International Trained-PharmD (ITPD) Foundational ... International Trained-PharmD (ITPD) Foundational

  • View
    0

  • Download
    0

Embed Size (px)

Text of International Trained-PharmD (ITPD) Foundational ... International Trained-PharmD (ITPD)...

  • International Trained-PharmD (ITPD) Foundational Examinations Study Guide

    All applicants for the ITPD program are required to pass two foundational pharmacy sciences competency exams (one on biomedical sciences and one on pharmaceutical sciences) prior to admission into the ITPD program. These foundational competencies exams will cover the following learning objectives.

    BASIC BIOMEDICAL SCIENCES Anatomy & Physiology structure and function of Minor body systems: integumentary, muscular skeletal, cardiovascular, lymphatic, respiratory, digestive, nervous, endocrine, urinary, reproductive, and body fluid and electrolytes molecular aspects of cell biology cell physiology and cellular structure and organization Pathology/pathophysiology basic principles and mechanisms of disease including: inflammation & repair, degeneration, disturbances on hemodynamics, developmental defects, neoplasia pathophysiology of disease states amenable to pharmacist intervention Microbiology pathogenic micro-organisms of man Immunology human immunity and immune response principles of antigen-antibody relationships molecular biology of immune response genetic basis for antibody synthesis, development, function, and immunopathology Biochemistry/biotechnology chemistry of biomacromolecules (proteins, lipids, carbohydrates, and DNA) enzymology and co-enzymes and kinetics metabolic pathways to energy utilization nucleic acid metabolism, including DNA replication and repair, RNA, and protein synthesis recombinant DNA technology Molecular biology/genetics cell structure and components ion channels and receptor physiology mitosis and meiosis chromosomes and DNA gene transcription and translation processes recombinant DNA technology Biostatistics understanding of commonly-used statistical tests and their basis management of data sets evaluation of statistical results understanding of statistical versus clinical significance

  • PHARMACEUTICAL SCIENCES Medicinal chemistry physico-chemical properties of drug molecules in relation to drug absorption, distribution, metabolism, & excretion chemical basis of pharmacology and therapeutics fundamental pharmacophores for drugs used to treat disease structure activity relationships in relation to drug-target interactions chemical pathways of drug metabolism application to making drug therapy decisions Pharmacology mechanism of action of drugs in various categories role of pharmacology in drug choice and the treatment of disease pharmacodynamics of drug action and absorption, distribution, metabolism, and elimination adverse effects and side effects of drugs drug-target interactions drug-drug, drug-food, drug-lab test interactions drug discovery and development Pharmacognosy & alternative & complemetary med. concepts of crude drugs, semi-purified, and purified natural products variability of occurrence of pharmacologically active substances in plants & impact on regulatory aspects of herbal products Toxicology mechanism of toxicity and toxicokinetics acute and chronic toxic effect of xenobiotics on the body, including drug or chemical overdose and toxic signs of drugs of abuse antidotes and approaches to toxic exposures Pharmaceutics/biopharmaceutics physical-chemical principles of dosage forms biological principles of dosage forms principles of drug delivery via dosage forms (e.g., liquid, solid, semi-solid, controlled release, patches, & implants) principles of dosage form stability and drug degradation in dosage forms materials and methods used in preparation and use of dosage forms Pharmacokinetics/clinical pharmacokinetics basic principles of in vivo drug kinetics (linear and nonlinear) principles of bioavailability/bioequivalence physiologic determinates of drug onset and duration drug, disease, and dietary influences on absorption, distribution, metabolism, and excretion clinical pharmacokinetics of commonly used and low-therapeutic-index drugs the pharmacokinetic-pharmacodynamic interface Extemporaneous compounding/parenteral/enteral United States Pharmacopeia guidance on compounding and FDA Compliance Policy Guidelines techniques and principles used to prepare and dispense individual extemporaneous prescriptions, including dating of compounded dosage forms liquid (parenteral, enteral), solid, semi-solid, and topical preparations dosage form preparation calculations sterile admixture techniques: United States Pharmacopeia (USP) Chapter 797, stability and sterility testing and dating, clean room requirements, infusion devices and catheters

  • Suggested Study References:

    BASIC BIOMEDICAL SCIENCES • Molecular Biology of the Cell, 4th edition; Bruce Alberts, Alexander Johnson, Julian

    Lewis, Martin Raff, Keith Roberts, and Peter Walter. New York: Garland Science; 2002. • The Cell, 2nd edition; A Molecular Approach; Geoffrey M Cooper. Boston University

    Sunderland (MA): Sinauer Associates; 2000. • Immunobiology, 5th edition; The Immune System in Health and Disease; Charles A

    Janeway, Jr, Paul Travers, Mark Walport, and Mark J Shlomchik. New York: Garland Science; 2001.

    • The Biology of Cancer, 7th Edition; Robert A. Weinberg. New York: Garland Science; 2007.

    • Lehninger Principles of Biochemistry, by David L. Nelson and Michael M. Cox, Fifth Edition.

    • Biochemistry by Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer, Sixth Edition. • Foye’s Principles of Medicinal Chemistry 7th edition. Thomas L. Lemke. Lippincott Williams &

    Wilkins; 2012

    PHARMACEUTICAL SCIENCES • Bauer, Larry A. Applied Clinical Pharmacokinetics. McGraw-Hill. 2001. • Handbook of Basic Pharmacokinetics, Including Clinical Applications, 7e (Wolfgang

    Ritschel, Gregory Kearns) • Basic Physical Pharmacy. 1st edition. Joseph K.H. Ma and Boka W. Hadzija. 2013 • Foye’s Principles of Medicinal Chemistry 7th edition. Thomas L. Lemke. Lippincott

    Williams & Wilkins; 2012 • Brunton L L, Blumenthal D K, Murri N, Dandan R H, Knollmann B C. Goodman & Gilman's

    The Pharmacological Basis of Therapeutics. 12th ed. New York: McGraw-Hill, 2011

  • Learning Objectives : Intro to Immunolgy

    Please note: The objectives in this unit are intended to familiarize you with learning

    objectives as we use them in this course. Try to answer them now as well as you can, but

    don't panic if you think your answers are inadequate; all the material in Unit 1 will be

    covered again later in the course. Rest assured that by mid-term time these somewhat

    difficult-looking objectives will be easy as pie.

    1. Please define: antigen

    antigenic determinant

    toll-like receptor

    pattern-recognition receptor

    pathogen-associated molecular pattern

    cytokine

    chemokine

    2. Discuss the role of the innate immune system.

    3. Describe how innate immunity can lead to adaptive

    immunity, and name the cell that bridges the two systems.

    4. Give an example each of how the immune system can be

    helpful or harmful to its host.

    5. Describe the recognition and effector functions of the

    immune system. Distinguish recognizing and effector cells.

    6. Discuss the similarities and differences between T cell-

    mediated and antibody-mediated immunity.

  • 7. Describe at least 2 functions of T cells.

    8. Describe at least two functions of the complement

    system.

    9. Define the concept of immunopathology, and give two

    examples

  • Learning Objectives:

    Anatomy and Physiology of the Immune System

    1. Define:

    leukocytes

    mononuclear cells

    polymorphonuclear cells

    granulocytes

    mast cells

    plasma and serum

    2. Sketch schematically a neutrophil; eosinophil; basophil; small

    lymphocyte; lymphoblast; plasma cell; monocyte. Indicate the

    characteristic features which distinguish each cell type.

    6. Define antigen, and compare it to immunogen. Discuss a

    potential uses if any antigen could be made into a tolerogen.

    7. Discuss lymphocyte activation by antigen with respect to:

    receptor binding, proliferation, differentiation.

  • Antibody Structure

    1. Define:

    H chain

    L chain

    kappa and lambda chains

    hinge region

    Fab, F(ab')2, Fc

    complementarity-determining region

    variable (V) and constant (C) regions

    VL and CL

    2. Name the 5 antibody classes, and their characteristic heavy

    chains.

    3. Draw a diagram of the structure of typical molecules of each

    class. Label the heavy and light chains; Fc and Fab parts; J chains;

    antibody combining sites; main interchain disulfide bonds; secretory

    component.

    4. Discuss the significance of the fact that in any one antibody

    molecule, both H and both L chains are identical.

    6. Describe the structure of antibody combining sites.

    7. Explain why complementarity-determining regions are also called

    hypervariable regions.

    8. Give an example of a subclass, an allotpe, an idiotype.

    11. Define Fc receptors. Name the inflammatory cells whi