47
Hardy spaces integration operators Jordi Pau 1 Integration operators on the disk 2 Integration operators on the ball 3 Hardy space characterizations 4 Proofs Integration operators between Hardy spaces in the unit ball Jordi Pau Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona Hilbert Function Spaces Gargnano, May 2013 Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 1 / 23

Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Integration operators between Hardyspaces in the unit ball

Jordi Pau

Departament de Matemàtica Aplicada i AnàlisiUniversitat de Barcelona

Hilbert Function SpacesGargnano, May 2013

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 1 / 23

Page 2: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Integration operators

Let g ∈ H(D). Define the linear operator

Jg f (z) =

∫ z

0f (ζ) g′(ζ) dζ, f ∈ H(D).

The operator Jg includes (as a particular cases):1 the Volterra operator (choose g(z) = z).2 the Cesàro operator (choose g(z) = log(1− z)).

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 1 / 23

Page 3: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Integration operators

Let g ∈ H(D). Define the linear operator

Jg f (z) =

∫ z

0f (ζ) g′(ζ) dζ, f ∈ H(D).

The operator Jg includes (as a particular cases):1 the Volterra operator (choose g(z) = z).2 the Cesàro operator (choose g(z) = log(1− z)).

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 1 / 23

Page 4: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy spaces in the unit disk

Theorem [Aleman-Siskakis: p ≥ 1; Aleman-Cima: 0 < p < 1]

Let 0 < p <∞ and g ∈ H(D). Then Jg is bounded on Hp(D) if andonly if g ∈ BMOA.

Theorem [Aleman-Cima; 2001]

Let 0 < p < q <∞ and g ∈ H(D). Let α = 1p −

1q .

If α ≤ 1, then Jg : Hp(D)→ Hq(D) is bounded if and only if

supz∈D

(1− |z|2)1−α|g′(z)| <∞.

If α > 1 then Jg : Hp(D)→ Hq(D) is bounded if and only if gis constant.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 2 / 23

Page 5: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy spaces in the unit disk

Theorem [Aleman-Cima; 2001]

Let 0 < q < p < ∞. Then Jg : Hp(D) → Hq(D) is bounded if and

only if g ∈ H r with r =pq

p − q.

The proof uses in a decisive way the strong factorization forfunctions in the Hardy space:

Hp = Hs · H t ,1p

=1s

+1t.

Theorem [Aleman-Siskakis; 1995]

(i) If 1 < p <∞ then Jg ∈ Sp(H2) if and only if g ∈ Bp.(ii) If 0 < p ≤ 1 then Jg ∈ Sp(H2) if and only if g is constant.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 3 / 23

Page 6: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy spaces in the unit disk

Theorem [Aleman-Cima; 2001]

Let 0 < q < p < ∞. Then Jg : Hp(D) → Hq(D) is bounded if and

only if g ∈ H r with r =pq

p − q.

The proof uses in a decisive way the strong factorization forfunctions in the Hardy space:

Hp = Hs · H t ,1p

=1s

+1t.

Theorem [Aleman-Siskakis; 1995]

(i) If 1 < p <∞ then Jg ∈ Sp(H2) if and only if g ∈ Bp.(ii) If 0 < p ≤ 1 then Jg ∈ Sp(H2) if and only if g is constant.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 3 / 23

Page 7: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy spaces in the unit disk

Theorem [Aleman-Cima; 2001]

Let 0 < q < p < ∞. Then Jg : Hp(D) → Hq(D) is bounded if and

only if g ∈ H r with r =pq

p − q.

The proof uses in a decisive way the strong factorization forfunctions in the Hardy space:

Hp = Hs · H t ,1p

=1s

+1t.

Theorem [Aleman-Siskakis; 1995]

(i) If 1 < p <∞ then Jg ∈ Sp(H2) if and only if g ∈ Bp.(ii) If 0 < p ≤ 1 then Jg ∈ Sp(H2) if and only if g is constant.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 3 / 23

Page 8: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Integration operators in the unit ball

Let Bn = {z ∈ Cn : |z| < 1}. For g ∈ H(Bn) define the linearoperator

Jg f (z) =

∫ 1

0f (tz) Rg(tz)

dtt, z ∈ Bn

for f holomorphic in Bn.

Rg is the radial derivative of g

Rg(z) =n∑

k=1

zk∂g∂zk

(z), z = (z1, . . . , zn) ∈ Bn.

Basic property:R(Jg f )(z) = f (z) Rg(z).

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 4 / 23

Page 9: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Integration operators in the unit ball

Let Bn = {z ∈ Cn : |z| < 1}. For g ∈ H(Bn) define the linearoperator

Jg f (z) =

∫ 1

0f (tz) Rg(tz)

dtt, z ∈ Bn

for f holomorphic in Bn.

Rg is the radial derivative of g

Rg(z) =n∑

k=1

zk∂g∂zk

(z), z = (z1, . . . , zn) ∈ Bn.

Basic property:R(Jg f )(z) = f (z) Rg(z).

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 4 / 23

Page 10: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Integration operators in the unit ball

Let Bn = {z ∈ Cn : |z| < 1}. For g ∈ H(Bn) define the linearoperator

Jg f (z) =

∫ 1

0f (tz) Rg(tz)

dtt, z ∈ Bn

for f holomorphic in Bn.

Rg is the radial derivative of g

Rg(z) =n∑

k=1

zk∂g∂zk

(z), z = (z1, . . . , zn) ∈ Bn.

Basic property:R(Jg f )(z) = f (z) Rg(z).

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 4 / 23

Page 11: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy spaces on the unit ball

For 0 < p <∞, the Hardy space Hp(Bn) consists of thosefunctions f ∈ H(Bn) with

‖f‖Hp = sup0<r<1

(∫Sn

|f (rζ)|p dσ(ζ)

)1/p

<∞.

Theorem [Pau; 2012]

Let g ∈ H(Bn) and 0 < p < ∞. Then Jg is bounded on Hp(Bn) ifand only if g ∈ BMOA(Bn). Moreover,

‖Jg‖ � ‖g‖BMOA.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 5 / 23

Page 12: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy spaces on the unit ball

For 0 < p <∞, the Hardy space Hp(Bn) consists of thosefunctions f ∈ H(Bn) with

‖f‖Hp = sup0<r<1

(∫Sn

|f (rζ)|p dσ(ζ)

)1/p

<∞.

Theorem [Pau; 2012]

Let g ∈ H(Bn) and 0 < p < ∞. Then Jg is bounded on Hp(Bn) ifand only if g ∈ BMOA(Bn). Moreover,

‖Jg‖ � ‖g‖BMOA.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 5 / 23

Page 13: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Boundedness on Hardy spaces

Let 0 < α ≤ 1. A function g ∈ H(Bn) belongs to Λ(α) if

supz∈Bn

(1− |z|2)1−α|Rg(z)| <∞.

Theorem [Pau; 2012]

Let g ∈ H(Bn) and 0 < p < q <∞. Let α = n( 1p −

1q ).

(i) If α ≤ 1 then Jg : Hp(Bn)→ Hq(Bn) is bounded if and only ifg ∈ Λ(α).

(ii) If α > 1 then Jg : Hp(Bn)→ Hq(Bn) is bounded if and only ifg is constant.

This was previously obtained by Avetysan-Stevic in 2009.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 6 / 23

Page 14: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Boundedness on Hardy spaces

Theorem [Pau; 2013]

Let g ∈ H(Bn) and 0 < q < p <∞. Then Jg : Hp(Bn)→ Hq(Bn) isbounded if and only if g ∈ H r (Bn) with r = pq/(p − q). Moreover,

‖Jg‖Hp→Hq � ‖g‖H r .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 7 / 23

Page 15: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Membership in Schatten p-classes

Theorem [Pau; 2013]

Let g ∈ H(Bn). Then(a) For n < p <∞, Jg belongs to Sp(H2) if and only if g ∈ Bp,

that is, ∫Bn

|Rg(z)|p (1− |z|2)p dλn(z) <∞.

(b) If 0 < p ≤ n then Jg is in Sp(H2) if and only if g is constant.

Heredλn(z) =

dv(z)

(1− |z|2)n+1 .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 8 / 23

Page 16: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Hardy-Stein type inequalities

If g(0) = 0 then

‖g‖pHp �

∫Bn

|g(z)|p−2|Rg(z)|2 (1− |z|2)dv(z)

There is also a version using the invariant gradient

∇̃f (z) = ∇(f ◦ ϕz)(0)

‖g‖pHp �

∫Bn

|g(z)|p−2|∇̃g(z)|2 (1− |z|2)ndλn(z)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 9 / 23

Page 17: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

The admissible maximal function

For α > 1, the admissible approach region at ζ ∈ Sn is

Γ(ζ) = Γα(ζ) = {z ∈ Bn : |1− 〈z,w〉| < α

2(1− |z|2)}

The admissible maximal function is

f ∗(ζ) = f ∗α(ζ) = supz∈Γ(ζ)

|f (z)|, ζ ∈ Sn

• Let 0 < p <∞ and f ∈ H(Bn). Then

‖f ∗‖Lp(Sn) ≤ C ‖f‖Hp .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 10 / 23

Page 18: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

The admissible maximal function

For α > 1, the admissible approach region at ζ ∈ Sn is

Γ(ζ) = Γα(ζ) = {z ∈ Bn : |1− 〈z,w〉| < α

2(1− |z|2)}

The admissible maximal function is

f ∗(ζ) = f ∗α(ζ) = supz∈Γ(ζ)

|f (z)|, ζ ∈ Sn

• Let 0 < p <∞ and f ∈ H(Bn). Then

‖f ∗‖Lp(Sn) ≤ C ‖f‖Hp .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 10 / 23

Page 19: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

The admissible maximal function

For α > 1, the admissible approach region at ζ ∈ Sn is

Γ(ζ) = Γα(ζ) = {z ∈ Bn : |1− 〈z,w〉| < α

2(1− |z|2)}

The admissible maximal function is

f ∗(ζ) = f ∗α(ζ) = supz∈Γ(ζ)

|f (z)|, ζ ∈ Sn

• Let 0 < p <∞ and f ∈ H(Bn). Then

‖f ∗‖Lp(Sn) ≤ C ‖f‖Hp .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 10 / 23

Page 20: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

The area function

The admissible area function is defined on Sn by

Af (ζ) =

(∫Γ(ζ)

|Rf (z)|2 (1− |z|2)1−ndv(z)

)1/2

The following is a classical result.Theorem

Let 0 < p < ∞ and g ∈ H(Bn). Then g ∈ Hp if and only ifAg ∈ Lp(Sn). Moreover, if g(0) = 0 then

‖g‖Hp � ‖Ag‖Lp(Sn)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 11 / 23

Page 21: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

The area function

The admissible area function is defined on Sn by

Af (ζ) =

(∫Γ(ζ)

|Rf (z)|2 (1− |z|2)1−ndv(z)

)1/2

The following is a classical result.Theorem

Let 0 < p < ∞ and g ∈ H(Bn). Then g ∈ Hp if and only ifAg ∈ Lp(Sn). Moreover, if g(0) = 0 then

‖g‖Hp � ‖Ag‖Lp(Sn)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 11 / 23

Page 22: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Carleson measures

A positive measure µ on Bn is a Carleson measure if

µ(Bδ(ζ)) ≤ Cδn

for all ζ ∈ Sn and δ > 0, where

Bδ(ζ) ={

z ∈ Bn : |1− 〈z, ζ〉| < δ}.

Theorem [Carleson; Hörmander]

Let 0 < p < ∞. Then Id : Hp(Bn) → Lp(Bn,dµ) is bounded if andonly if µ is a Carleson measure.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 12 / 23

Page 23: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Bounded Mean Oscillation

The space of analytic functions of bounded mean oscillationBMOA = BMOA(Bn) consists of those functions f ∈ H1 with

‖f‖BMOA = |f (0)|+ sup1

σ(Q)

∫Q|f (ζ)− fQ |dσ(ζ) <∞,

wherefQ =

1σ(Q)

∫Q

f dσ

is the mean of f over Q and the supremum is taken over thenon-isotropic metric balls

Q = Q(ζ, δ) = {ξ ∈ Sn : |1− 〈ζ, ξ〉| < δ}

for all ζ ∈ Sn and δ > 0.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 13 / 23

Page 24: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Bounded Mean Oscillation

The following is a well known result describing BMOA in terms ofCarleson measures.Theorem

Let g ∈ H(Bn) and consider the measure µg defined by

dµg(z) = |Rg(z)|2(1− |z|2) dv(z).

Then g ∈ BMOA if and only if µg is a Carleson measure. Moreover,if g(0) = 0, for all 0 < p <∞ one has

‖g‖BMOA � sup‖f‖Hp =1

(∫Bn

|f (z)|p dµg(z)

)1/2

.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 14 / 23

Page 25: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

We want to show‖g‖BMOA ≤ C ‖Jg‖.

Let f ∈ Hp. From the Hardy-Stein inequalities we have

‖Jg f‖pHp �

∫Bn

|Jg f (z)|p−2 |R(Jg f )(z)|2 (1− |z|2) dv(z)

=

∫Bn

|Jg f (z)|p−2 |f (z)|2 dµg(z).

Recall that

‖g‖2BMOA � sup

‖f‖Hp =1

∫Bn

|f (z)|p dµg(z)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 15 / 23

Page 26: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

We want to show‖g‖BMOA ≤ C ‖Jg‖.

Let f ∈ Hp. From the Hardy-Stein inequalities we have

‖Jg f‖pHp �

∫Bn

|Jg f (z)|p−2 |R(Jg f )(z)|2 (1− |z|2) dv(z)

=

∫Bn

|Jg f (z)|p−2 |f (z)|2 dµg(z).

Recall that

‖g‖2BMOA � sup

‖f‖Hp =1

∫Bn

|f (z)|p dµg(z)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 15 / 23

Page 27: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

We want to show‖g‖BMOA ≤ C ‖Jg‖.

Let f ∈ Hp. From the Hardy-Stein inequalities we have

‖Jg f‖pHp �

∫Bn

|Jg f (z)|p−2 |R(Jg f )(z)|2 (1− |z|2) dv(z)

=

∫Bn

|Jg f (z)|p−2 |f (z)|2 dµg(z).

Recall that

‖g‖2BMOA � sup

‖f‖Hp =1

∫Bn

|f (z)|p dµg(z)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 15 / 23

Page 28: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

∫Bn

|f |pdµg ≤(∫

Bn

|Jg f |pdµg

) 2−p2(∫

Bn

|Jg f |p−2|f |2dµg

)p/2

.(‖g‖2

BMOA · ‖Jg f‖pHp

) 2−p2(‖Jg f‖p

Hp

)p/2

= ‖g‖2−pBMOA · ‖Jg f‖p

Hp

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2BMOA ≤ C‖g‖2−p

BMOA · ‖Jg‖p.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 16 / 23

Page 29: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

∫Bn

|f |pdµg ≤(∫

Bn

|Jg f |pdµg

) 2−p2(∫

Bn

|Jg f |p−2|f |2dµg

)p/2

.(‖g‖2

BMOA · ‖Jg f‖pHp

) 2−p2(‖Jg f‖p

Hp

)p/2

= ‖g‖2−pBMOA · ‖Jg f‖p

Hp

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2BMOA ≤ C‖g‖2−p

BMOA · ‖Jg‖p.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 16 / 23

Page 30: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

∫Bn

|f |pdµg ≤(∫

Bn

|Jg f |pdµg

) 2−p2(∫

Bn

|Jg f |p−2|f |2dµg

)p/2

.(‖g‖2

BMOA · ‖Jg f‖pHp

) 2−p2(‖Jg f‖p

Hp

)p/2

= ‖g‖2−pBMOA · ‖Jg f‖p

Hp

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2BMOA ≤ C‖g‖2−p

BMOA · ‖Jg‖p.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 16 / 23

Page 31: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

∫Bn

|f |pdµg ≤(∫

Bn

|Jg f |pdµg

) 2−p2(∫

Bn

|Jg f |p−2|f |2dµg

)p/2

.(‖g‖2

BMOA · ‖Jg f‖pHp

) 2−p2(‖Jg f‖p

Hp

)p/2

= ‖g‖2−pBMOA · ‖Jg f‖p

Hp

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2BMOA ≤ C‖g‖2−p

BMOA · ‖Jg‖p.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 16 / 23

Page 32: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Jg bounded in Hp implies g in BMOACase 0 < p < 2

∫Bn

|f |pdµg ≤(∫

Bn

|Jg f |pdµg

) 2−p2(∫

Bn

|Jg f |p−2|f |2dµg

)p/2

.(‖g‖2

BMOA · ‖Jg f‖pHp

) 2−p2(‖Jg f‖p

Hp

)p/2

= ‖g‖2−pBMOA · ‖Jg f‖p

Hp

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2BMOA ≤ C‖g‖2−p

BMOA · ‖Jg‖p.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 16 / 23

Page 33: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

The case 0 < q < p <∞

Let g ∈ H(Bn) and 0 < q < p <∞. Then Jg : Hp(Bn)→ Hq(Bn) isbounded if and only if g ∈ H r (Bn) with r = pq/(p − q). Moreover,

‖Jg‖Hp→Hq � ‖g‖H r .

Sufficiency:

‖Jg f‖qHq �

∫Sn

(∫Γ(ζ)

|f |2|Rg|2(1− |z|2)1−ndv(z)

)q/2

dσ(ζ)

≤∫Sn

|f ∗(ζ)|q(∫

Γ(ζ)

|Rg|2(1− |z|2)1−ndv(z)

)q/2

dσ(ζ)

≤ ‖f ∗‖qLp(Sn) · ‖Ag‖q

Lr (Sn)

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 17 / 23

Page 34: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Luecking’s theorem

TheoremLet 0 < s < p < ∞ and let µ be a positive Borel measure on Bn.Then the identity Id : Hp → Ls(µ) is bounded, if and only if, thefunction defined on Sn by

µ̃(ζ) =

∫Γ(ζ)

(1− |z|2)−ndµ(z)

belongs to Lp/(p−s)(Sn). Moreover, one has

‖Id‖Hp→Ls(µ) � ‖µ̃‖1/sLp/(p−s)(Sn)

.

An immediate consequence of that and the area theorem is

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 18 / 23

Page 35: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessityThe case r > 2

Corollary

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2p

p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H2p

p−s.

Take s with r = 2p/(p − s), that is,

s = p − 2(p − q)/q.

If 0 < q < 2 then 0 < s < 2 and∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 19 / 23

Page 36: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessityThe case r > 2

Corollary

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2p

p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H2p

p−s.

Take s with r = 2p/(p − s), that is,

s = p − 2(p − q)/q.

If 0 < q < 2 then 0 < s < 2 and∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 19 / 23

Page 37: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessityThe case r > 2

Corollary

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2p

p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H2p

p−s.

Take s with r = 2p/(p − s), that is,

s = p − 2(p − q)/q.

If 0 < q < 2 then 0 < s < 2 and∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 19 / 23

Page 38: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessity for r > 2

∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

.

(‖Jg f‖

s(2−q)2−s

Hq · ‖g‖2H r

) 2−s2

·(‖Jg f‖q

Hq

)s/2

= ‖g‖2−sH r · ‖Jg f‖s

Hq

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2H r ≤ C‖g‖2−s

H r · ‖Jg‖sHp→Hq .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 20 / 23

Page 39: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessity for r > 2

∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

.

(‖Jg f‖

s(2−q)2−s

Hq · ‖g‖2H r

) 2−s2

·(‖Jg f‖q

Hq

)s/2

= ‖g‖2−sH r · ‖Jg f‖s

Hq

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2H r ≤ C‖g‖2−s

H r · ‖Jg‖sHp→Hq .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 20 / 23

Page 40: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessity for r > 2

∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

.

(‖Jg f‖

s(2−q)2−s

Hq · ‖g‖2H r

) 2−s2

·(‖Jg f‖q

Hq

)s/2

= ‖g‖2−sH r · ‖Jg f‖s

Hq

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2H r ≤ C‖g‖2−s

H r · ‖Jg‖sHp→Hq .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 20 / 23

Page 41: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessity for r > 2

∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

.

(‖Jg f‖

s(2−q)2−s

Hq · ‖g‖2H r

) 2−s2

·(‖Jg f‖q

Hq

)s/2

= ‖g‖2−sH r · ‖Jg f‖s

Hq

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2H r ≤ C‖g‖2−s

H r · ‖Jg‖sHp→Hq .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 20 / 23

Page 42: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Case 0 < q < p <∞: necessity for r > 2

∫Bn

|f |sdµg ≤(∫

Bn

|Jg f |s(2−q)

2−s dµg

) 2−s2(∫

Bn

|Jg f |q−2|f |2dµg

) s2

.

(‖Jg f‖

s(2−q)2−s

Hq · ‖g‖2H r

) 2−s2

·(‖Jg f‖q

Hq

)s/2

= ‖g‖2−sH r · ‖Jg f‖s

Hq

Taking the supremum over all f ∈ Hp with ‖f‖Hp = 1,

‖g‖2H r ≤ C‖g‖2−s

H r · ‖Jg‖sHp→Hq .

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 20 / 23

Page 43: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Necessity for r ≤ 2

Corollary

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2p

p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H2p

p−s.

Assume that g has no zeros. Then

g ∈ H r ⇔ gt ∈ H r/t

Take t > 0 so that r/t > 2 and let s with r/t = 2p/(p − s). Then

g ∈ H r ⇔∫Bn

|f |s |g|2t−2dµg ≤ C‖f‖sHp

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 21 / 23

Page 44: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Necessity for r ≤ 2

Corollary

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2p

p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H2p

p−s.

Assume that g has no zeros. Then

g ∈ H r ⇔ gt ∈ H r/t

Take t > 0 so that r/t > 2 and let s with r/t = 2p/(p − s). Then

g ∈ H r ⇔∫Bn

|f |s |g|2t−2dµg ≤ C‖f‖sHp

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 21 / 23

Page 45: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Necessity for r ≤ 2

Corollary

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|sdµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2p

p−s . Moreover, ‖Id‖Hp→Ls(µg) � ‖g‖2/s

H2p

p−s.

Assume that g has no zeros. Then

g ∈ H r ⇔ gt ∈ H r/t

Take t > 0 so that r/t > 2 and let s with r/t = 2p/(p − s). Then

g ∈ H r ⇔∫Bn

|f |s |g|2t−2dµg ≤ C‖f‖sHp

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 21 / 23

Page 46: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

Necessity for r ≤ 2

Theorem

Let 0 < s < p <∞ and g ∈ H(Bn). Then∫Bn

|f (z)|s|g(z)|2t−2dµg(z) ≤ C‖f‖sHp

if and only if g ∈ H2pt

p−s .

Moreover, if µ̂g is the measure defined by

d µ̂g(z) = |g(z)|2t−2 dµg(z),

then‖Id‖Hp→Ls(µ̂g) � ‖g‖

2t/s

H2pt

p−s.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 22 / 23

Page 47: Integration operators between Hardy spaces in the unit ballhfs2013.dm.unibo.it/pdf/pau.pdf · Let g 2H(B n) and 0

Hardy spacesintegrationoperators

Jordi Pau

1 Integrationoperators on thedisk

2 Integrationoperators on theball

3 Hardy spacecharacterizations

4 Proofs

General Area function description of Hardyspaces

Theorem

Let g ∈ H(Bn) and 0 < p, t <∞. Then g ∈ Hpt if and only if

∫Sn

(∫Γ(ζ)

|g(z)|2t−2 |Rg(z)|2(1− |z|2)1−ndv(z)

)p/2

dσ(ζ) <∞.

Jordi Pau (Universitat de Barcelona) Hardy spaces integration operators May 2013 23 / 23