25
The Effects of Reflector Geometry on Radar Data Acquisition International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Embed Size (px)

Citation preview

Page 1: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

The Effects of Reflector Geometry on Radar Data Acquisition

International Symposium on Radioglaciology 9/09/2013

Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Page 2: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

Objectives of RESC

oncl

usi

on

sR

. Pa

ttern

Historic Objectives

•Determine the depth to (and geometry of) the basal reflector

•Describe the internal structure of the ice sheets using the internal reflecting horizons (IRHs)

Modern Objectives

•Use return powers from basal reflectors to determine dielectric properties of the ice-bed interface

•Analyze the spectral quality of reflectors to uniquely identify layers through space

Page 3: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

MotivationC

oncl

usi

on

sR

. Pa

ttern

Page 4: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

MotivationC

oncl

usi

on

sR

. Pa

ttern

The brightest reflectors are sometimes traceable through the lossy region …but at other times, are completely lost in the noise…

Page 5: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

MotivationC

oncl

usi

on

sR

. Pa

ttern

What is the source of the data loss?

- Affects deeper reflectors more than shallow ones- Appears to be related to reflector slope- More prevalent in the High Frequency Airborne Data

Page 6: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

MotivationC

oncl

usi

on

sR

. Pa

ttern

Page 7: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

MotivationC

oncl

usi

on

sR

. Pa

ttern

Page 8: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

MotivationC

oncl

usi

on

sR

. Pa

ttern

Page 9: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Intr

oduct

ion

Sta

ckin

gR

efr

act

ion

Assumptions - Specularity

Concl

usi

on

sR

. Pa

ttern

Internal Reflectors: Specular(Obey the Law of

Reflection)

Basal Reflectors: Diffuse

Reflection Coefficient

Reflection Coefficient +

Angular Distribution

Page 10: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Refr

act

ion

Sta

ckin

gIn

troduct

ion

Beam FocusingC

oncl

usi

on

sR

. Pa

ttern

Ground Survey

Airborne Survey

n = 1 + 0.851ρ

Page 11: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Refr

act

ion

Sta

ckin

gIn

troduct

ion

Beam FocusingC

oncl

usi

on

sR

. Pa

ttern

Ground Survey Airborne Survey

Refraction Limits:

Ground Survey – 49ºAirborne Survey – 34º

Page 12: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

StackingIn

troduct

ion

R. Pa

ttern

Sta

ckin

g

Com

ponent

Tra

ces

Sup

eri

mpose d

C

om

ponents

Sta

cked T

race

(N

orm

aliz

ed)

Ideal S

tack

(Norm

aliz

ed)

Page 13: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

StackingIn

troduct

ion

R. Pa

ttern

Sta

ckin

g

Com

ponent

Tra

ces

Sup

eri

mpose d

C

om

ponents

Sta

cked T

race

(N

orm

aliz

ed)

Ideal S

tack

(Norm

aliz

ed)

Stacking Controls

1) Radar Frequency2) Reflector Dip3) Stacking Distance

Page 14: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking – 1m Posting Interval

Intr

oduct

ion

R. Pa

ttern

Sta

ckin

g

Page 15: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking – 1m Posting Interval

Intr

oduct

ion

R. Pa

ttern

Sta

ckin

g 0.863

Page 16: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking – 10m Posting Interval

Intr

oduct

ion

R. Pa

ttern

Sta

ckin

g 0.018

Page 17: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking – 10m Posting Interval

Intr

oduct

ion

R. Pa

ttern

Sta

ckin

g 0.202

Page 18: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking – 20m Posting Interval

Intr

oduct

ion

R. Pa

ttern

Sta

ckin

g 0.009

Page 19: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking – 10m Posting Interval

Intr

oduct

ion

R. Pa

ttern

Sta

ckin

g

0.00090.00210.01790.01950.04681

0.00260.02240.02950.03020.08211

0.01180.02520.03020.04790.09851

0.02250.04050.07090.09850.20271

0.94620.96190.97680.98910.9971

Page 20: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Concl

usi

on

sR

efr

act

ion

Stacking Amplitude LossIn

troduct

ion

R. Pa

ttern

Sta

ckin

g

Page 21: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Sta

ckin

gR

efr

act

ion

Radiation PatternIn

troduct

ion

Concl

usi

on

sR

. Pa

ttern

Describes the angular distribution of the gain for a given radar antenna (Typically optimized for Nadir)

Page 22: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Sta

ckin

gR

efr

act

ion

Radiation PatternIn

troduct

ion

Concl

usi

on

sR

. Pa

ttern

Page 23: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Sta

ckin

gR

efr

act

ion

Caveats - SpecularityIn

troduct

ion

R. Pa

ttern

Concl

usi

ons

Offsets 0 – 1400m (100m)

Transmitter

Receiver

Page 24: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Sta

ckin

gR

efr

act

ion

ConclusionsIn

troduct

ion

R. Pa

ttern

Concl

usi

ons

Areas of intense deformation (and therefore glaciological interest) are prone to internal data loss

Amplitude loss due to reflector geometry should be corrected for if dipping beds are used in amplitude analysis.

Loss is ultimately a function of radar design and data collection methods. Choosing appropriate radars (frequency), platform, and stacking

distances can minimize data loss.

Page 25: International Symposium on Radioglaciology 9/09/2013 Nicholas Holschuh, Sridhar Anandakrishnan, Knut Christianson

Nicholas Holschuh – [email protected]

Advisors: Sridhar Anandakrishnan

Richard Alley

Collaborator: Knut Christianson

Questions?

This material is based upon work supported by the National Science Foundation Graduate

Research Fellowship Program under Grant No. DGE1255832.

We would like to acknowledge the use of data products from CReSIS generated with support from NSF grant ANT-0424589 and NASA grant NNX10AT68G.

Sta

ckin

gR

efr

act

ion

In

troduct

ion

R. Pa

ttern

Concl

usi

ons