0.1122 0.0003 ) ±Pythia6 (0.1054

0.0003 ) ±HERWIG (0.0956 0.0004 ) ±Herwig++ (0.1088

0.0008 ) ±EvtGen 2.0 (0.0968 0.0002 ) ±EvtGen ATLAS .dec (0.1108

0.0028)±PDG (0.1099 EvtGen (0.0980)

ATLAS Simulation Preliminary

5

b-Hadron Lifetimes» b-hadrons decay semileptonically ~10% of the time (i.e. produces an electron or muon) » Plots below compare semileptonic fractions of b-hadrons in a number of commonly

used MC generators » EvtGen is used throughout ATLAS as MC “afterburner”:

» Provide updated lifetime and decay information » More realistic modelling and improve the description of the particle decay modes

and multiplicities » Equivalent plots for c-hadrons in back-up

semileptonic fraction0B0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

0.0003 ) ±PYTHIA8 (0.1045 0.0003 ) ±Pythia6 (0.1050

0.0003 ) ±HERWIG (0.0962 0.0003 ) ±Herwig++ (0.0999

0.0007 ) ±EvtGen 2.0 (0.0934 0.0002 ) ±EvtGen ATLAS .dec (0.1039

0.0028)±PDG (0.1033 EvtGen (0.0949)

ATLAS Simulation Preliminary

Page 6: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

Jet axis

Primary vertex

Decay length Lxy

Track impact parameter

Secondary vertex

Tertiary vertex

6

Jet Properties» b-hadrons have a number of useful properties:

» Longer lifetimes (~1.5 ps) » b-hadron decays to a c-hadron (|Vcb| >> |Vub|) » Larger mass (~5 GeV) » High decay product multiplicity

» 3 “baseline” algorithms designed to target these properties

» Reconstruction of tracks is essential to b-tagging » Associated to jet using ΔR matching

» For a 30 GeV b-hadron » βɣc𝛕 ~ 5 mm - measurable!

Page 7: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

7

Light-flavour Jet Properties

» In a light-flavour jet, most tracks come directly from quark fragmentation » Can sometimes result in a displaced vertex and look like a b-jet:

» Interactions with the detector material » Photon conversions » Long-lived particles (Ks/Λ) » Badly measured tracks

Page 8: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

Track signed z0 significance (Good)20− 10− 0 10 20 30 40

Arbi

trary

uni

ts

6−10

5−10

4−10

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

8

Impact Parameter Algorithms» Impact parameters (IP) defined as signed point of closest approach in

longitudinal and transverse plane » IP Significance is the IP divided by its uncertainty » IP is signed: positive if crosses jet axis in front of primary vertex

(otherwise negative) » Construct reference templates (PDFs) for b-, c- and light-flavoured jets » Log likelihood ratio of probability for each jet flavour gives best

separation (Neyman-Pearson lemma) » Assume each track is uncorrelated

» IP2D uses just transverse (d0) IP (less susceptible to pileup) » IP3D uses transverse (d0) and longitudinal (z0) IP

Track signed d0 significance (Good)20− 10− 0 10 20 30 40

Arbi

trary

uni

ts

6−10

5−10

4−10

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

Page 9: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

8

Impact Parameter Algorithms» Impact parameters (IP) defined as signed point of closest approach in

longitudinal and transverse plane » IP Significance is the IP divided by its uncertainty » IP is signed: positive if crosses jet axis in front of primary vertex

(otherwise negative) » Construct reference templates (PDFs) for b-, c- and light-flavoured jets » Log likelihood ratio of probability for each jet flavour gives best

separation (Neyman-Pearson lemma) » Assume each track is uncorrelated

» IP2D uses just transverse (d0) IP (less susceptible to pileup) » IP3D uses transverse (d0) and longitudinal (z0) IP

Product over all associated tracks

PDF for track of flavour j, with IPm

Probability for jet to have flavour j

Page 10: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

)u/PbIP3D log(P20− 10− 0 10 20 30 40 50

Arbi

trary

uni

ts

6−10

5−10

4−10

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

9

Impact Parameter Algorithms

)u/PbIP2D log(P20− 10− 0 10 20 30 40 50

Arbi

trary

uni

ts

6−10

5−10

4−10

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

» Impact parameters (IP) defined as signed point of closest approach in longitudinal and transverse plane

» Significance is the IP divided by its uncertainty » IP is signed: positive if crosses jet axis in front of primary vertex

(otherwise negative) » Construct reference templates (PDFs) for b-, c- and light-flavoured jets » Log likelihood ratio of probability for each jet flavour gives best

separation (Neyman-Pearson lemma) » Assume each track is uncorrelated

» IP2D uses just transverse (d0) IP (less susceptible to pileup) » IP3D uses transverse (d0) and longitudinal (z0) IP

Page 11: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

10

Secondary Vertex (SV) Algorithms» Secondary vertex

algorithms aim to reconstruct the secondary decay point using tracks

» Firstly, reconstruct all 2-track vertices

» Combine into one secondary vertex (removing tracks which are not consistent with the SV)

» Many useful properties: » Decay length

(significance) » Vertex Mass » Number of tracks

etc.

Jet axis

Primary vertex

Decay length Lxy

Track impact parameter

Secondary vertex

Tertiary vertex

Page 12: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

10

Secondary Vertex (SV) Algorithms» Secondary vertex

algorithms aim to reconstruct the secondary decay point using tracks

» Firstly, reconstruct all 2-track vertices

» Combine into one secondary vertex (removing tracks which are not consistent with the SV)

» Many useful properties: » Decay length

(significance) » Vertex Mass » Number of tracks

etc. (SV)TrkAtVtxN2 4 6 8 10 12 14

Arbi

trary

uni

ts

5−10

4−10

3−10

2−10

1−10

1

10 ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

m(SV) [GeV]0 1 2 3 4 5 6

Arbi

trary

uni

ts

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

(SV) [mm]xyL0 10 20 30 40 50 60 70 80 90

Arbi

trary

uni

ts

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

(SV)xyzLσ/xyzL

0 10 20 30 40 50 60 70 80 90 100

Arbi

trary

uni

ts

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

Page 13: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

11

Decay Chain Reconstruction Algorithms» |Vcb| >> |Vub| → often produce c-hadron from b-hadron

decay » Additional tertiary vertex » JetFitter algorithm reconstructs all decay vertices

(assuming they lie on the same flight path) » Can even reconstruct single track vertices

» Vertex mass, decay length significance, number of vertices with at least 2 tracks etc.

(JF)1-trk vertices

N0 1 2 3 4 5 6

Arbi

trary

uni

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b jetsc jetsLight-flavour jets

ATLAS Simulation Preliminary

t=13 TeV, ts

(JF)TrkAtVtx

N0 1 2 3 4 5 6 7 8

Arbi

trary

uni

ts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b jetsc jetsLight-flavour jets

ATLAS Simulation Preliminary

t=13 TeV, ts

Page 14: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

12

Combining Taggers: Multivariate Algorithms» Three baseline algorithms provide b-jet discrimination → provide a number of

weakly correlated variables » Combine output of three baseline algorithms using a Boosted Decision Tree (BDT)

» Total of 24 input variables » Algorithm known as MV2c » Train using t t events, while controlling the c-/light-flavour jet background

» MV2cXX means trained on a sample with XX% c-jets (100-XX% light-flavour jets)

» Exposes training to different amounts of each jet type » Need to balance light-flavour and c-jet performance

» Efficiency defined as:

» Used to evaluate performance of an algorithm at a set “Working Point” (WP) » Rejection is defined as 1/efficiency

Page 15: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

MV2c10 BDT Output1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Arbi

trary

uni

ts

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

light

-jet r

ejec

tion

10

210

310

410

510

MV2c20 − 2015 configMV2c20 − 2016 configMV2c10 − 2016 configMV2c00 − 2016 config

b-jet efficiency0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ATLAS Simulation Preliminary

t=13 TeV, ts

2016

/201

5 co

nfig

0.61

1.41.82.22.6

13

Multivariate Algorithms» Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a

number of training configurations » Larger area under curve → increased performance » MV2c10 chosen to balance performance of jet flavours

» Current default throughout ATLAS

Page 16: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

MV2c10 BDT Output1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Arbi

trary

uni

ts

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

light

-jet r

ejec

tion

10

210

310

410

510

MV2c20 − 2015 configMV2c20 − 2016 configMV2c10 − 2016 configMV2c00 − 2016 config

b-jet efficiency0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ATLAS Simulation Preliminary

t=13 TeV, ts

2016

/201

5 co

nfig

0.61

1.41.82.22.6

13

Multivariate Algorithms» Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a

number of training configurations » Larger area under curve → increased performance » MV2c10 chosen to balance performance of jet flavours

» Current default throughout ATLAS

c-je

t rej

ectio

n

10

210

MV2c20 − 2015 configMV2c20 − 2016 configMV2c10 − 2016 configMV2c00 − 2016 config

b-jet efficiency0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2016

/201

5 co

nfig

ATLAS Simulation Preliminary

t=13 TeV, ts

0.6

1

1.4

1.8

Page 17: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

MV2c10 BDT Output1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Arbi

trary

uni

ts

3−10

2−10

1−10

1

10

ATLAS Simulation Preliminaryt = 13 TeV, ts b jets

c jetsLight-flavour jets

light

-jet r

ejec

tion

10

210

310

410

510

MV2c20 − 2015 configMV2c20 − 2016 configMV2c10 − 2016 configMV2c00 − 2016 config

b-jet efficiency0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ATLAS Simulation Preliminary

t=13 TeV, ts

2016

/201

5 co

nfig

0.61

1.41.82.22.6

13

Multivariate Algorithms» Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a

number of training configurations » Larger area under curve → increased performance » MV2c10 chosen to balance performance of jet flavours

» Current default throughout ATLAS

c-je

t rej

ectio

n

10

210

MV2c20 − 2015 configMV2c20 − 2016 configMV2c10 − 2016 configMV2c00 − 2016 config

b-jet efficiency0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

2016

/201

5 co

nfig

ATLAS Simulation Preliminary

t=13 TeV, ts

0.6

1

1.4

1.8

Page 18: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

14b-jet tagging efficiency0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ligh

t-fla

vour

-jet r

ejec

tion

1

10

210

310

410MV1IP3D+JetFitterIP3D+SV1JetFitterIP3DSV1JetProb

=7 TeVs|<2.5jetη>20 GeV, |jet

Tp

ATLASSimulation

Individual Tagger Performance

Page 19: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

15

Differential Performance» b-tagging efficiency is dependent on jet and event variables:

» Performance shown for 70% WP » Efficiency drops at low pT due to reduced IP resolution » Drops at high pT due to b-hadron decaying after first ID layer

(reduced IP resolution) and tracks becoming more collimated » At high |η|, more material interactions within the ID, reducing IP resolution

[GeV]T

Jet p100 200 300 400 500 600

Effic

ienc

y

-310

-210

-110

1

MV2c20=70%

b jetsc jetsLight-flavour jets

ATLAS Simulation Preliminaryt=13 TeV, ts

|ηJet |0 0.5 1 1.5 2 2.5

Effic

ienc

y

-310

-210

-110

1

MV2c20=70%

b jetsc jetsLight-flavour jets

ATLAS Simulation Preliminaryt=13 TeV, ts

Page 20: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

16

Calibrations» Up to now, all performance studies/training are from simulation » How well do we know the performance in data?

» Need to correct for detector and modelling effects » Apply scale factors to correct performance in MC to data

» Applied to event weight (for each jet)

» Select data sample pure in one jet flavour » Measure efficiency in data for a chosen jet flavour (j)

» Efficiency in MC is known from truth information » Derive scale factor as a function of jet pT and |η| » Efficiency measurements conducted at a set working point

Efficiency from data

Efficiency from simulation

Scale factor

Page 21: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

17

t t Calibration

[GeV]T

Jet p

0 50 100 150 200 250 300

b-je

t e

ffic

ien

cy

0.2

0.4

0.6

0.8

1

1.2

Data

MC

-1 = 13 TeV, 36.1 fbs

ATLAS Work in Progress

= 70%bεMV2c10,

R=0.4 calorimeter jetstAnti-k

[GeV]T

Jet p

0 50 100 150 200 250 300

MC

bε /

data

0.7

0.8

0.9

1

1.1

1.2

1.3

Total Uncertainty

Stat. Uncertainty

-1 = 13 TeV, 36.1 fbs

ATLAS Work in Progress

= 70%bεMV2c10,

R=0.4 calorimeter jetstAnti-k

» b-jets tagging efficiency measured in data using di-leptonic t t events » ~70% pure in b-jets, almost no c-jet contamination

» Extract b-jet efficiency from fit to data » Dominated by systematic uncertainties from modelling of t t background:

» Systematics arising from b-tagging are a key factor in a many analyses

» ~2-5% uncertainties over majority of spectrum » Largest experimental systematic uncertainty in VH(→bb) analysis

» Consistent with unity for b-jets, but not always the case! » Light-flavour jets can have SF ~ 2

Source of uncertainty µ

Total 0.39

Statistical 0.24

Systematic 0.31

Experimental uncertainties

Jets 0.03

EmissT 0.03

Leptons 0.01

b-taggingb-jets 0.09

c-jets 0.04

light jets 0.04

extrapolation 0.01

Pile-up 0.01

Luminosity 0.04

Theoretical and modelling uncertainties

Signal 0.17

Floating normalisations 0.07

Z + jets 0.07

W + jets 0.07

tt 0.07

Single top quark 0.08

Diboson 0.02

Multijet 0.02

MC statistical 0.13

Source of uncertainty µ

Total 0.39

Statistical 0.24

Systematic 0.31

Experimental uncertainties

Jets 0.03

EmissT 0.03

Leptons 0.01

b-taggingb-jets 0.09

c-jets 0.04

light jets 0.04

extrapolation 0.01

Pile-up 0.01

Luminosity 0.04

Theoretical and modelling uncertainties

Signal 0.17

Floating normalisations 0.07

Z + jets 0.07

W + jets 0.07

tt 0.07

Single top quark 0.08

Diboson 0.02

Multijet 0.02

MC statistical 0.13

Page 22: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

18

Future Developments» Deep learning algorithms (DL1) » Recursive Neural Network (RNN)

» Takes into account track IP correlations to improve performance » Dedicated c-tagging algorithms (H→cc):

» Use DL algorithms or 2D cut on MV2c100 and MV2cl100 » More limited efficiency than b-tagging (typical WP ~ 25% c-jet efficiency)

» Inclusion of muon variables: » 10% of b-hadron decays produce a muon

bεb-jet efficiency, 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

lεlig

ht-je

t rej

ectio

n, 1

/

1

10

210

310 RNNIPIP3D

ATLAS Simulation Internalt=13 TeV, ts

|<2.5η>20 GeV, |T

p

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Preliminary

light

-jet r

ejec

tion

1

10

210

310

410

t=13 TeV, ts

MV2MV2MuMV2MuRnn

ATLAS Simulation Preliminary

b-jet efficiency

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ratio

to M

V2

0.60.8

11.21.41.61.8

2

Page 23: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

19

Useful links

» b-jet performance note (2017) - https://cds.cern.ch/record/2273281 » b-jet performance note (2016) - https://cds.cern.ch/record/2160731 » b-jet performance note (2015) - https://cds.cern.ch/record/2037697 » b-jet efficiency measurement (2012) - https://cds.cern.ch/record/1664335 » ATLAS Flavour Tagging Public Page - https://twiki.cern.ch/twiki/bin/view/

AtlasPublic/FlavourTaggingPublicResultsCollisionData » Comparison of MC generator predictions for b- and c- hadrons in the

decays of top quarks and the fragmentation of high pT jets: » https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-

PHYS-PUB-2014-008/

Page 24: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

20

Back-Up

Page 25: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

21

Tracking in ATLAS» Tracks used for b-tagging are reconstructed using the ATLAS inner detector (ID)

» Immersed in a 2 T solenoid magnetic field (essential for track momentum measurement) » Insertable B-Layer (new for Run-2) is the inner-most layer at ~30mm radius (silicon

pixels) » Greatly improved track resolution over Run-1

» Next layers (radially outwards): pixel layers, semiconductor tracker and transition radiation tracker

» Tracks of charged particles are reconstructed using hits in the ID » Associated to jets using a ΔR(track, jet) matching (jet pT dependant)

Page 26: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

22

Primary Vertex Reconstruction» Colliding bunches contain up to 10

11

protons » In 2016, up to 40 interactions per bunch crossing » Need to effectively find the primary vertex of the event of interest

» Reconstruct all vertices using ID tracks (example below has ~25 vertices) and an iterative procedure » Select vertex seed from beamspot and track information » Remove tracks from seed until passes set quality requirement » Use discarded tracks to seed another vertex, and repeat until all tracks associated to a vertex

» Primary vertex is chosen as the one with highest sum of squared track pT » Correctly identifies the primary vertex ~99% of the time

Page 27: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

23

b-Hadron Lifetimes

[mm]τ c0B0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.0005 ) ±PYTHIA8 (0.4591 0.0005 ) ±Pythia6 (0.4676

0.0005 ) ±HERWIG (0.4829 0.0005 ) ±Herwig++ (0.4608

0.0003 ) ±EvtGen 2.0 (0.4580 0.0021)±PDG (0.4557

EvtGen (0.4555)

ATLAS Simulation Preliminary

[mm]τ c+B0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

0.0005 ) ±PYTHIA8 (0.4904 0.0005 ) ±Pythia6 (0.4620

0.0005 ) ±HERWIG (0.4942 0.0005 ) ±Herwig++ (0.5016

0.0004 ) ±EvtGen 2.0 (0.4919 0.0024)±PDG (0.4923

EvtGen (0.4920)

ATLAS Simulation Preliminary

[mm]τ c0sB

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

0.0010 ) ±PYTHIA8 (0.4369 0.0012 ) ±Pythia6 (0.4820

0.0010 ) ±HERWIG (0.4595 0.0010 ) ±Herwig++ (0.4427

0.0007 ) ±EvtGen 2.0 (0.4395 0.0045)±PDG (0.4491

EvtGen (0.4415)

ATLAS Simulation Preliminary

[mm]τ cbΛ0.3 0.4 0.5 0.6 0.7 0.8

0.0013 ) ±PYTHIA8 (0.3682 0.0010 ) ±Pythia6 (0.3420

0.0008 ) ±HERWIG (0.2818 0.0009 ) ±Herwig++ (0.3686

0.0010 ) ±EvtGen 2.0 (0.3968 0.0096)±PDG (0.4275

EvtGen (0.4272)

ATLAS Simulation Preliminary

Page 28: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

24

b-Hadron Semileptonic Fractions

semileptonic fraction0B0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

0.0003 ) ±PYTHIA8 (0.1045 0.0003 ) ±Pythia6 (0.1050

0.0003 ) ±HERWIG (0.0962 0.0003 ) ±Herwig++ (0.0999

0.0007 ) ±EvtGen 2.0 (0.0934 0.0002 ) ±EvtGen ATLAS .dec (0.1039

0.0028)±PDG (0.1033 EvtGen (0.0949)

ATLAS Simulation Preliminary

semileptonic fraction+B0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0.0003 ) ±PYTHIA8 (0.1122 0.0003 ) ±Pythia6 (0.1054

0.0003 ) ±HERWIG (0.0956 0.0004 ) ±Herwig++ (0.1088

0.0008 ) ±EvtGen 2.0 (0.0968 0.0002 ) ±EvtGen ATLAS .dec (0.1108

0.0028)±PDG (0.1099 EvtGen (0.0980)

ATLAS Simulation Preliminary

semileptonic fraction0sB

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.0007 ) ±PYTHIA8 (0.0934 0.0008 ) ±Pythia6 (0.1062

0.0007 ) ±HERWIG (0.0969 0.0007 ) ±Herwig++ (0.0939

0.0017 ) ±EvtGen 2.0 (0.0928 0.0005 ) ±EvtGen ATLAS .dec (0.0928

0.0270)±PDG (0.0950 EvtGen (0.0930)

ATLAS Simulation Preliminary

semileptonic fraction0bΛ

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.0009 ) ±PYTHIA8 (0.0763 0.0009 ) ±Pythia6 (0.1059

0.0008 ) ±HERWIG (0.0973 0.0008 ) ±Herwig++ (0.0978

0.0027 ) ±EvtGen 2.0 (0.1207 0.0008 ) ±EvtGen ATLAS .dec (0.1003

0.0230)±PDG (0.0980 EvtGen (0.1233)

ATLAS Simulation Preliminary

Page 29: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

25

c-Hadron Lifetimes

[mm]τ c0D0.12 0.125 0.13 0.135 0.14 0.145

0.0001 ) ±PYTHIA8 (0.1230 0.0001 ) ±Pythia6 (0.1246

0.0002 ) ±HERWIG (0.1238 0.0001 ) ±Herwig++ (0.1231

0.0001 ) ±EvtGen 2.0 (0.1229 0.0004)±PDG (0.1230

EvtGen (0.1230)

ATLAS Simulation Preliminary

[mm]τ c+D0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44

0.0005 ) ±PYTHIA8 (0.3115 0.0005 ) ±Pythia6 (0.3161

0.0006 ) ±HERWIG (0.3150 0.0005 ) ±Herwig++ (0.3116

0.0003 ) ±EvtGen 2.0 (0.3114 0.0021)±PDG (0.3120

EvtGen (0.3118)

ATLAS Simulation Preliminary

[mm]τ c+sD

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

0.0004 ) ±PYTHIA8 (0.1498 0.0004 ) ±Pythia6 (0.1400

0.0004 ) ±HERWIG (0.1402 0.0005 ) ±Herwig++ (0.1494

0.0003 ) ±EvtGen 2.0 (0.1499 0.0021)±PDG (0.1500

EvtGen (0.1499)

ATLAS Simulation Preliminary

[mm]τ c+cΛ

0 0.05 0.1 0.15 0.2 0.25

0.0002 ) ±PYTHIA8 (0.0597 0.0002 ) ±Pythia6 (0.0621

0.0002 ) ±HERWIG (0.0614 0.0002 ) ±Herwig++ (0.0595

0.0002 ) ±EvtGen 2.0 (0.0596 0.0018)±PDG (0.0600

EvtGen (0.0598)

ATLAS Simulation Preliminary

Page 30: Introduction to b-Tagging - UCL HEP Group · » Light-flavour and c-jet rejection as a function of b-jet tagging efficiency for a number of training configurations » Larger area

26

b-Hadron Semileptonic fractions

semileptonic fraction0D0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

0.0003 ) ±PYTHIA8 (0.0680 0.0003 ) ±Pythia6 (0.0767

0.0004 ) ±HERWIG (0.0810 0.0003 ) ±Herwig++ (0.0671

0.0003 ) ±EvtGen 2.0 (0.1072 0.0002 ) ±EvtGen ATLAS .dec (0.0678

0.0011)±PDG (0.0649 EvtGen (0.1071)

ATLAS Simulation Preliminary

semileptonic fraction+D0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0006 ) ±PYTHIA8 (0.1697 0.0007 ) ±Pythia6 (0.1725

0.0007 ) ±HERWIG (0.1260 0.0007 ) ±Herwig++ (0.1606

0.0007 ) ±EvtGen 2.0 (0.2009 0.0004 ) ±EvtGen ATLAS .dec (0.1697

0.0030)±PDG (0.1607 EvtGen (0.2009)

ATLAS Simulation Preliminary

semileptonic fraction+sD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.0007 ) ±PYTHIA8 (0.0695 0.0009 ) ±Pythia6 (0.0809

0.0007 ) ±HERWIG (0.0533 0.0009 ) ±Herwig++ (0.0699

0.0007 ) ±EvtGen 2.0 (0.0703 0.0005 ) ±EvtGen ATLAS .dec (0.0696

0.0040)±PDG (0.0650 EvtGen (0.0698)

ATLAS Simulation Preliminary

semileptonic fraction+cΛ

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.0009 ) ±PYTHIA8 (0.0447 0.0008 ) ±Pythia6 (0.0448

0.0005 ) ±HERWIG (0.0372 0.0007 ) ±Herwig++ (0.0449

0.0008 ) ±EvtGen 2.0 (0.0466 0.0006 ) ±EvtGen ATLAS .dec (0.0471

0.0170)±PDG (0.0450 EvtGen (0.0480)

ATLAS Simulation Preliminary