1
54 o W 36 o W 18 o W 0 o 18 o E 24 o S 12 o S 0 o 12 o N 24 o N 36 o N Model domain Damping of sponge layer [s 1 ] 0.5 1 1.5 2 x 10 5 Intraseasonal variability in the tropical Atlantic: Observations vs. reduced gravity simulations Robert Kopte, Peter Brandt, Richard J. Greatbatch, Mar7n Claus 1) Variability in the tropical Atlan7c: 2) Reduced gravity simula7ons of the tropical Atlan7c 3) Comparison of reduced gravity simula7ons with AVISO SLA: 4b) Equatorial wave analysis 4a) Basin mode of the 1 st baroclinic mode 5) Summary and outlook 0 50 100 150 200 250 300 350 400 0 1 2 3 4 Spatially averaged amplitude of SLA [cm] Period [days] 0 50 100 150 200 250 300 350 400 0 1 2 3 4 5 Depthaveraged amplitude of zonal vel. at 23 °W [cms 1 ] SLA [42W15E, 10S10N] Zonal velocity [23W] Fig. 1: Periodogram of SLA in the tropical Atlan7c and zonal velocity at 23°W, 0°N. 120d 182d 365d Spectral peaks at annual and semiannual, and 120day periods associated with 4 th , 2 nd and 1 st baroclinic modes Peaks correspond to resonant basin modes, composed of equatorial Kelvin and Rossby waves, as well as coastally trapped waves [1] Fig. 2: Model domain with sponge layers at northern/ southern boundaries, and area/sec7ons of interest. To study the intraseasonal variability in par7cular, reduced gravity model (RGM) simula7ons are used: The model is run separately for the first five baroclinic modes (c 1 =2.47 m/s, c 2 =1.32 m/s, c 3 =0.94 m/s, c 4 =0.74 m/s, c 5 =0.57 m/s), forced with interannually varying wind stress from NCEP (19902014) To allow for comparison of model and observa7ons, the model output is ficed to AVISO sea level anomaly (SLA) [2] u t -fv = -g 0 n x + x s 0 , v t +fu = -g 0 n y + y s 0 , t +H (u x +v y )=0, g 0 n = c 2 n H 0.25° x 0.25° Aviso 40°W 20°W 0° 1997 2000 2003 2006 2009 2012 RGM M15 40°W 20°W 0° [cm] 20 15 10 5 0 5 10 15 20 Aviso J F M A M J J A S O N D RGM M15 [cm] 8 6 4 2 0 2 4 6 8 Fig. 3: Hovmöller plot of SLA along equatorial wave guide (green line in Fig. 2). Le#: AVISO, right: Reconstruc7on from RGM modes 15. Fig. 4: Climatologic (1995 2014) seasonal cycle of SLA along equatorial wave guide. Fig. 5: Climatologic (19952014) seasonal cycle of bandpassed (25130d) SLA along equatorial wave guide. Dominance of the annual and semiannual cycle, well reproduced by the RGM (Fig. 3 and Fig.4) In AVISO, presence of con7nuous and recurrent eastward propaga7ons [3] , with the intraseasonal climatology represen7ng ~25% of the seasonal cycle amplitude (Fig. 5) RGM M1 120day 10°S 5°S Eq. 5°N 10°N 50°W 40°W 30°W 20°W 10°W 0° 10°E RGM M15 120day 10°S 5°S Eq. 5°N 10°N [cm] 0 1 2 3 4 AVISO 120day 10°S 5°S Eq. 5°N 10°N AVISO 120day 10°S 5°S Eq. 5°N 10°N RGM M15 120day 10°S 5°S Eq. 5°N 10°N Nov/Mar/Jul Dec/Apr/Aug Jan/May/Sep Feb/Jun/Oct RGM M1 120day 50°W 40°W 30°W 20°W 10°W 0° 10°E 10°S 5°S Eq. 5°N 10°N Fig. 6: Maps of amplitude (le#) and phase (right) of 120 day harmonics ficed to SLA data. Top: Aviso, middle: RGM modes 15, bo0om: RGM mode 1 only. AVISO Frequency [days 1 ] Wavenumber [10 3 km 1 ] 1.5 1 0.5 0 0.5 1 1.5 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 10 20 20 10 Wavelength [degrees longitude] RGM Period [days] Wavenumber [10 3 km 1 ] 1.5 1 0.5 0 0.5 1 1.5 365 100 50 30 Log 10 of spectral density [cm 2 /cpd/km 1 ] 6 7 8 9 10 10 20 20 10 Wavelength [degrees longitude] Fig. 7: Mean (5°S5°N, see horiz. black lines in Fig. 2) wave numberfrequency diagram. Le#: Aviso, right: RGM (modes 15). The white lines represent the theore7cal dispersion curves of the Kelvin wave and the first three meridional Rossby waves. Basinwide structure of SLA associated with the 1 st baroclinic mode with variability detectable as far as 10°S Consistent pacern in the RGM, although with considerable lower amplitude Mode 1 in the RGM simula7ons explains most of the structure seen in the “full” model Averaged over the equatorial belt (5°S5°N), zonal wavenumberfrequency diagrams of SLA exhibit spectral peaks near the theore7cal dispersion curves of the first baroclinic mode equatorial Kelvin and Rossby waves In the RGM, total energy is lower, however there is considerable energy in the mixed Rossbygravity wave range RGM M15 EAST WEST EAST WEST −−4N−−> −−EQ−−> −−4N−−> Month 0E 20W 40W 40W 20W 0E 0E 20W 40W Jan Apr Jul Oct AVISO Month Jan Apr Jul Oct [cm] 4 3 2 1 0 1 2 3 4 Fig. 8: Climatologic (19952014), bandpassed (25130d) SLA along 4°NEqu.4°N (see Fig. 2). Top: Aviso, bo0om: RGM modes 15. Only ~50% of the intraseasonal signal amplitude is reproduced by the RGM, however the phaselock of the propaga7ons appears to be consistent Intraseasonal SLA variability in the tropical Atlan7c is essen7ally winddriven, as it can be reproduced by reduced gravity simula7ons, although with weaker amplitudes Possible reasons for discrepancies to be tested: Bad choice / spa7al variability of phase speeds, which leads to the missing of resonance to a periodic forcing Uncaptured (i.e. nonlinear) effects of the North Equatorial Counter Current (NECC) on westwards propaga7ng Rossby waves at ~4°N (Fig. 8) References [1] Cane MA, Moore DW (1981): A Note on LowFrequency Equatorial Basin Modes. J Phys Oceanogr 11:15781584 doi:10.1175/15200485 [2] The al7meter products were produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (hcp://www.aviso.al7metry.fr/duacs/) [3] Polo I, Lazar A, RodriguezFonseca B, Arnault S (2008): Oceanic Kelvin waves and tropical Atlan7c intraseasonal variability: 1. Kelvin wave characteriza7on. J Geophys ResOceans 113:18 doi:10.1029/2007jc004495 Aviso 40°W 20°W 0° J F M A M J J A S O N D RGM M15 40 20 0 [cm] 2 1.5 1 0.5 0 0.5 1 1.5 2

Intraseasonal variability in the ... - oceanrep.geomar.de

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Intraseasonal variability in the ... - oceanrep.geomar.de

54oW 36oW 18oW 0o 18oE 24oS

12oS

0o

12oN

24oN

36oN

Model domain

Dam

pin

g o

f s

ponge la

yer

[s−

1]

0.5

1

1.5

2x 10

−5

Intraseasonal variability in the tropical Atlantic: Observations vs. reduced gravity simulations

Robert  Kopte,  Peter  Brandt,  Richard  J.  Greatbatch,  Mar7n  Claus  

1)  Variability  in  the  tropical  Atlan7c:   2)  Reduced  gravity  simula7ons  of  the  tropical  Atlan7c  

3)  Comparison  of  reduced  gravity  simula7ons  with  AVISO  SLA:  

4b)  Equatorial  wave  analysis  4a)  Basin  mode  of  the  1st  baroclinic  mode  

5)  Summary  and  outlook  

0 50 100 150 200 250 300 350 4000

1

2

3

4

Sp

atia

lly a

vera

ge

d a

mp

litu

de

of

SL

A [

cm]

Period [days]

0 50 100 150 200 250 300 350 4000

1

2

3

4

5

De

pth

−a

vera

ge

d a

mp

litu

de

of

zon

al v

el.

at

23°

W [

cms−

1]

SLA [42W−15E, 10S−10N]Zonal velocity [23W]

Fig.  1:  Periodogram  of  SLA  in  the  tropical  Atlan7c  and  zonal  velocity  at  23°W,    0°N.  

120d  

182d  

365d  ▶  Spectral  peaks  at  annual  and  

semi-­‐annual,  and  120-­‐day  periods  associated  with  4th,  2nd  and  1st  baroclinic  modes  

▶  Peaks  correspond  to  resonant  basin  modes,  composed  of  equatorial  Kelvin  and  Rossby  waves,  as  well  as  coastally  trapped  waves[1]  

Fig.  2:  Model  domain  with  sponge  layers  at  northern/southern  boundaries,  and  area/sec7ons  of  interest.  

▶  To  study  the  intra-­‐seasonal  variability  in  par7cular,  reduced  gravity  model  (RGM)  simula7ons  are  used:  

       

▶  The  model  is  run  separately  for  the  first  five  baroclinic  modes  (c1=2.47  m/s,  c2=1.32  m/s,  c3=0.94  m/s,  c4=0.74  m/s,  c5=0.57  m/s),  forced  with  interannually  varying  wind  stress  from  NCEP  (1990-­‐2014)  

▶  To  allow  for  comparison  of  model  and  observa7ons,  the  model  output  is  ficed  to  AVISO  sea  level  anomaly  (SLA)[2]  

ut

�fv = �g0n

⌘x

+⌧xs

⇢0, v

t

+fu = �g0n

⌘y

+⌧ys

⇢0, ⌘

t

+H(ux

+vy

) = 0, g0n

=c2n

H

0.25°  x  0.25°  

Aviso

40°W 20°W 0°

1997

2000

2003

2006

2009

2012

RGM M1−5

40°W 20°W 0°

[cm]−20

−15

−10

−5

0

5

10

15

20

AvisoJ

F

M

A

M

J

J

A

S

O

N

D

RGM M1−5

[cm]−8

−6

−4

−2

0

2

4

6

8

Fig.  3:  Hovmöller  plot  of  SLA  along  equatorial  wave  guide  (green  line  in  Fig.  2).  Le#:  AVISO,  right:  Reconstruc7on  from  RGM  modes  1-­‐5.  

Fig.  4:  Climatologic  (1995-­‐  2014)  seasonal  cycle  of  SLA  along  equatorial  wave  guide.  

Fig.  5:  Climatologic  (1995-­‐2014)  seasonal  cycle  of  band-­‐passed  (25-­‐130d)  SLA  along  equatorial  wave  guide.    

▶  Dominance  of  the  annual  and  semi-­‐annual  cycle,  well  reproduced  by  the  RGM  (Fig.  3  and  Fig.4)  

▶  In  AVISO,  presence  of  con7nuous  and  recurrent  eastward  propaga7ons[3],  with  the  intra-­‐seasonal  climatology  represen7ng  ~25%  of  the  seasonal  cycle  amplitude  (Fig.  5)  

RGM M1

120−day

10°S

5°S

Eq.

5°N

10°N

50°W 40°W 30°W 20°W 10°W 0° 10°E

RGM M1−5

120−day

10°S

5°S

Eq.

5°N

10°N

[cm]

0

1

2

3

4

AVISO

120−day

10°S

5°S

Eq.

5°N

10°N

AVISO

120−day

10°S

5°S

Eq.

5°N

10°N

RGM M1−5

120−day

10°S

5°S

Eq.

5°N

10°N

Nov/Mar/Jul

Dec/Apr/Aug

Jan/May/Sep

Feb/Jun/Oct

RGM M1

120−day

50°W 40°W 30°W 20°W 10°W 0° 10°E10°S

5°S

Eq.

5°N

10°N

Fig.  6:  Maps  of  amplitude  (le#)  and  phase  (right)  of  120-­‐day  harmonics  ficed  to  SLA  data.  Top:  Aviso,  middle:  RGM  modes  1-­‐5,  bo0om:  RGM  mode  1  only.  

AVISO

Fre

qu

en

cy [

da

ys−

1]

Wavenumber [10−3 km−1]

−1.5 −1 −0.5 0 0.5 1 1.50

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05−10 −20 20 10

Wavelength [degrees longitude]

RGM

Pe

rio

d [

da

ys]

Wavenumber [10−3 km−1]

−1.5 −1 −0.5 0 0.5 1 1.5

365

100

50

30

Log10

of spectral density [cm2/cpd/km−1]6 7 8 9 10

−10 −20 20 10

Wavelength [degrees longitude]

Fig.  7:  Mean  (5°S-­‐5°N,  see  horiz.  black  lines  in  Fig.  2)  wave-­‐number-­‐frequency  diagram.  Le#:  Aviso,  right:  RGM  (modes  1-­‐5).  The  white  lines  represent  the  theore7cal  dispersion  curves  of  the  Kelvin  wave  and  the  first  three  meridional  Rossby  waves.  

▶  Basin-­‐wide  structure  of  SLA  associated  with  the  1st  baroclinic  mode  with  variability  detectable  as  far  as  10°S  

▶  Consistent  pacern  in  the  RGM,  although  with  considerable  lower  amplitude  

▶  Mode  1  in  the  RGM  simula7ons  explains  most  of  the  structure  seen  in  the  “full”  model  

▶  Averaged  over  the  equatorial  belt  (5°S-­‐5°N),  zonal  wavenumber-­‐frequency  diagrams  of  SLA  exhibit  spectral  peaks  near  the  theore7cal  dispersion  curves  of  the  first  baroclinic  mode  equatorial  Kelvin  and  Rossby  waves  

▶  In  the  RGM,  total  energy  is  lower,  however  there  is  considerable  energy  in  the  mixed  Rossby-­‐gravity  wave  range  

RGM M1−5

EAST WEST EAST WEST−−4N−−> −−EQ−−> −−4N−−>

Mo

nth

0E 20W 40W40W 20W 0E 0E 20W 40WJan

Apr

Jul

Oct

AVISO

Mo

nth

Jan

Apr

Jul

Oct

[cm]−4

−3

−2

−1

0

1

2

3

4

Fig.  8:  Climatologic  (1995-­‐2014),  band-­‐passed  (25-­‐130d)  SLA  along  4°N-­‐Equ.-­‐4°N  (see  Fig.  2).  Top:  Aviso,  bo0om:  RGM  modes  1-­‐5.  

▶  Only  ~50%  of  the  intra-­‐seasonal  signal  amplitude  is  reproduced  by  the  RGM,  however  the  phase-­‐lock  of  the  propaga7ons  appears  to  be  consistent  

▶  Intra-­‐seasonal  SLA  variability  in  the  tropical  Atlan7c  is  essen7ally  wind-­‐driven,  as  it  can  be  reproduced  by  reduced  gravity  simula7ons,  although  with  weaker  amplitudes  

▶  Possible  reasons  for  discrepancies  to  be  tested:  ▶  Bad  choice  /  spa7al  variability  of  phase  

speeds,  which  leads  to  the  missing  of    resonance  to  a  periodic  forcing  

▶  Uncaptured  (i.e.  non-­‐linear)  effects  of  the  North  Equatorial  Counter  Current  (NECC)  on  westwards  propaga7ng  Rossby  waves  at  ~4°N  (Fig.  8)    

References  [1]  Cane  MA,  Moore  DW  (1981):  A  Note  on  Low-­‐Frequency  Equatorial  Basin  Modes.  J  Phys  Oceanogr  11:1578-­‐1584  doi:10.1175/1520-­‐0485  [2]  The  al7meter  products  were  produced  by  Ssalto/Duacs  and  distributed  by  Aviso,  with  support  from  Cnes    (hcp://www.aviso.al7metry.fr/duacs/)  [3]  Polo  I,  Lazar  A,  Rodriguez-­‐Fonseca  B,  Arnault  S  (2008):  Oceanic  Kelvin  waves  and  tropical  Atlan7c  intraseasonal  variability:  1.  Kelvin  wave  characteriza7on.  J  Geophys  Res-­‐Oceans  113:18  doi:10.1029/2007jc004495  

Aviso

40°W 20°W 0°J

F

M

A

M

J

J

A

S

O

N

D

RGM M1−5

−40 −20 0 [cm]−2

−1.5

−1

−0.5

0

0.5

1

1.5

2