17
Interhelical Angle and D istance Preferences in G lobular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Mar yland Biophysical Journal Volume 86 February 2004 1105-1117 Submitted May 29, 2003, and accepted for publication October 1, 2003 Presented by Chao Wang

Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Embed Size (px)

Citation preview

Page 1: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Interhelical Angle and Distance Preferences in Globular Proteins

Sangyoon Lee and Gregory S. ChirikjianDepartment of Mechanical Engineering,

Johns Hopkins University, Baltimore, Maryland

Biophysical JournalVolume 86 February 2004 1105-1117

Submitted May 29, 2003, and accepted for publication October 1, 2003

Presented by Chao Wang

Page 2: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Abstract

Page 3: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Introduction• Although methods for protein secondary structure prediction are relatively reliable, de

veloping methods for tertiary structure prediction based on first principles remains a challenging topic. Determining how elements of secondary structure assemble into proteins is therefore a critical intermediate step in solving the folding problem.

• Predicting the aggregation and contact patterns in alpha-helices– Knobs-into-holes– Ridges-into-grooves– Polyhedral helix globule

• Several works have modeled the inherent statistical bias in distributions of interhelical angle due to spherical geometric effects and fundamental differences in interactions between infinite and finite helix axes.

• Other works have examined the distribution of interhelix distance in interacting pairs. Most recently, a new analysis of helix-helix angle preferences has been performed. However, to our knowledge no prior work has investigated the joint distribution of interhelix distance and angle in proteins.

Page 4: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Introduction• Bin histogram• While the amount of data available on helix-helix pairs in the PDB is substantial, it is n

ot sufficient to generate robust histograms with very small bins.• In fact, the bin size used is 10 degree to generate the histogram of interhelical angle

before normalization. [Bowie1997]

• Our modifications to the conceptual contributions in Bowie and Walther are that– the correct normalization should be applied to each measurement before it is bin

ned rather than after;– all possible types of interactions (not only line-on-line) should be captured.

Page 5: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Introduction

• In addition, each measurement should be replaced with a probability density function (we use a Gaussian kernel) to account for measurement error to avoid binning artifacts altogether.

• We are interested in examining how interhelical angle distributions vary with the relative spatial distance between the helices. In other words, one of our goals is to determine how persistent the angle preferences are as the spatial distance between helices is varied. We also explain statistical effects not accounted for in prior works that reveal clear preferences in helix-helix angles.

Page 6: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Methods

• Database: 1290 proteins, resolved to <2.0A, <20% sequence identity

• Interhelical distance is measured in two ways: 1), along the shortest line segment connecting each finite helix axis; and 2), by finding the minimal distance between every pair of a-carbons in the two helices under consideration.

Page 7: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Lie Group

Page 8: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Three cases

• A: Line-to-line Interaction• B: End-to-line Interaction• C: End-to-end Interaction

Page 9: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins
Page 10: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins
Page 11: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins
Page 12: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Results

Page 13: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins
Page 14: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins
Page 15: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins
Page 16: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Conclusion

Page 17: Interhelical Angle and Distance Preferences in Globular Proteins Sangyoon Lee and Gregory S. Chirikjian Department of Mechanical Engineering, Johns Hopkins

Chao’s comments

• Angles of H-form (d, theta, tau, theta)

• Sequence similarity

• Special patches in H-forms– 3 types: line-to-line, end-to-line, end-to-end