23
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail: [email protected]

Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

  • Upload
    keola

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail: [email protected]. Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force. Three nucleon correction. Conclusions. Introduction: - PowerPoint PPT Presentation

Citation preview

Page 1: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

Nucleon Optical Potential in Brueckner Theory

Wasi HaiderDepartment of Physics, AMU, Aligarh, India.

E Mail: [email protected]

Page 2: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

1. Introduction.

2. G-matrix (Effective Interaction).

3. Nucleon Optical Potential.

4. Spin-orbit force.

5. Three nucleon correction.

6. Conclusions.

Page 3: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

1. Introduction:

First Order Microscopic description of the nuclear Collision:

Nucleon scattering

Few tens of MeV – 400MeV

Comparison with Empirical Potentials.

Bethe-Brueckner-Goldtone …theory of Nuclear Matter

PR95,217(1954), Rev. Mod.Phys.30,745(1967), Proc. Roy. Soc. (Lon)

A239,267(1937)

Brieva and Rook, NPA291,317(1977); 307,493(1978)

Jeukenne,Lejeune,Mahaux, Phys. Rep. 25,83(1976)

H.V.von Geramb, in The Interaction between Medium Energy nucleons in

Nuclei (AIP,New York, 1983), Yamaguchi et al.

),(ˆ,,),( pppkGpkdppdkkU

Page 4: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

Recent developments:

Amos et al. Adv. In Nucl. Phys.25, 275 (2000)

Arelleno, Brieva love, Phys. Rev. Lett.63,605 (1989)…

Arlleno and BaugePRC76, 014613 (2007)

All the above approaches : FOLDING of the generalised TWO-Body Infinite Nuclear Matter effective interaction over the Target ground state densities.

We briefly discuss the basic formalism, and its successes and in its applications to finite nuclei.

Failures. Attempts to improve

1. Spin orbit (Direct+Exchange), Central Exchange.

2.Calculations of Three Nucleon effects in the Nucleon optical potential.

Conclusions

Page 5: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

2. G-Matrix. i

ii UTH )(0

ji i

iij UvH1

Goldstone Perturbation series. First order term:

B.D. Day, Rev. Mod. Phys. 39, 719(1967)

nmm

m nmvmnmnvmnTE,2

1

v is the realistic two-body inter-nucleon potential. v is replaced by the effective interaction, g-matrix:

Page 6: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

)()/()( wgeQvvwgv

Page 7: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

…………………………………………………………………………

srrrrr srrs ,)()(),( 2121 rsrsrs wgeQ )()/(

rsrsrs veQ )/(

v g

Calculation of g is summing all the infinite ladder diagrams and it amounts to solving the Schrödinger equation between two particles in presence of all other nucleons.

).(3

3

),()2(

),(),( rrki

rs

rs eKke

KkkQdrrk

Page 8: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

Fkj

F kjwgkjkkU )(),(

K:0-6.0fm-1; KF:0.5-2.0fm-1, L=0-6, Four Coupled states

0 1 2 3 4 5

-150

-100

-50

0

50

100

KF

Real

Pot

entia

l (M

eV)

kinc

(fm-1)

Nuclear Matter Real PotentialV-14

0 1 2 3 4 5-80

-60

-40

-20

0K

F

Imag

inar

y Po

tent

ial (

MeV

)

Kinc

(fm-1)

Nuclear Matter Imaginary Potentialv-14

Page 9: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

3. Nucleon Optical Potential: We define the radial dependence of the g-matrix such that the

nuclear matter optical potential is reproduced ie:

rsrsrsrs vrg )(

23

212121 ))),(2

1(,()(),( rdErrrrgrErU c

Dcopt

23

210212121 )())),(2

1(,(),( rdrrkjErrrrgrr c

Ex

Page 10: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

0 2 4 6 8

-60

-50

-40

-30

-20

-10

0

p-40Ca

V-14

Ep (MeV)

V(r

) (M

eV

)

r(fm)

10 20 50 100 150 200 300

0 2 4 6 8-30

-25

-20

-15

-10

-5

0

p-40Ca

V-14

Ep (MeV)

W(r

) (M

eV)

r (fm)

10 20 50 100 150 200 300

0 2 4 6 8 100.0

0.5

1.0

1.5

V-14

p-40CaE

p MeV

Vso

(r)

(Me

V)

r (fm)

10 20 50 100 150 200 300

0 2 4 6 8-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

V-14

p-40Ca

Ep (MeV)

Wso

(r)

(MeV

)

r (fm)

10 20 50 100 150 200 300

Page 11: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

0 2 4 6 8

-16

-14

-12

-10

-8

-6

-4

-2

0

p-40Ca 30 MeV

W

(r) (

MeV

)

r(fm)

m*

no m*

0 2 4 6 8

-25

-20

-15

-10

-5

0

p-40Ca 200 MeV

W(r

) (M

eV)

r(fm)

m*

no m*

Effective mass correction in the calculated Imaginary part.

Page 12: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

20 40 60 80 100 120

V-14

103

102

101

100

10-1

d

/d

(mb/

sr)

CM

(deg)

p-116Sn 39.6MeV

20 40 60 80 100 120

103

102

101

100

10-1

V-14

d/d

(mb/

sr)

CM

(deg)

p-118Sn 39.6MeV

20 40 60 80 100 120

v-14

103

102

101

100

10-1

d/d

(mb

/sr)

CM

(deg)

p-120Sn 39.6MeV

20 40 60 80 100 120

103

102

101

100

10-1

V-14

d/

d (

mb

/sr)

CM

(deg)

p-122Sn 39.6 MeV

20 40 60 80 100 120

v-14

103

102

101

100

10-1

d/

d (

mb

/sr)

CM

(deg)

p-124Sn 39.6 MeV

Differential cross-section: p-Sn Isotopes at 40 MeV.

Predictions

IIT, BARC, AMU collaboration

Page 13: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

20 40 60 80 100 120-1.0

-0.5

0.0

0.5

1.0

AY(

)

CM

(deg)

p-116Sn 39.6 MeV

20 40 60 80 100 120-1.0

-0.5

0.0

0.5

1.0

AY(

)

Cm

(deg)

p-118Sn 39.6MeV

20 40 60 80 100 120-1.0

-0.5

0.0

0.5

1.0

AY(

)

CM

(deg)

p-120Sn 39.6 Mev

20 40 60 80 100 120-1.0

-0.5

0.0

0.5

1.0

AY(

)

CM

(deg)

p-122Sn 39.6 MeV

20 40 60 80 100 120-1.0

-0.5

0.0

0.5

1.0

v-14

A

Y(

)

CM

(deg)

p-124Sn 39.6 MeV

Polarisation Predictions for p-Sn Isotopes at 40 MeV

IIT, BARC, AMU Collaboration

Page 14: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

Neutron Elastic scattering from Fe56, Y89 and Pb208 at 96 MeV

Uppsala, AMU Collaboration

PRC77, 024605 (2008)

Page 15: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

V14(BB)

V14(LP)

HJ(BB)

E/A

(E

ner

gy

Per

Nu

cleo

n)

kf(fm-1)

Conclusions:

1. Neutron and proton scattering is nicely reproduces.

2. Calculated imaginary part is large.

3. Spin-orbit is not well determined.

4. Binding energy of Nuclear matter is not reproduced.

Remedial steps:

1. Spin-orbit part.

2. Three-body effects

Page 16: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

4. Nucleon Spin – Orbit Potential:

The earliest formula is by Blin-Stoyle:

where the constant is the first term of a series, Given by Greenlees et al. We show that the series is not rapidly convergent and we are able to calculate the Direct part exactly.

dr

d

rConstrV os

1.)(..

22N

D

.o.s2NN

D

.srd)r(S.Lg)r()r(V

Using )(),).(()(

2

1. 12212121 rrxssppXrrSL

We get xds.pXxg)xr(2

1)r(V

11

D

so1

D

.o.s

1111r/s.l)r(A

2

1

Page 17: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

where xdxgxrrrrA Dos

..1111 )(/)(

Greenlees makes a Taylor series expansion of A(r1):

)()!32(

)22(4)(

0

2

42 rdr

dI

v

vrA

v

v

v

,)( dxxgxI NN

where

12

12

2

22 2

v

v

v

vv

dr

d

r

v

dr

d

The First Term of the series isdr

dIrA

43

4)(

We have done model calculation of the first Two terms of the above series and find that the second term is quite large. Thus the first term alone is not enough. We calculate the whole series without making any approximation about the short range nature of the effective interaction

Page 18: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

0 2 4 6 8 10

0

5

10

15

Spin-Orbit potential

V

so(r

) (A

rb. s

cale

)

r (fm)

First Order First +second

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

SPIN-ORBIT POTENTIAL

p-40Ca 30 MeV

Vs.

o.(r

) (M

eV)

r (fm)

Vso Direct(New) Vso Direct(old) Vso Exchange

A slight rearrangement of the expansion gives the results of Scheerbaum dr

ddxxxgkxj

krA

})()(1

{4)( 21

Thus we are able to calculate the Direct part of the microscopic spin-orbit part exactly.

Page 19: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

5. Three-body terms:

Considerable efforts to Cal. The effect of Higher order terms in the Binding energy of Nuclear Matter: Bethe, Rajaraman, Day: (Three-body give: -5.0 MeV)

Only two efforts made for the Optical potential: Kidwai, WH.

Three hole-line Diagrams:

Faddeyev:

T=T(1)+T(2)+T(3),

T(3)= g12 – g12(Q/e)[ T(1) + T(2)]

We introduce a three-body wave function in Coordinate space:

)3(12

)3( gT

)2(13

)1(231323

)3( )/()/()/()/( ZgeQZgeQgeQgeQZ

Where )()( iiZ ; Main task is to Cal. Fns Z(i)

Page 20: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

Three-Body Functions:

Two types: (1) The 3rd Nucleon is in ground state, and

(2) The Third nucleon is also in the Excited State.

Accordingly we differentiate.

ijgeQ )/(

ijijij RiPijPk

RPrkiij eregeQ .2

,.2. )()/(

and

ijijij RiPijPk

RPrkiij eregeQ .2

,.2. )()/(

NPA 504, 323 (1989)

Two Approx. Methods: Bethe, Day.

)(

)()(

0

,

ij

ijPkij

Bij krj

rr

)(

)()(

0

,

c

ijPkij

Dij krj

rr

The assumption is that the defect functions are independent of k,P.

Page 21: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

Singlet s-sate.

We see that Bethe’s approximation is justified.

Day’s approximation gives similar results.

1323121323121

231222

3 ),,(8 drdrdrrrrZgU

1323121323,122

131222 ),(8 drdrdrrrrZg

Page 22: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

KF= 1.4fm-1 (Nuclear Interior)

En (MeV Re U2 Im U2 Re U3 Im U3 Re U3ReU2 ImU3/ImU2

30.0 -54.243 -1.566 -14.348 +0.793 0.132 -0.253 80.0 -58.076 -10.817 -11.535 +1.703 0.099 -0.079

Results:

KF = 0.90 fm-1 (Nuclear Surface)

30.0 -14.184 -0.661 -1.321 +0.164 0.047 -0.124 80.0 -14.015 -2.662 -1.001 +0.429 0.036 -0.081The results using Day’ approximation is very similar, and hence we do not quote

them here.

Page 23: Introduction. G-matrix (Effective Interaction). Nucleon Optical Potential. Spin-orbit force

• Conclusions: 1. Satisfactory agreement with Nucleon scattering data.

2. The exchange parts of the nucleon optical potential should be

treated more carefully.

3. Calculation of three-body effects should be improved.

4. The calculated potentials depend sensitively on the point nucleon

densities used. Hence the approach can be used to study neutron

skin in nuclei.

Thank you.