35
1 Professor N Cheung, U.C. Berkeley Lecture 17 EE143 S06 Metallization Interconnects Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance RC time delay Inter-Metal Dielectric -Prefer low dielectric constant to reduce capacitance Multilevel Metallization (2-10 levels of metal wiring) Reduction in die size Higher circuit speed ( shorter interconnect distance) Flexibility in layout design

Inter-Metal Dielectricee143/sp06/lectures/Lec_17.pdfMetal Deposition Techniques • Sputtering has been the technique of choice – high deposition rate – capability to deposit complex

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

1Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Metallization• Interconnects

– Typical current density ~105 A/cm2

– Wires introduce parasitic resistance and capacitance• RC time delay

• Inter-Metal Dielectric-Prefer low dielectric constant to reduce capacitance

• Multilevel Metallization (2-10 levels of metal wiring)– Reduction in die size– Higher circuit speed ( shorter interconnect distance)– Flexibility in layout design

2Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

FOX

Si substrate

( InteMetal Oxide e.g. BPSG. Low-K dieletric)

(e.g. PECVD Si Nitride)

3Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

• Interconnections and Contacts– RC Time Delay– Interconnect resistance– Contact resistance– Dielectric Capacitance– Reliability - Electromigration

• Multilevel Metallization • Surface Planarization Techniques

Outline

4Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

5Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Interconnect ResistanceRI =R/L = ρ / (WAlTAl)

Interconnect-Substrate CapacitanceCV ≡C/L = WAl εox / Tox

Interconnect-Interconnect CapacitanceCL ≡ C/L = TAl εox / SAl

* Values per unit length L

Interconnect RC Time Delay

6Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Interconnections Interconnect Requirements

• low ohmic resistance– interconnects material has low resistivity

• low contact resistance to semiconductor device

• reliable long-term operation

7Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

• Metal (Low resistivity)

– for long interconnects

• Highly doped Poly-Si (medium resistivity)

–for short interconnects

• Highly doped diffused regions in Si substrate (medium resistivity)

–for short interconnects

Possible interconnect materials

8Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Resistivity of Poly-Si

Resistivity of Pure Metals

Metal Silicides 15-80 µΩ-cm

Poly-Si (min) =1E-3 Ω-cm

9Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Metal Contact to SiTunneling “ohmic” contacts

SiO2

Al

n+

n-Sie 1019 - 1021/cm3

SiO2

Al

p+

p-Si

Xd

Ec

Ev

I

Vh

MSi

> 1019/cm3

10Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Schottky RectifyingContact

SchottkyTunneling Ohmic Contact

Tunneling

Thermionic emission

Small depletion width(highly doped Si)

Large depletion width(lightly doped Si)

metal semiconductor

Depletion region

11Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

For a uniform current density flowing across the contact areaRc = ρc / (contact area )

ρc of Metal-Si contacts ~ 1E-5 to 1E-7 Ω-cm2

ρc of Metal-Metal contacts < 1E-8 Ω-cm2

MetalContact Area

Heavily dopedSemiconductor surface

Contact Resistance Rc

12Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

= Bs

c Nh

m φερ

*2exp

Approaches to lowering of contact resistance:1) Use highly doped Si as contact semicodnuctor2) Choose metal with lower Schottky barrier height

φB is the Schottky barrier heightN = surface doping concentrationρc = specfic contact resistivity in ohm-cm2

∂≡

c V

1

at V~0

m = electron massh =Planck’s constantε= Si dielectric constant

Specific contact resistivity

Contact Resistivity ρc

13Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Schottky Barrier heightsof common metals contactsto n-type semiconductors

Note:ΦB (n-type) + ΦB (p-type) = Eg of semiconductor

14Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Al Spiking Problem

15Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Al-Si Eutectic Behavior

At the sintering temperature of about 450C after metalization, Si is soluble in Al up to ~1 % but Al is not soluble in Si.

16Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

1. Add ~2% Si to Al to prevent Si outdiffusion

2. Use diffusion barrier layer to block Al/substrate interaction

Al Spiking Problem: Solutions

17Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

electron flow

moment transferredfrom electrons

Thermally excitedmetal atom out of lattice site

Metal Lattice atomic potential

position x

Electromigration Motion

Metal atom at lattice site(equilibrium)

•Electromigrated metal atoms move along the same direction of electrons

18Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Hillock formation (can short neighboring metal lines)

Void formation(metal line becomes open)

2 flux in 1 flux out

MassAccumulation

1 flux in 2 flux out

MassDepletion

Grainboundaries

Electromigrated atoms dominated by grain boundary diffusion

19Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Electron flow

HillockFormation

VoidFormation

LargeHillock (dendrite)

SEM micrographs ofAluminumelectromigrationfailure

20Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Dendrite Fomation Void Formation

21Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

* MTF defined as time for 50% of test samples to fail

MTF ∝ J –2 exp [ EA/ kT]

J = current density in Amp/cm2EA = activation energy ( ~ 0.5-0.8 eV for metals)

Median Time to Failure (MTF) of Electromigration

22Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

* Tradeoffs are etching difficulty and increased electrical resistivity

Shown are Accelerated test data:Testing temp ~225CJ ~ 1E6 Amp/cm2

Alloying Al with other elements will retard grain boundary diffusion

23Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

How alloy precipitates can block grain boundary diffusion

Example: Al-Cu (1-4%) alloy. After sintering, AlCu3 compound willprecipitate along the grain boundaries.

24Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Suggested Metallization for 0.25µm linewidths

25Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Metal Deposition Techniques

• Sputtering has been the technique of choice – high deposition rate– capability to deposit complex alloy compositions– capability to deposit refractory metals– uniform deposition on large wafers– capability to clean contact before depositing metal

• CVD processes have recently been developed(e.g. for W, TiN, Cu)– better step coverage– selective deposition is possible– plasma enhanced deposition is possible for lower deposition

temperature

26Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

1) Tungsten (W)– used as contact plug, also as first-level metal

– blanket (non-selective) deposition processes:

HFWHWF 63 26 +→+

2446 2 HHFSiFWSiHWF +++→+

Example Metal CVD Processes

27Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

2) TiN– used as barrier-metal layer

– deposition processes:

HClTiNHNHTiCl 8222 234 +→++

234 NHCl24TiN6NH8TiCl6 ++→+

HClTiNHNTiCl 8242 224 +→++

Metal CVD Processes (cont.)

28Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

3) CVD Copper

Metal-OrganicCu compound (gas)

29Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Trench filling with CVD Cu

30Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Cu Plating

31Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Electroless Cu Plating

32Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

Low-K Dielectrics

33Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

34Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

35Professor N Cheung, U.C. Berkeley

Lecture 17EE143 S06

• Copper interconnects

• Low-K dielectrics(Fluorinated SiO2, polymers, xerogels...)

To further reduce RCtime delay:

Advanced Metalization Materials

*This photo is an idealizationonly, with an airgap betweenthe Cu layers.