42
1 Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communications Larry Larson, Peter Asbeck and Don Kimball UCSD Center for Wireless Communications http://rfic.ucsd.edu [email protected]

Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

1

Intelligent Transmitters and Power Amplifiers for Next Generation

Wireless Communications

Larry Larson, Peter Asbeck and Don Kimball

UCSD Center for Wireless Communicationshttp://rfic.ucsd.edu

[email protected]

Page 2: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

2

Outline• Overview of Wireless Standards• Power Supply Modulation Techniques• System Limitations and Design

Considerations of Power supply Modulation Approaches

• Examples of Power Supply Modulation Applications: BiCMOS 2.4 GHz WiFi PA and GaN WCDMA Base Station

Page 3: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

3

Signal Characteristics of Popular Wireless Standards

System Peak-AverageRatio(dB)

Peak-MinimumRatio (dB)

Power ControlDynamicRange (dB)

Bandwidth(MHz)

AccessType

GSM 0 0 30 0.2 TDMACDMA2000

4-9 ∞ 80 1.25 CDMA

EDGE 3.2 17 30 0.2 TDMACDMAONE

5.5-12 ∞ 73 1.25 CDMA

UMTS 3.5-7 ∞ 80 5 CDMA

WiMax 8-10 ∞ 50 1-20 TDMA

802.11a/g

8-10 ∞ 25 20 TDMA

Page 4: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

4

Critical Problem: Power Amplifiers are Efficient Only at Peak Output Power!

Fast Variations-μ sec scaleModulation characteristics

Slow variations-msec scaleFading and changing distancefrom base station

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

-60 -50 -40 -30 -20 -10 0 10 20 30

P out (dB m )

Pro

bability

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

-60 -50 -40 -30 -20 -10 0 10 20 30

P out (dB m )

Pro

bability

Urban

Suburban

CDMAReverse link

WCDMAForward link

Pout (dBm)

Pout (dBm)

Page 5: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

5

CDMA Base Station Signal Characteristics

High envelope peak factor (6 to 8 dB)

I

Q

Phase

Rapid phase variations when CDMA signal crosses near the origin of the IQ diagram

ZeroAmplitude

Amplitude

Page 6: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

6

Efficiency averaged over conditions of usagedominated by behavior at low power

Doherty

Class AClass B

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Pout (normalized)

Effic

ienc

y

EER/ET

Amplifier Architectures for Improved Average Efficiency

Page 7: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

7

Strategies for Efficiency ImprovementOver Wide Power Range

Iout

VoutVary bias current according to Instantaneous power“Dynamic biasing”

Iout

VoutV1 V2 V3

Vary bias current and voltage according to Instantaneous power“Envelope tracking and EER”

Iout

Vout

Vary load impedance according to Instantaneous power“Doherty and Chereix”

Page 8: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

8

Envelope Tracking (ET) Technique• Maximizes PA efficiency by

keeping RF transistor closer to saturation for all envelope amplitudes

• Envelope Amplifier provides dynamic drain voltage

EnvelopeAmplifier

Dynamic Drain VoltageDCSupply

CDMA Signal Out

Vol

tage

Time

SignalIn

RFClass ABAmplifier

EnvelopeDetector

Drain voltage tracks envelope of CDMA signal

Iout

VoutV1 V2 V3

In Envelope Tracking, PA is Class AB.Input signal contains envelope and phase information.

Page 9: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

9

Envelope Elimination and Restoration (EER) Technique

saturated at all times

RF POWERTRANSISTOR

VDDAMPLIFIER

DRAINVOLTAGE

DC SUPPLYAMPLITUDE signal

0

PHASE signal

0Outputsignal

(…. and Restoration)

DYNAMICALLY VARYINGDRAIN VOLTAGE

Volta

ge

Time

• Maximizes PA efficiency by keeping RF transistor in switching mode (saturation) for all envelope amplitudes

• Envelope Amplifier provides exact amplitude information and re-modulated to RF phase signal at the RF PA

Page 10: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

10

Comparison Between EER and ET

EER ET

Efficiency Highest High

Envelope Path Bandwidth Wider than Baseband Wider than Baseband

RF Path Bandwidth Much Wider than RF BW Same as RF BW

Time Calibration Very precise time alignment

Modest time alignment

Page 11: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

11

“Hybrid” WBEER Technology

Benefits of envelope in the RF input signal: (vs. classical EER)1. Higher gain at low output power;2. Narrower bandwidth requirement for envelope amplifier;3. Lower sensitivity to time-mismatch;4. Lower bandwidth requirement for RF path

– no limiter required, or narrow bandwidth of the DAC

Saturated at high output powerNearly saturated at low output power

EA

DCSupply

OFDMSignal

OFDMSignal

RFClass E

EnvelopeDetector

Drain voltage

Page 12: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

12

Why Does EER/ET Improve Efficiency?

• RF Transistors achieve maximum efficiency when their output power is saturated:

0 0.5 1 1.5 2 2.5 3 3.50

10

20

30

40

50

60

Input power (W)

Out

put P

ower

(W

), E

ffici

ency

(%

)

TPM1919-40-311. Output power and efficiency versus input power.

Output PWRefficiency

PD + EEROperating

Point

ETOperating

Range

Traditional PAOperating

Range

Page 13: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

13

Motivation of EER/ET PA – Improve Transmitter Efficiency

RF Transistor Heat 0.9 W

RF Output Power 0.1W Heat in EnvelopeAmplifier 0.1W

RF Output Power 0.1W

RF Transistor Heat 0.1W

10% Class AB PA 30% EER PA

• High overall efficiency improves battery life• High drain efficiency improves RF transistor life

OFDM 802.11g signal : PAR: 9~10 dB, BW = 20MHz.

Page 14: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

14

Black Box Model of ET/EER PA

Pout = f1 (Pin, Vdd, Vgg)Idc = f2 (Pin, Vdd, Vgg)

Measured Results: Adjust the independent controllable variables of Pin, Vdd, and Vgg to get the highest PAE at each point of the output power

Gain

Pin

Vdd

Vgg

PowerTransistor

with input andoutput

matchingnetwork

PinVddVgg

Pout

Idc

Page 15: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

15

High average efficiency over a wide range of output power for ET.ADS simulation, Class AB PA is GaAs MESFET transistor.

Envelope Tracking vs. Class-AB

Pout (dBm)

OFDM Probability distribution

Constant V PAEDD

ET PAE

0 10 20 30

0.02

0.04

0.06

0.08

20

40

60

80

PA

E(%

)

Pro

babi

lity

Page 16: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

16

EER Is More Sensitive to Time Mismatch than ET

Page 17: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

17

Envelope Amplifier

• Amplitude Spectrum Suggests Design Topology– Supply DC and low frequency power from a very efficient

source– Supply high frequency power from a high fidelity source

-20 -15 -10 -5 0 5 10 15 20-60

-50

-40

-30

-20

-10

0

10

20

30

85% of Power from DC-100kHz

Frequency (MHz)

15% of Power beyond 100kHz

• Envelope Signal Power Spectral Density, IS-95 signal

Page 18: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

18

Wideband High-Efficiency Envelope Amplifier

-50 -40 -30 -20 -10 0 10 20 30 40 50-70

-60

-50

-40

-30

-20

-10

0

Envelope Bandwidth (MHz)

Sp

ectr

um

Mag

nit

ud

e (d

B)

WLAN spectrum mask

Envelope BW 48.38MHz to 5.38M

-50 -40 -30 -20 -10 0 10 20 30 40 50-70

-60

-50

-40

-30

-20

-10

0

Envelope Bandwidth (MHz)

Sp

ectr

um

Mag

nit

ud

e (d

B)

WLAN spectrum mask

Envelope BW 48.38MHz to 5.38MHz

ET Amplifier Requirements EER Amplifier Requirements

Envelope amplifier bandwidth requirements aremore modest for ET amplifiers

Page 19: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

19

Wideband High-Efficiency Envelope Amplifier

5 10 15 20 25 30 35 40 45 50 550

5

10

15

20

25

Envelope Bandwidth (MHz)

EV

M (

%)

EER

ET

Envelope amplifier bandwidth requirement: 30MHz for EVM < 3%.

Simulations of ET and EER envelope amplifier BW requirements for 802.11 OFDM Signal

Page 20: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

20

Envelope Amplifier Design

load

The overall envelope amplifier efficiency is a combination of switcher and linear stage efficiency.

OFDM envelope spectrum

Page 21: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

21

Linearization Technique Comparison

Linearization Techniques

Linearization Performance

Compensation Bandwidth Cost Comments

Feedforward Good Wide High Not for stand-alone unit

Feedback Moderate Narrow ModerateStability;

Reduced gain

Analog Predistortion Low Wide Low

Simple implementation;Reduced gain

Digital Predistortion Moderate Wide Moderate

Easy to integrate and control;

Depends on DSP

Digital predistortion becomes promising with the widespread application of DSP to PAs.

Page 22: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

22

Principle of Adaptive Digital Predistortion

• Digital predistortion creates an “inverse” PA nonlinearity in the DSP.

• Issues: bandwidth expansion; DSP memory table size and updating.

• Predistortion works well for ET and Hybrid EER, but is less effective for classic EER.

PredistortionDSP D/A Modulator

I

Q

Upconversion

RFout

A/D Demodulator

Downconversion

LO

Reconstructionfilters

Anti-aliasingfilters

SiGePA

27MHz

108MHz

Page 23: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

23

AM/AM Distortion, ET Vdd vs Fixed Vdd, EDGE Example

BeforePre-

DistortionET Vdd

AfterPre-

Distortion

Fixed Vdd

Fixed Vdd

ET Vdd

ET has Lower Memory Effects, .005rms vs 0.02rms

Page 24: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

24

AM/PM Distortion, ET Vdd vs Fixed Vdd, EDGE Example

BeforePre-Distortion

AfterPre-Distortion

ET Vdd

ET Vdd

Fixed Vdd

Fixed Vdd

ET has Higher Memory Effects, 1.24deg vs 0.63deg

Page 25: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

25

Digital Predistortion of SiGe PA• AM-AM

before DP• AM-AM after

DP

• Memory effects are very small in SiGe HBT PAs.• Pre-Distortion Tables are generated using a training

sequence, whose statistical properties approximate the desired signal.

Page 26: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

26

Transmitter with Digital Predistortion (BLUE)

Additional Functions (Blue):• Reference and Signal memory stores a sequence of desired and

actual signal• Data enables DSP to calculate AM/AM and AM/PM correction tables.• This is done ongoing, without interrupting the signal. • Between pre-distortion updates, ref LO is switched in to calibrate gain of the

down-converter.

DAC WIDEBAND UPCONVERTER

PARF COUPLER

CALCULATEAM/AM AM/PMCURVES

GAIN CONTROL

AM/AM AM/PMLOOKUPTABLES

ASIC OR FPGA

RF SWITCHDSP

REFMEM

SIGMEM

ADCWIDEBANDDOWN-CONVERTER

GAIN CONTROL

DOWNCONV.RF POWERCALIBRATION

REFLO

MODULATORASIC ANDBASEBANDFILTERS

Page 27: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

27

Transmitter Lineup with PA and Pre-distortion (BLUE) AND EER/ET (PINK)

Additional EER/ET functions (pink):• AM-Split block splits AM between Amplitude and Phase signal

as per the Bandwidth reduction algorithm. • Control loop with delay filter to match delay in AM path with upconverter SAW delay.• VDD-amp amplifies Amplitude sig to be used as supply voltage to final RF transistor. • Control loop maintain appropriate power level on Phase signal.

PHASEDAC

WIDEBAND UPCONVERTER

PARF COUPLER

ADC

CALCULATEAM/AM AM/PMCURVES

GAIN CONTROL

AM/AM AM/PMLOOKUPTABLES

WIDEBANDDOWN-CONVERTER

GAIN CONTROL

ASIC OR FPGA

DOWNCONV.RF POWERCALIBRATION

RF SWITCH

REFLO

DSP

AM-SPLITLOOKUPTABLES

ASIC OR FPGA

DELAYFILTER

AMPL.DAC

VDD-AMP

SUPPLYVOLTAGE

CALCULATEAM to PMDELAYMISMATCH

DSP PHASE SIGNALAMPLITUDECONTROL

ASIC OR FPGA

MODULATORASIC ANDBASEBANDFILTERS

REFMEM

SIGMEM

Page 28: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

28

Measured Wideband EER Performance

• Compared with traditional Class AB PA, efficiency is improved by approximately 2 times

802.11g (OFDM) signal

Page 29: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

29

Measured Spectrum Before and After Pre-distortion

2380 2400 2420 2440 2460-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

Mag

nitu

de (d

B)

802.11g spectrum mask

Before Pre-D

After Pre-D

• Pre-distortion is implemented to linearize the nonlinear ET PA.

• ACPR is improved by approximately 10dB.

Page 30: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

30

Examples of Power Supply Modulation Implementations

• BiCMOS RF IC 2.4 GHz WiLAN Power Amplifier Design– Technology: IBM SiGe BiCMOS 7WL– RF PA IC Design– Envelope Amplifier IC Design

• WCDMA Base Station Power Amplifier– Technology: GaN HEMT

Page 31: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

31

Two Stage RF PA IC Design

Q2

23 pF

V CC3 V

V CC 3 V

0. 48 x 10 x2X 80

0. 48 x 10 x2X 300

0. 232 nH 0 . 115 nH

20 nHIc64 mA

Ic135 mA

Port 250 Ohm

Port 150 Ohm

5 Bondpad

600 pH

Biasing circuit

V CC3 V

Biasing circuit

V CC

3 V

20 nH

230 pH

23 pF

30 pF

50 Ohm

500 Ohm

1 nF

2.4nH

2 pF

2 Bondpad

5 Bondpad

400 pH

10 Bondpad

3 Bondpad

1 nF 750 pH

4.4 pH

Page 32: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

32

Wideband Envelope Amplifier

NMOS

PMOS

V=3.3V

Vgp

L

Vgn

M1

M2

V=3.3VV=3.3V

Vdrive

M3

M4

M5

M6

M7

M8

M9

M10

M11

The overall envelope amplifier efficiency is a combination of switcher and linear stage efficiency.

L

VDC

R

To RF Drain/CollectorLinear Stage

Switcher Stage

CurrentSense

Comparator

Page 33: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

33

Simulated average IC envelope amplifier efficiency: 70%

Envelope Amplifier Design

Envelope Amplifier Efficiency Curves Matches the PDF of OFDM signal.

Linear Amp.Efficiency40% ave. eff.

Page 34: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

34

Package of ET Amplifier

4mm x 1mm

Envelope Amplifier 2.4 GHz Two stage PA

Page 35: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

35

Summary of Measured IC Performance

• RF PA – Two Stage Integrated– 2.4GHz SiGe HBT – 3V power supply– 29 dBm output power – Gain 15 dB.– Peak PAE 43%.

• Vdd Amplifier– BW ~ 20MHz– Gain 3 dB– Peak output power: 1.8W – Output voltage: 0.5 ~ 2.75V– Peak output current: ~600

mA– Switch frequency: ~ 5MHz– Ave. Efficiency: ~ 63%

• ET/EER IC for 2.4GHz OFDM Average output power 20 dBm– Average gain ~ 13 dB– Average efficiency 28%– OFDM Pout = 20 dBm– EVM<5%

Page 36: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

36

Comparison of Published Envelope Amplifier Performance

Envelope Amplifier (authors)

Applied System

Applied Signal

Envelope Bandwidth Efficiency

Hannington WBET CDMA 1MHz 65%-74%

Staudinger Average ET CDMA 20kHz 90%

Sahu Average ET CDMA 20kHz 65%

Jau-HorngChen

WB “Hybrid”

EERCDMA 2MHz 80%

Narisi Wang WBEER - - -

Raab WBEER - 5MHz -

This workWB

“Hybrid”EER

WLAN OFDM 20MHz > 55%

Page 37: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

37

WCDMA with ET System

Nitronex NPT21120Two 36mm GaN devices

Presented at CSIC, Oct. 31st, 2005, Palm Springs, CA

>50% Efficiency (including Vdd amplifier) with <1% EVM after Memory digital predistortion

Page 38: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

38

Memory Effects in Nonlinear Amplifiers

z-1

F0(k)

z-1

F1(k)

+

z-1

F2(k)

+

FN(k)

+

Vin

Vout

Memoryless Bandpass Nonlinearity

Memory Delay Elements

•Memory Delay Elements can have variable length•Delays are typically 10 usec to 100 msec

Page 39: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

39

Memory Effects in Nonlinear Amplifiers

0

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.2 0.4 0.6msec

Res

idu

al G

ain

Imp

uls

e R

esp

on

se

AM/AM & AM/PMconversionG(a(t),Z(t))Ψ(a(t),Z(t))

inputenvelopex(t)=a(t) exp(jφ(t))

outputenvelopey(t)=a(t)G(a(t)*exp(jφ(t)+jΨ(a(t)))

Gain and phase depend on additional parameter, Zbut this parameter may not be accessible

Z(t)=f(a(t),h(t))

Extract gain residue, h, from square wave measurementExtract pole/zero model for gain residueand apply as modulation on Z(t).

Page 40: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

40

2.95 3 3.05 3.1 3.15 3.2 3.25

x 10-4

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Tim e

Vo

ltag

e

V in and Norm alize d V out

inputNorm alized PA output

Time Domain Response of Power Amplifiers

Input and outputwaveforms vs time(HSDPA signal)

Vout vs Vin

No correction Memoryless correctionFull correction(with memory effect)

Page 41: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

41

Summary• Mobile station power amplifier are required to operate

over a wide range of powers. The traditional PA suffers from the low average efficiency.

• EER/ET can improve the efficiency over wide dynamic range: for WLAN 802.11g signal, efficiency is improved by roughly a factor of two.

• EER/ET is suitable for integration in one single chip to realize low cost mobile station PA.

• DSP is required to maintain high linearity and control the time – mismatch cancellation.

Page 42: Intelligent Transmitters and Power Amplifiers for Next Generation Wireless Communicationsewh.ieee.org/r6/phoenix/wad/Handouts/LarsonMTTPAtalk.pdf · 2007-10-25 · Intelligent Transmitters

42

Acknowledgements• The entire power amplifier research group at

UCSD contributed to this work: Feipeng Wang, Paul Draxler, Yu Zhao, Chia Hsia, Jinh Jeong, Tsai Pi Hung, Jeremy Rhode, Tomas Osullivan, Ming Li, Sataporn Pornpromlikit

• We acknowledge the generous support of Ericsson, Nokia, Conexant, Motorola, Freescale, Cree, Nitronex, The UCSD Center for Wireless Communications, the UC Discovery Grant Program, and the California Institute for Telecommunications and Information Technology.