29
Introduction Introduction of AIM/Impact[Policy] of AIM/Impact[Policy] Yasuaki Hijioka[email protected]National Institute for Environmental Studies 15 th AIM International Workshop 2010 @ NIES

Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

IntroductionIntroduction of AIM/Impact[Policy] of AIM/Impact[Policy]

Yasuaki Hijioka([email protected])National Institute for Environmental Studies

15th AIM International Workshop 2010 @ NIES

Page 2: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

2

Presentation OutlinePresentation Outline

1.1. Outline of AIM/Outline of AIM/Impact[PolicyImpact[Policy]]

2.2. Application of AIM/Application of AIM/Impact[PolicyImpact[Policy]]

•• The Project for Comprehensive Projection The Project for Comprehensive Projection of Climate Change Impactsof Climate Change Impacts ((SS‐‐4 4 project)project)

•• The Comprehensive Research Project of The Comprehensive Research Project of Climate Change Impact Assessment and Climate Change Impact Assessment and Adaptation StrategiesAdaptation Strategies ((SS‐‐8 8 project)project)

Page 3: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

3

AIM/AIM/Impact[PolicyImpact[Policy]]

Development of integrated assessment model, AIM/Impact[Policy], for comprehensive analysis and assessment of GHG stabilization concentration targets and emission pathways for realizing them, as well as impacts and risks under such targets

Assist policymakers’decision in action programs to arrest global warming

Page 4: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

4

Development of Integrated Development of Integrated Assessment modelAssessment model

Integrated assessment model, AIM/Impact[Policy]Projection of future GHG emissions and climate change impacts under stabilization scenarios

Present Future

Temp. increase

Temp. inc.  Low

Temp. inc. High

Present FutureGHG Con

.

GHG Con. Low

GHG Con. High

Present FutureCC

 impacts

Impact small

Impact Large

Present Future

GHG emission

s

Effort for GHG reduction Large

Effort for GHG reduction small

Page 5: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Climate change Impact Response Function

Impact/Adaptation

GHG Emissions

Overview of Overview of AIM/AIM/Impact[PolicyImpact[Policy]]

Global GHG emission path

GMTI

Pattern scaling module

Climate Scenario by country

Potential impact 

estimation module

National/ Sector‐wise impacts

Integrated assessment

(Emission/Climate/Impacts)

Energy‐economic model

Simple climate model

GCM results Adaptation

Page 6: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Precipitation 50% Precipitation 100%

Temperature +0ºC

Change of potential crop Change of potential crop productivity (rice)productivity (rice) 0       2 3         4        5       6  (t/ha)

Precipitation 200%

Temperature +3ºC

Temperature +6ºC

Temperature +9ºC

Page 7: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

7

Example of Impact Response FunctionExample of Impact Response Function

2d 1d 0 1 2 3 4 5 6 7 8405060708090100110120130140150

Temperature change

Precipita

tion change

0‐25 25‐50 50‐75 75‐100 100‐125

Page 8: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

8

Page 9: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

9

Example of uncertainty analysisExample of uncertainty analysis

75

80

85

90

95

100

105

2000

2020

2040

2060

2080

2100

Year

Potential rice prod

uctivity

75

80

85

90

95

100

105

2000

2020

2040

2060

2080

2100

Year

Potential rice prod

uctivity

Year

BCCRbcm2‐PCM_A2 BCCRbcm2‐PCM_B1 CCCm_A2 CCCm_B2 CCCma‐PCMA1B CCCma‐PCMA2 CCCma‐PCMB1CCCmat63‐PCMA1B CCCmat63‐PCMB1 CCSR_A1 CCSR_A1T CCSR_A2 CCSR_AF CCSR_B1CCSR_B2 CGCM‐PCMA1B CGCM‐PCMA2 CGCM‐PCMB1 CNRMcm3‐PCMA1B CNRMcm3‐PCMA2 CNRMcm3‐PCMB1CSIRO_A1 CSIRO_A2 CSIRO_B1 CSIRO_B2 CSIROmk3‐PCMA1B CSIROmk3‐PCMA2 CSIROmk3‐PCMB1ECHAM4‐PCM_A1B ECHAM‐PCM_A1B ECHAM‐PCM_A2 ECHAM‐PCM_B1 ECHO‐PCM_A1B ECHO‐PCM_A2 ECHO‐PCM_B1FGOALS‐PCM_A1B FGOALS‐PCM_B1 GFDL_A2 GFDL_B2 GFDLcm20‐PCM_A1B GFDLcm20‐PCM_A2 GFDLcm20‐PCM_B1GFDLcm21‐PCM_A1B GFDLcm21‐PCM_A2 GFDLcm21‐PCM_B1 GISSaom‐PCM_A1B GISSaom‐PCM_B1 GISSeh‐PCM_A1B GISSer‐PCM_A2GISSer‐PCM_B1 HADCM3_A2 HADCM3_A2b HADCM3_A2c HADCM3_B2 INMCM3‐PCM_A1B INMCM3‐PCM_A2INMCM3‐PCM_B1 IPSLcm4‐PCM_A1B IPSLcm4‐PCM_A2 IPSLcm4‐PCM_B1 MIROC_A1B MIROCh‐PCM_A1B MIROCh‐PCM_B1MIROCm‐PCM_A1B MIROCm‐PCM_A2 MIROCm‐PCM_B1 MIROCold_A1B NCARccsm3‐PCM_A1B NCARccsm3‐PCM_A2 NCARccsm3‐PCM_B1NCARpcm1‐PCM_A1B NCARpcm1‐PCM_A2 UKMOhadcm‐PCM_A1B UKMOhadcm‐PCM_A2 UKMOhadcm‐PCM_B1 UKMOhadgem1‐PCM_A1B UKMOhadgem1‐PCM_A2Ave.

BaU2ºC

Page 10: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

10

The Project for Comprehensive Projection The Project for Comprehensive Projection of Climate Change Impacts (of Climate Change Impacts (SS‐‐44))

Global Environment Research Fund S‐4 by Ministry of the Environment

Targeted area: Asian region including JapanTargeted fields: Water resources, forests, agriculture, coastal zones, human healthResearch period: 

Period I (2005‐2007) + Period II (2008‐2009)

Project leader: Nobuo MIMURA, Ibaraki UniversityResearch budget: around 0.2 billion yen per yearNumber of sub‐themes: Seven

Number of participating research institutions: 14 (2008)Number of participating researchers: 42 (2007)

Page 11: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

1111

Objectives ofObjectives of the research projectthe research project

To obtain quantitative knowledge on climate change impacts in key fields in the Asian regionincluding Japan, targeting the period up to the end of the present century while focusing on the period up to around 2050. Water resources, Forests, Agriculture, Coastal zones, and Human health

To comprehensively grasp the impacts on Japan and elucidate the relationships with the level of global warming.

Page 12: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Risk Map

Without adaptation measures

With adaptation measures

SS‐‐4 research method4 research method

Water Health 

Agri. Coasts Forests 

Improvement of Impact  Projection

Climate scenario

Population scenario

Common scenarioDevelopment of Impact Functions

Economic assessment 

Proposal of economic assessment method

Development of monetary assessment basic unit

0

5

10

15

20

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

GHG emissions

300

500

700

900

1100

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

GHG concentrations

0.0

1.0

2.0

3.0

4.0

5.019

9020

0020

1020

2020

3020

4020

5020

6020

7020

8020

9021

0021

1021

2021

3021

4021

50

Temperature changes

-30-25-20-15-10

-50

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Impacts

Integrated assessment model 

Adaptationmeasures 

IntegratedIntegratedAssessmentAssessment

Page 13: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

13

1. The development of quantitative assessment methods by field and projection of the impacts on whole Japan

Risk maps (nationwide as well as regional assessments)Full report: 94 pages, Brief summary: 15 pagesPress Release: 29th May, 2008, Results for the first three years

2. Impact assessments by stabilization level of atmospheric GHG concentration using an integrated assessment model

Assessments of damage costs as well as physical impactsFull report: 38 pages, Brief summary: 26 pagesPress Release: 29th May, 2009

Key research productsKey research products

Page 14: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

14

Reported risk mapsReported risk mapshttp://www‐cger.nies.go.jp/climate/rrpj‐impact‐s4report.html

1年に熱ストレスで死亡する確率(人口1000万人あたりの死亡数で示したもの)

0 1 10 100 5000 1 10 100 500

Page 15: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

15

Outline of Stabilization Scenarios Outline of Stabilization Scenarios 

Including GHGs and cooling effects of aerosol

Overshooting of GHG concentrations occurs (450s, 550s)

450s: 450 ppm GHG concentration (CO2 equivalent concentration) stabilization scenario

Equilibrium temperature increase of approx. 2.1ºC  (compared with pre industrial period)

550s: 550 ppm GHG concentration (CO2 equivalent concentration) stabilization scenario

Equilibrium temperature increase of approx. 2.9ºC  (compared with pre industrial period; approx. 2.7ºC in 2100 in the present analysis)

BaU (Business as Usual scenario)Temperature increase of approx. 3.8ºC  in 2100 (compared with pre industrial period) 

Corresponding to IPCC SRES B2

Page 16: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

16

8 indicators for impact assessment8 indicators for impact assessment

Flooded area and cost of damage due to floodsProbability of slope failure and cost of damage due to landslide disastersImpacts on suitable habitats for Fagus crenata(Japanese beech) forests and cost of damageExpansion of areas at risk of pine wiltImpacts on rice yieldExpansion of area of sand beach loss and cost of damageExpansion of area of storm‐surge flooding, affected populations, and cost of damageHeat stress mortality risk and cost of damage

Page 17: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

17

Outline of Integrated AssessmentOutline of Integrated Assessment

Equilibrium climate sensitivity: 3ºCThe carbon feedback effect is not taken into consideration

GCM used for preparation of climate scenarios (pattern scaling) by region from global mean temperature changes: MIROC3.2‐hires

The impacts of global warming are the incrementwhen 1981‐2000 (or 1990) is taken the base period or year

Without considering adaptation to climate change

Page 18: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

18

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Year

Global m

ean temperature increase

(℃,1990=0)

Global GHG Emissions Global GHG Emissions (Six Types of GHGs Established under the Kyoto (Six Types of GHGs Established under the Kyoto Protocol)Protocol), GHG Concentration, Global Mean Temperature , GHG Concentration, Global Mean Temperature 

Increase, and Sea Level Rise by ScenarioIncrease, and Sea Level Rise by Scenario

When converting in comparison with prior to the industrial revolution: +0.5°C

‐5

0

5

10

15

20

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Year

Kyoto‐gas em

issions (GtCeq/yr)

300

500

700

900

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Year

GHG concentrasion

 (ppm

‐CO2eq)

0.00

0.05

0.10

0.15

0.20

0.25

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Year

Sea Level rise (m

, 1990=0)

450S 550S BaU

Page 19: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

19

Impacts of Impacts of FloodsFloods

Present protection levelHeavy rain (HR) occurring once every 50 years.

Future protection levelHR occurring once every 50years in every prefectureHR occurring once every 150 years in the three major metropolitan areas

Protection level remains unchanged in the future.NO depreciation of asset values due to damage

450S 550S BaU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Period

Flood area(1000km

2)

0

2

4

6

8

10

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Period

Flood damage cost potentia

l (trillion yen/year)

1.2

1.1

1.08.7

7.6

6.4

Page 20: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

20

0

500

1000

1500

2000

2500

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Period

Cost of d

amage due to decrease in suitable habitats fo

r F.

crenata forests (100

 million yen/year)

Impacts on Impacts on ForestsForests

Climate variablesChanges in cumulative temperature (warmth index),Changes in daily minimum temperature of the coldest month, Changes in winter precipitation (December‐March), Changes in summer precipitation (May‐September) 

Application of CVM (contingent valuation method).Smoothly migrationNo land use changeNon‐market value

450S 550S BaU

30

40

50

60

70

80

90

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Period

Suita

ble habitats fo

r F. crenata fo

rests (%, 1990 = 100%

)

‐39

‐35

‐28

‐68

‐50

‐361381

1273

1034

2324

1811

1325

Page 21: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

21

Impacts on Impacts on AgricultureAgriculture (Rice Yield)(Rice Yield)

Climatic variablesChanges in accumulated insolation in the warm season (May‐October)Mean temperature change in summer (July, August)Mean temperature change in the warm season excluding summer (May, June, September, October)CO2 concentration

Important factors to determine the rice yield• Positive effect due to the reduction in 

cold weather damage in currently cool regions

• Positive effect due to the CO2fertilization 

• Negative effect due to high‐temperature‐induced sterility in currently warm regions

450S 550S BaU

4.8

4.9

5.0

5.1

5.2

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Period

Rice yield(kg/ha)

Page 22: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

22

Damage Costs by ScenariosDamage Costs by Scenarios

0

2

4

6

8

10

12

14

16

18

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Dam

age C

ost(

Trillio

n Y

en/Year)

0

2

4

6

8

10

12

14

16

18

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Dam

age C

ost(

Trillio

n Y

en/Year)

0

2

4

6

8

10

12

14

16

18

2020s

2030s

2040s

2050s

2060s

2070s

2080s

2090s

Dam

age C

ost(

Trillio

n Y

en/Year)

( 2 )

8

1 8

202

0s

203

0s

204

0s

205

0s

206

0s

207

0s

208

0s

209

0s

被害

額(

兆円

/年

Flood Area Slope CollapseSandy Beach Loss Heat Stress Morta;ity RiskLoss of Suitable Habitats for F. crenata Forests Storm‐Surge Flooding (Western Japan)

550s450s BaU

Page 23: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Key Findings of Second ReportKey Findings of Second Report

In Japan as well, even greater impacts of global warming are expected in the future in a broad range of fields related to people’s lives.

Even when the GHG concentration is stabilized at low level (ex. 450 ppm‐CO2eq), the occurrence of a certain amount of damage is unavoidable.

It is necessary to study and implement adaptation measures from the long‐term viewpoint

23

Page 24: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Outline of SOutline of S‐‐8 project8 project

Global Environment Research Fund S‐8 by Ministry of the EnvironmentTargeted area : Whole and regional area in Japan and Asia‐Pacific regionTargeted fields: Water resources, forests, agriculture, coastal zones, human healthResearch period: 

Period I (2010‐2012) + Period II (20013‐2014)

Project leader: Nobuo MIMURA, Ibaraki UniversityResearch budget: around 0.35 billion yen per yearNumber of sub‐themes: around 10

Impact assessment in whole Japan: around 7Impact assessment in Japanese regional area: around 2Impact assessment in Asian developing countries: around 1

24

Page 25: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

25

Comparison between SComparison between S‐‐4 and S4 and S‐‐88

S‐4 S‐8Targeted area Whole Japan Whole and regional 

Japan, Asia‐Pacific

Targeted fieldsResearch

Water resources, forests, agriculture, coastal zones, human health, economic

Period:  Period I (FY2005‐2007) + Period II (FY2008‐2009)

Period I (FY2010‐2012) + Period II (FY2013‐2014)

Project leader Nobuo MIMURA, Ibaraki University

Budget: Around 0.2 billion yen per year

Around 0.35 billion yen per year

Number ofresearch team

7 Around 10

Page 26: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Objectives ofObjectives of SS‐‐8 project8 project

To assess climate change impact assessment focusing on whole Japan under different GHG concentration stabilization scenarios and adaptation strategies

Utilization of new climate scenario with high accuracy and resolutionDevelopment of advanced model for assessment of climate change impacts and adaptation strategy

To develop a planning method for adaptation strategyfocusing on Japanese local government and developing countries

Development of simplified tool to assess the impacts of, and vulnerabilities and adaptation to, climate changeConsideration of uncertainty in the assessment

26

Page 27: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

Collaboration with other research by GERF and external research fund

Transmission of research results to domestic and international policymaking

【Theme 2】IAV on 

Japanese local  government

Scheme of S‐8

Simple 

assessment 

method

S‐4

Various IAV research and 

assessment on Asia‐pacific region

feedback  by local 

government

feedback  by developing country

【Theme 1】 IAV on whole Japan

Water Health  Agri. CoastsBio.

【Theme 3】IAV on Asia‐

pacific region

Simple 

assessmen

t metho

d

Integrated modelingEconomic assessment

Page 28: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

28

AAIM activity to SIM activity to S‐‐8 project8 project

IRFs(w.,w/o adaptation 

storategy)

【Th

eme

1】IA

V o

n w

hole

Jap

an

IPCC AR5

Kakushin

IPCC AR4

GERFS‐5

IPCC TAR

GERFS‐3/S‐6

Long term vision

Bias collection

Uncertainty analysis

Pattern scaling

Future population

Simple assessment method

Climate scenarios

Socio‐economic scenario

Integrated Assessment modelAIM/Impact[Policy]

Simple tool for CC impact assessment 

【Theme 2】 IAV on Japanese local  government

【Theme 3】IAV on Asia‐pacific region

Page 29: Introduction of AIM/Impact[Policy] · concentration) stabilization scenario 9Equilibrium temperature increase of approx. 2.9ºC (compared with pre industrial period; approx. 2.7ºC

29

Future PlanFuture Plan

Improvement of AIM/Impact[Policy]Revision of energy‐economic model

Extension of assessment fieldIncorporation of adaptation strategy

Collaboration with Asia‐Pacific researchers 

Shift from S‐4 to S‐8 projectFocus on adaptation strategy 

Impact assessment in Tokyo