10
Physics of the Earth and Planetary Interiors, 7(1973) 313—322 © North-Holland Publishing Company, Amsterdam Printed in The Netherlands INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. SERSON Division of Geomagnetism, Earth Physics Branch, Department of Energy, Mines and Resources, Ottawa, Chit. (Canada) Accepted for publication February 2, 1973 Instruments for recording the natural variations of the geomagnetic and geoelectric fields on land are reviewed, with emphasis on portable equipment suitable for the investigation of anomalies of electromagnetic induction within the earth. Examples of recently designed apparatus are shown, and the fundamental limitations of various types of sensors are discussed. L Infroduction for micropulsations Pci. In the E.L.F.-range, there is some evidence of an increase of amplitude withfre- This paper is a review of instruments used on land quency, but the literature is not unanimous on this point, to record magnetic and earth-electric fields for studies or on the general level of these signals. The E.L.F. of electromagnetic induction in the earth. Induction levels shown in Fig.! may be an order of magnitude studies, in the broadest sense of the term, can involve too large. a great range of frequencies, from secular change to _______________________________________ the kilohertz frequencies used in electromagnetic pros- i iiou~ T pecting for minerals. The present discussion will be too . I DAY - limited to equipment for observing fields of natural origin with primary sources external to the earth. Fig. illustrates the amplitudes of natural varia- iO IVEAR - tions in the magnetic horizontal component useful PC4 for induction studies. The diagram is intended to re- PC3 present typical amplitudes of the signals likely to be PC2 - analysed, rather than a spectrum for a particular sta- tion. Different phenomena vary with latitude in differ- ent ways; the figure attempts to show a world-wide PCI mean. Some of the variations are always present, while 0.1 F others such as bays and pulsations, are available only EL_ during selected intervals. I I I Amplitudes rise with increasing frequency from 5 10 111 V nT~ for the annual and semiannual variations, through ~ the 27-day period and its harmonics, to tens of nT for the diurnal variation and its harmonics. At periods of about one hour, bays and the fluctuations associated with moderate magnetic storms give 100 nT more or FR(QLCNCY (Hz) less. Between one hour and one second, amplitudes de- _______to. t I I I I crease roughly in proportion to the period, to 0.! nT F’°~LA Am~udes of natural variations in the horizontal geomagnetic field useful in induction research. B. Correspond- * Contributions from the Earth Physics Branch No. 435. lag amplitudes in the earth-electric field, computed for a ~ 1 nanotesla = 1 gamma = i0~ gauss. model earth of uniform resistivity 20 fl-rn.

INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

Physicsof theEarthandPlanetaryInteriors, 7(1973)313—322© North-HollandPublishingCompany,Amsterdam— Printedin TheNetherlands

INSTRUMENTATION FOR INDUCFION STUDIES ON LAND*

P.H. SERSONDivision ofGeomagnetism,Earth PhysicsBranch,DepartmentofEnergy,MinesandResources,

Ottawa,Chit. (Canada)

Acceptedfor publicationFebruary2, 1973Instrumentsfor recordingthenaturalvariationsofthegeomagneticandgeoelectricfieldson landarereviewed,

with emphasison portableequipmentsuitablefor theinvestigationof anomaliesof electromagneticinductionwithintheearth.Examplesofrecentlydesignedapparatusareshown,andthefundamentallimitationsof varioustypesofsensorsarediscussed.

L Infroduction for micropulsationsPci. In theE.L.F.-range,thereissomeevidenceof anincreaseof amplitudewithfre-

Thispaperis a reviewof instrumentsusedon land quency,buttheliteratureis notunanimouson thispoint,to recordmagneticandearth-electricfields for studies or on thegenerallevelof thesesignals.TheE.L.F.of electromagneticinductionin theearth.Induction levelsshownin Fig.! may be an orderof magnitudestudies,in the broadestsenseof the term,caninvolve toolarge.a greatrangeof frequencies,from secularchangeto _______________________________________thekilohertzfrequenciesusedin electromagneticpros- i iiou~ T —

pectingfor minerals.The presentdiscussionwill be too . I DAY -

limited to equipmentfor observingfieldsof naturalorigin with primary sourcesexternalto the earth.

Fig.lÀ illustratesthe amplitudesof naturalvaria- iO IVEAR -

tionsin themagnetichorizontalcomponentuseful PC4

for inductionstudies.The diagramis intendedto re- PC3

presenttypical amplitudesof the signalslikely to be PC2 -

analysed,ratherthan a spectrumfor a particularsta-tion. Differentphenomenavary with latitude in differ-entways;thefigureattemptsto showa world-wide PCI

mean.Someof thevariationsare alwayspresent,while 0.1 F

others suchasbaysandpulsations,areavailableonly EL_

during selectedintervals. I I I

Amplitudesrisewith increasingfrequencyfrom 5 10 111 VnT~for theannualandsemiannualvariations,through ~the 27-dayperiodandits harmonics,to tensof nT forthe diurnalvariationand its harmonics.At periodsofaboutonehour,baysandthe fluctuationsassociatedwith moderatemagneticstormsgive 100 nT moreor

FR(QLCNCY (Hz)less.Betweenonehourandonesecond,amplitudesde- _______to. t I I I I

creaseroughly in proportionto theperiod,to 0.! nT F’°~LAAm~udesof naturalvariationsin the horizontalgeomagneticfield usefulin inductionresearch.B. Correspond-

* ContributionsfromtheEarthPhysicsBranchNo. 435. lagamplitudesin theearth-electricfield,computedfor a

~ 1 nanotesla= 1 gamma= i0~gauss. modelearthof uniformresistivity 20 fl-rn.

Page 2: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

314 P.H. Serson,Instruments

Fig. 1A.referstovariationsin thenorthcomponent. Forpermanentinstallations,the mostcommonIn general,a similar level of activity is foundin the electrodeis a largeleadplate,or a grid of leadwires,eastcomponent,but amplitudesin theverticalcorn- buriedat a depthof 2 m,whureonehopesthe tern-ponentare severaltimessmaller — perhapstentimes peratureandmoisturecontentwill befairly constant.smallerat thehigher frequencies. Contactresistailcesare of theorder of 100~2in clay

At standardmagneticobservatories,the limit of soil and1000&2 in rock.Rooney(1939)haspointedresolutionhasbeen1 nT sincethetimeof Gaussand outthatevenwith theselow electroderesistances,it isWeber.Quantitativeinterpretationof inductionef- necessaryto maintain goodinsulationof the connec-fectsin recordsfrom standardvariometersat periods ting wires(manyM&Z), particularly wheretheypasslessthan 100 swill generallybeimpossible,notbe- throughthe surfaceof theearth,becauseit is therecauseof limitations of frequencyresponse,but rather that largeandrapidly varyingpotentialsmay occur.becauseshort-periodphenomenawith sufficientam- Fortemporaryinstallations,non-polarizingelec-plitude are toorare tobe useful. trodesconsistingof a copperrod in a porouscon-

It is moredifficult to speakof typical earth-current tainer ifiled witha coppersulphatesolution,or cad-signals;theelectric field measuredin theearthat the miumin a cadmiumchloridesolution,are often used.time of a~givenmagneticvariationmay rangeover Theircontactpotentialis morepredictable,but inmanyordersof magnitude,dependingon the local time thesolution contaminatesthe soil, and theycan-undergroundconductivityandstructure.However, notbeproperlymaintainedif they are,deeplyburied.Fig. lB showstheelectric-fieldamplitudescorrespond- GoOd resultshavebeenobtainedin surveyworkwithIng to the magneticsignalsof Fig.1A which would be steel-coredcopperor cadmium-platedrods(of the typemeasured,accordingtotheelementarytheoryofCag- usedby electricians)driveninto the soil.niard(1953),atthesurfaceofanearthofuniformre- Early recordingsof earthcurrentswereof coursesistivity 20~2-m.Eventhiscrudemodelexhibitssomeof madewithgalvanometersin circuits of ratherlow im-thecharacteristicsof realearth-currentrecords—large pedancecomparedwith theelectrodecontactresis-amplitudesat periodsbetweenone hourand 5 tances.Theelectroderesistanceshadto bemeasuredminutes,anda muchslowerdecreasein amplitudebe- frequently,andcorrectionsappliedto therecordings.tweenperiodsof 2 minutesandonesecondthan in the Nowadays,a greatvarietyof potentiometricrecordersmagneticcase.Assumingelectrodeseparationsof 100 andlow-noiseamplifierswitheffectivelyinfinite in-—1000m, andbearingin mind thegreatrangeof put impedanceareavailable,andchangesin electrodegroundconductivitieswhichmaybe encountered, resistanceare rarelya problem.one seesthat earth-currentequipmentfor field use Rapidchangesin electrodecontactpotential stillshouldbe designedto recordsignalsrangingfrom causetrouble.The recorddrifts off-scale,unlessanmicrovoltsto a volt or more. operatormonitorstheequipmentandadjuststhebias.

sing circuit, or an automaticdeviceis providedto dothe same.Onesolutionto this difficulty is to admit

2. Systemsfor recordingearthcurrents that the lowest frequenciescannotbe usedanywaybecauseof this contamination,andto removethembeforerecordingby meansof ahigh-passfilter (Beblo,

To measureearthcurrents,ormorepreciselythe 1972).potentialgradientin agiven direction,all thatis neces- Trigg (1972)hasdescribeda telluric amplifier in-saryis apair of electrodesin contactwith theground, corporatingactiveresistance-capacitancefiltersto re-insulatedconnectingwires,anda suitablerecording move contactpotentialsof low frequencyandman-voltmeter.In spiteof theapparentsimplicity of the madenoise of high frequency.Thepassbandisequipment,considerablecareisnecessaryto obtain 10,000secto 10 sec,withaccuratelycontrolledampli-reliableresults.Contactpotentialsbetweentheelec- tudeandphasecharacteristics.With modemcompo-trodesandthegroundarelargein comparisonwith nentsand techniquesof construction,very largeresis-the signalsto berecorded,and theycanchangerapid- tancevalues(over 200 Mfl) canbeusedto achievely with temperatureand theconcentrationof the solu- longtime-constantswithout sacrificingreliability un-tionssurroundingthe electrodes. der field conditions.A switch isprovidedto reduce

Page 3: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

PJL Serson,Instruments 315

thetime-constantsby a factorof 100, sothat thecir- RECORDER [~ 1 LAMP

cult canbeput into operationin about5 minutes.An-otherfeatureof thedesignis lightning protection. —

Local thunderstormscaninducevoltagespikesof theorderof 10kV in theearth-currentlines.Current~limiting resistorsat theamplifier inputanda special H Dspark-gapdevicepreventdamageto the circuit.

z

3. Magnetometers ________ _______

40CM

3.1. Suspendedmagnetsystems

Many investigationsof electromagneticinductionhavebeenbasedon therecordsfrom permanentmag-neticobservatories.Severaldetailedreviewshavebeenpublishedrecentlydescribingtheclassicalphotograph- Dic variometersin use atmostpermanentobservatories H N

(Wiese,1960;Alldredge,1967;LaursenandOlsen, N S

1971).We will not attemptto duplicatethesereviews S MAGNETIC

here,butwill concentrateon instrumentsdesignedfor $ Z NORTH

temporaryrecordingstations. Fig. 2. AskaniaVariograph.Temporaryobservatorieswere usedin the early

detailedstudiesof inductionanomaliesin Germany Fig. 2 showsthedesignof theAskaniaVariograph.andJapan,but theequipmentconsistedof standard Thecaseisinsulatedandelectrically thermostatted.Aobservatoryvariometers,or simplifiedversionsof light path of 1.7 rn is obtainedby multiple reflectionthem,setup in a darkenedroom.Theideaof mounting betweenlargemirrors.Thelight beamisreflectedthreevariometersin alight-tight box,which could be twiceby themovingmirror, so that its deflectionan-carriedfrom stationto stationandquickly set into gle is four timesthatof the magnet.Themovingmir-operation,is anold one.Thereare two principaldiffi- rorsactuallyhavethreesurfacesto give reservetraces,culties.Thefirst is eliminating theeffectsof the large anda totalrangeof 1000nT inH andZ, and 30 inD.variationsof temperatureto which the apparatusis Temperaturecompensationof theH andZ vario-subjectedin the field. Thesecondproblem,which is metersis achievedthroughtheuseof suspensionfibreslessobviousbut of greatimportancein induction of different temperaturecoefficients(apparentlywork, is the interactionbetweenthevariometermag- bronzeandtungstenin mostinstruments).Themag-nets.In a photographicsystem,themagnetsmust netsarein the form of discs,1 cm in diameter.Therotateto producearecord,andtherotationproduces field producedby theZ systemat theD magnetisa falsevariationat theothervariometers,roughly in about500nT, andit iscompensatedby a fixed mag-proportionto the inversecubeof thedistancebe- net.Since thecosineof themaximumdeflectionan~tweentheinstruments. gle equals0.9997,interactionsbetweenthemagnets

It ispossibleto minimize thethreeinteractions shouldbenegligibleif themagnetaxesare properlywhenspaceislimited by thechoiceof specialgeome- aligned.Accuracyin alignmentis basedon amanufac-tries(Wiese,1960).Thewell-knownAskaniaVario- turingtechniquewherebytheanglebetweenthemag-graph,introducedin 1951,howeverrelieson theuse net’saxisandits mirror ismadeexactly45°.Testsof magnetsof smallmagneticmomentwith largeopti- carriedout atWingstmagneticobservatoryindicatecal magnification,so thatthe movementsof themag- that theresultingalignmenterrorsare consistentlynetsarerestrictedto small angles(±1.5°). less than1°(Meyer, 1954).

Page 4: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

316 RH. Ser~n,Instruments

~

MSGNETIC MAGNETIC ~IO cm,~—N0RTh NORTH

N1~~1Ex ~ b

_ I

T D CONTROLMAGNETS

NcL<~ I RECORDERH Z5cnt ________ I,

1Ey

Fig. 3. Three-componentmagnetàmeterof Goughaid cReitzel.

QUARTZ

Themaindisadvantageof theAskaniaVariograph MAGNET FRAME

isits highcost,and the highcostof repairs.GoughandReitzel(1967)havedesigneda three-componentphotographicvariometerwhich canbe built in auniversityworkshopat amuchlowercost,with theresultthat largenumbersof instrumentscanbeoper- Fig. 4. Bobrov’sfive-componentvariationstation: (a)sideatedsimultaneouslyin a densearrayof stations.The view; (b) topview; (c) detailof quartzmagnetometer.threevariometersare arrangedin averticalaluminiumtube,which is setinto ahole in the ground.This re- deflectionsof the magnetswere negligibly small..ducesthe diurnalvariationof temperatureto less Later,someof the instrumentswereshortenedtothan 0.1°Cat a depthof I m, eliminatingthe need makethemlessawkwardto handlein the field. Withfor electricaltemperaturecontrol.The threemoving a separationbetweenmagnetsof 25 cm,interactionsmagnetsare supportedby taut-wire suspensions,as becameapparent.ThemostseriouswasbetweenHshownin Fig.3. Polishedandaluminizedsurfaceson andZ; a real changeof 100 nT in Hproduceda falsethemagnetsactasmirrors.Doublereflectionis used changeof 4 nT inZ, andcorrectionsmustbeappliedin theZ variometer.The recordinglamp is switched in processingthedata.on briefly every 10 seconds,~andthetracesappearasa Sensitivitiesareusuallyadjustedto give about10seriesof dotson the35 mmphotographicfilm. Not nT/mm on the35 mmfilm. With suitableopticalmag-shownin Fig.3aresmall auxiliarymagnetswhich are nificatiou,changesof lessthan1 nT canbe resolved.usedto-vary the sensitivitiesand toprovidea first- Fig.4 showsthefive-componentelectromagneticordertemperaturecompensation,accurateto 3 or4 variationstationof Bobrov (1971). It includestwonT/°C. astaticgalvanometersfor earthcurrents,recordingon

As originally designed,theverticalspacingbe- the samedrumastheD, H andZ variometers.An op-tweenpairsof variometerswas 50cm.At this separa- tical lever of 1 m is obtainedby mirrors.Thelighttion, the steadyfield at onemovingmagnetdueto beamis reflectedfrom themovingmirror 5 times,anotherwas about60 nT, andinteractionsdueto with theaidof a smallmirror fixed closeto it, sothat

Page 5: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

P.H. Serson,Instruments 317

the angulardeflectionsare multiplied by a factor 10. ing. Thenoiselevel with a bandwidthof 0.4Hz islessAll of the partsshown in Fig.4c,with theexception than0.02 nT.of the n~agnet,aremadeof quartz.The magnetsare A photoelectricdeclinometeremployingmodul-of vicalloy, which hasa temperaturecoefficientless atedlight sources,designedby Mosnier(1970),hasthan lO—5/°C.Themagneticmomentsare sosmall beenextensivelytestedin France.Comparisonsofthateventhoughthe spacingof thevariometersison- pairsof instrumentsunderfield conditionsindicately 10 cm,thesteadyfield of onemagnetat the next along-termstability (over several’weeks)of 0.1—is lessthan300nT. In view of the largeopticalmagni- 0.2 nT, and a short-termnoisele~,el(over 10minutes)fication,interactionsshouldbenegligible, of 0.01 nT for abandwidthof 0.2Hz.

Controlmagnetsare providedoutsidethecase,for The aboveperformanceswould seemto~representreducingthetemperaturecoefficientto zero,andfor thepracticallimit of resolutionwith suspendedmag-adjustingbaselinesandsensitivities.Apparentlyscale netsensorsunderfield conditions.Attemptsto ex-valuesof 0.2—0.3 nT/mmare oftenused,which would tendthe responseto higherfrequencieshavebeengive 50 nT acrossthe 200-mmdrum.Reservetraces disappointing,becauseof the sensitivityof theappara-are providedby theextramirrorsbelowthe exit slit. tusto mechanicalvibrationsof theground,dueto

Theastaticgalvanometersaresimilar in construc- traffic or wind. Wemust turn to other typesof mag-tion to thevariometers.Since they arehighly sensitive neficsensorfor thehigherfrequenciesof interestin(10—10A/mm), they canbeusedin a circuit of high inductionstudies.resistanceto recordearthcurrents,without needofelectronicamplification. 3.2. Induction coils

Beforeproceedingto other typesof magneticsen-

sor,it isinterestingto inquire into the limits of resolu- Thesimplestwayof measuringrapidgeomagnetiction attainablewith suspendedmagnets.Is it possible variationsis to measurethe electricalsignalinducedto seeamilligamma(10~nT) at aperiodof one in a coil of wire. Sincetheinducede.m.f. isbasicallysecond?Blackett(1952)hasshownthathighsensitivity proportionalto therateof changeof the magneticwitha shortresponsetime canbe achievedthrough field,coil systemseffectivelycompensatefor thede-theuseof verysmallmagnets;a theoreticallimitation creasein amplitudewith increasingfrequencyof geo-of resolutionis thenimposedby thermalagitationof magneticsignals,and thushavea distinct advantagethe suspendedmagnet.Fromthe tablesgivenby Roy in the micropulsationrangeoversensorswhich res-(1963),it is easyto designamagnetsystem,including ponddirectly to themagneticfield. Still, the designa mirror of amplearea,which at a periodof 1 second of coil systemswith adequateresolutionis noteasy,would have a thermalnoiselevel correspondingto a especiallyfor usein thefield.magneticsignalof 0.2’ ~ nT; However,evenwith the In the designof portablecoil systems,size andopticalmagnificationemployedby Bobrov,sucha sys- weightare critical. It iseasily shownthat the massofternwould give a scalevalueof 10 nT/mm,andsmall wire in a circular air-coredcoil is proportionalto S2signalscouldnotbe resolvedon therecord.In fact, a2R1, whereS is thesensitivity(in voltsper aTBobrov’sdesignappearstobe closeto the optimum per second),a is theradiusof the windingandR itscompromisebetweenlow thermalnoiseandhighsensi- resistanceA fundamentallimit of resolutionis im-tivity with a responsetime of the orderof 1 second. posedby thermalnoise,which equals1.27~10—10

It is,possibleto detectsmallangulardeflections (Ri~f)Ivolts r.m.s.,where~f is the bandwidthof thephotoelectrically,in which caseit is advantageousto system.To resolvei03 nT at 1 Hz with a bandwidthapply feedbackto the suspendedmagnetby meansof of 10Hz, a coil 1 m in diametermustweighat leasta coil. AdamandMajor(1967)describea magnetic 40 kg in copper,or 20kg in aluminum.variometerbasedon this principle,which hasbeen Sucha coil would notbeunreasonablefor fieldusedin magnetotelluricsurveysin Hungary.The mag- work, butwhenonetakesinto accountamplifiernet systemisimmersedin a liquid,which provides noise,evenwith theremarkablelow-noiseamplifiersprotectionfrommechanicalshockandadditionaldamp- nowavailable,theweight of wire mustbeincreased

Page 6: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

318 RH. Sermon,Instruments

by a factorof 5 or more. A furtherdesigndifficulty on theassociatedelectronicsratherthanon thesensor.is that inductanceand inter-windingcapacitancebe- With solid-statetechniquesit is now possibleto en-comeimportantwhenmanyturns of fmewire are surelow circuit noise,purewaveformof the excita-necessarytomatchtheamplifier characteristics,asis tion current,andstablecurrentsfor biasingthesen-oftenthe case.In spiteof theseproblems,air-cored sors.In a well-designedinstrument,the limits of resolu-coilshavethe advantagethat their performancecan tion are determinedby noisegeneratedin the ferro-bepredictedaccurately,andthey canbe constructed magneticcores.It is convenientto divide this noiserelativelyinexpensivelyby commercialelectrical into short-termnoise,long-termnoise,andreversibleshops.Typically, thecostis onethirdwire, one third temperatureeffects.othermaterials,andonethird labour.Detaileddesigns The short-termnoiseis in practicemuchlargerof air-coredcoil systemshavebeenpublishedby thanwould bepredictedfrom considerationsof ther-Thellier (1957),DuffusandShand(1958),Whitham mal agitationor Barkhausennoise.A recentinvestiga-(1960),Lokken(1964),Foster(1965),andCampbell tionby Scouten(1972)indicatesthatthe sourceof(1969). theproblemliesin thefactthat it isimpossiblefor

Problemsof sizeandweightcanbereducedgreatly theexcitationfield to saturatethe corematerialcorn-by theuseof coresof high permeability.Cores1—2 m pletely.Smallvolumesof the core behavedifferentlylong,with effectivepermeabiitiesof the orderof in successivecyclesof excitation,producinguncertain-1000,are oftenused.Herethe inductivereactanceis ties in theflux whenthecoresarenominallysaturated.usuallymuchlargerthanthe coil resistanceat the fre- Trigg et al. (1971)describeathree-componentflux-quenciesof interest,which makespropermatchingto gatemagnetometeremployingsensorsof conventionaltheamplifierdifficult. Permeable-coredcoilsmustbe design(two parallelrodsexcitedin opposition),calibratedcarefully andfrequently,which isnotan which hasseenwide usein inductionstudies.Theeasytaskwith longcores.Ferromagneticmaterials short-termnoiseof this mass-producedinstrumentisareinherentlynonlinear,sothat the sensitivitycanbe of the order of 0.05 nT in a periodbandwidthof 5 secaffectedby the ambientgeomagneticfield, harmonic to 500 sec.It ismoredifficult to describethe long-distortionof signalsmay occur,andlargemagnetic termnotse,which is in theform of abruptchangesinvariationsof low frequencymaymodulatethe smaller theoutput, of the order of 1 nT, whichmayoccuratvariationsof higher frequency.It is difficult to esti- intervalsof hoursor evendays.The origin of thesematetheseeffects,butthey canbe determinedempiri- shiftsis notwell understood,but theytend to occu.rcally, togetherwith frequencyandphaseresponse. whenthe temperatureof the sensorchanges.OveraThewidespreadpopularity of coredinductioncoils month,anoffsetaslargeas 10 nT may.accumulate.suggeststhat theproblemscanbe overcome(Kato, Reversibletemperatureeffectswith thesesensorsare1949;SeIzer,1957;Hill and Bostick,1962). consistentlybelow1 nT/°C.

In recentyears,fluxgatesusinga core in the shape3.3. Fluxgatemagnetometers of a closedring with a toroidalwindinghavebeen

developedfor spaceresearch(GordonandBrown,Thefluxgatesensormakesuseof the nonlinear 1972).With a short-termnoiselevel of 0.05nT in a

propertiesof ferromagneticcoresto modulatethe bandwidthof 1 Hz, thering-coresensorhasa smallmagneticinduction,sothata signal isinducedin a advantageoverthe conventionaltype.However,thepickupcoil at a frequencyof the order of akilohertz. long-termnoise is greatly reduced(±0.05 nT in 24h),In geomagneticmeasurementsthedeviceis almostal- asis the temperaturesensitivity (0.1 nT overa totalways employedas anull detector;that is, themagne- rangeof —40°Cto +70°C).tic field at thefluxgate is reducedto a smallfraction Thereare two additionaltemperatureeffectsin aof 1 nT by strong feedback,andthecurrent fedback completemagnetometerwhich are importantunderconstitutesthe outputof the instrument, field conditions.Thefirst is thechangewith tempera-

Early fluxgatemagnetometershada poor reputa- tureof the dimensionsof thecoil or solenoidusedtotion becauseof noise,drift, andsensitivity to tempera- cancela constantpartof the geomagneticfield. In theture,butmany of their shortcomingsshouldbe blamed designof Trigg et al. (1971),thesource of bias current

Page 7: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

P.H. Sermon,Instruments 319

is controlledby aplatinumresistancethermometerin R2 = H2+ (Z — Z0)

2= (H +themagnetometerheadto compensatefor thiseffect,which otherwisewould amountto 3 nT/°Cin thelar- where~.H is theerrorin thecomputedvalueof H.gestcomponent.Temperaturechangescanalsoprof 2

ducechangesin theorientationof thesensoraxes,for ~ (Z — Z0) /2H

example,whenthe fluxgateheadisheatedasymmetri- Theerror is thusproportionalto the squareof thecally by exposureto sunlight.A tilt of 1’ canproduce variationinZ, andis analogousto thecosine-typea falsesignalof 10—20nT. Recentpracticeisto errorof interactingmagnetsdiscussedin section3.1.mount thefluxgateheadunderground,wheneverpos- It is is alwaysof thesamesign,andcanbecomequitesible,in aplasticgarbagecanwhichisthencoveredover largewhenoneattemptsto recorda smallcomponentwithearth.Burial insnowis also effective.Undercon- of the geomagneticfield. To recordthe eastcompo-ditionsof extremecold, theelectronics,recorder,and nent,for instance,it is necessaryto addanadditionaldry batteriesareoperatedtogetherin awell-insulated biasfield in theeastdirection.Whenthreecompo-aluminumcase.Theheatgeneratedby the batteries nentsare recordedsimultaneously,it is possibletoandelectronicsis enoughtomaintain therecording maketheappropriatecorrectionsby computer.meter(andbatteries)abovethe freezingpoint. The requirementfor threeseparatesensors,anda

largeseparationbetweencoil systemsto avoid errors3.4. Resonancemagnetometers from strayfields,makesthesystemawkwardfor field

work.However,thelow noiselevel of modernresonanceProtonprecessionmagnetometersand optically- sensors—forexample,0.001nT in abandwidthof

pumpedmagnetometersemployingrubidium, caesium, 0.2Hz (UsherandStuart,1970)— andthe possibilityor helium arebasicallytotal-intensitymeasuringdevi- of coveringa greatrangeof frequencywith one typeces.As suchthey are notveryusefulin induction of instrumentmakethis approachto geomagneticre-work, exceptperhapsneartheequatorwherethey cordingattractive(Stuartet al., 1972).measurethehorizontalcomponent,or nearthepoles Theotherapproachtomeasuringmagneticcompo-where theymeasurethevertical. Even then,know- nentswith a scalarsensoris to apply a successionofledgeof the othercomponentsof thevariationfield biasfields to a single total intensitymagnetometer.Toisgenerallynecessaryfor quantitativeinterpretation, measurethe componentPin anarbitrarydirection,Howevertheseinstrumentshavetheadvantagesof high whereF, Q, R are orthogonalcomponentsof the geo-sensitivity,theabsenceofdrift andtemperatureeffects, magneticfield, onefirst measuresthetotal intensityandanoutputin the form of a frequencywhich is F. Thenanartificial field A isappliedin thedirectionnaturallysuitedto digital recording.They havethere- of the componentF, by applyinga directcurrentto afore beenadaptedto themeasurementof the compo- coil system,and thenewresultantfield F1 is measured.nentsof thegeomagneticfield,but they do notadapt Thenthe currentin thecoil is reversed,giving anarti-

easily. ficial field — A, andtheresultantF2 is measured.Two basicmethodshavebeenusedtomeasurecorn- Fromthe threereadings,onecancalculateboth the

ponentswitha total-intensitymagnetometer.The magnitudeofA andthecomponentF, asshownbe-first methodis to applya constantartificial field in a low. Thepro~çdureis repeatedwith adifferentbiasknown direction,sothat thevectorresultantat the coil to obtaina secondcomponentQ, and thethirdsensoris the desiredcomponent(Nelson,1958; componentR canof coursebecalculated.Hurwitz andNelson,1960). 2 2 2 2

A questionof someimportancein inductionwork F =P + Q + Ris whathappenswhenthecomponentbeingcancelleddepartsfrom its normalvalue.Supposethat theverti- 1 —

cal componentZ is opposedby a constantfield Z0 in F2 = — A~2+ +

orderto recordthehorizontalcomponentH. The 2 ‘ /

resultantR measuredby thetotal-field sensoris givenby: A

Page 8: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

320 P.H. Sermon,Instruments

F = (F2 — F2)/4A methodshavemanyadvantages.The equipmentis1 2 simpler,andit iseasierto monitortherecordingin

Thusfar, we haveassumedthat the geomagnetic thefield, andto selectinterestingeventsforanalysis.field remainssteadywhile themeasurementsare being Themain problemin anologrecordingis the greatdy-made.What doesthe calculationgive if Pchangesto namic rangeofgeomagneticvariations;it is difficultP

1 andthenP2during themeasurement? to maintainadequateresolutionof smallsign$swith-2 2 2 outrisk of losingtherecordbecauseof saturation

F = P2 + Q + R duringintervalsof highactivity. With digital recording

techniques,the provisionof sufficientdynamicrange1 — 1 1 1 is easy,and thelabour-savingadvantagesof beingable

to enterfield datadirectly into thecomputerare ob.

F~= (P2 — A)

2 + + R~ vious.Factorswhich havedelayedtheadoptionof

digital recordingin inductionresearcharehighcost,(F2 — F2)/4A~ (P + ~ ) + -~- (F — F) largepowerrequirements,and thegeneralunsuitability

1 2 1 2 2A 1 2 of availableequipmentfor usein thefield. Thesitua-Q R tion is changingrapidly. Reliablecompactdigital sys-

+ ~ (Q1 — + ~ (R1— R2) temssuitablefor batteryoperationhavebeenintro-

ducedrecently,andthe prices,althoughstifi high, areThestandardcalculationgivesthemeanofF1 andP2 decreasing.An importantconsiderationin anydeci-plusthreeerrortermsproportionalto the changesoc- sion to adoptpurelydigital recordingis the costofcurring in thevariouscomponents.In practice,the computertime.Evenwithcarefulplanning,compu-.:coefficientof at leastoneof theerror termswill be ting costsfor just thepreliminaryprocessingof thelargerthanunity. If the sequenceof measurements datacanexceedthe costsof field operationsandin-requiresseveralseconds,andthegeomagneticfield is strumentation.changingat therateof 1 nT persecond,errorsof An importanttechniqueoftenusedin inductionmanynT may result.Errors.ofthis sort cannotbe work, to overcomethedynamicrangeproblemin ana-correctedin thecomputer,becausethemethodgives log recordingor to reducecomputingcostsin thecaseinsufficientinformationconcerningthe short-period of digital recording,is to separatethe spectrumto bebehaviourof the field.Theresultis thateventhough coveredinto two or moreoverlappingbands,bythecycle of measurementscanberepeatedat intervals meansof filters,andto recordthebandsseparately.of say 10 seconds,thecomputeddatawifi contain Thisapproach,with analogrecording,wasusedbyhigh-frequencynoise,which limits theusefulresolu- CanerandAuld (1968),in a broad-bandmagnetotellu-tion to periodsof perhaps1 minute. nc studyat Victoria magneticobservatory.Bothmag-

Nevertheless,thismethodof measuringmagnetic neticandtelluric signalswere recordedin threeover-componentshasbeenmostsuccesfulin inductionre- lappingbands: 1—50 sec,20—500sec,and400 sec—search.The CambridgeUniversity instruments,des- d.c.Thesametelluric electrodeswere usedoverthecribedby EverettandHyndman(1967),usea proton entirefrequencyrange,but threedistinctmagneticmagnetometerasthesensor,andsphericalcoilsto sensorswere usedin thethreebands:air-coredinduc-produceartificial fields of highhomogeneity. tion coils, fluxgatemagnetometers,andthestandard

observatoryphotograp~iicvariometers.Vozoff (1972)describesa digitally recordingmag-

4. Recordingtechniquesandintegratedsystems netotelluricsystem,employingpermalloy-coredinduc-tion coils, whichrecordsin threebands:0.1~—l0sec,

With theexceptionof thephotographicvario- 2—100secand40—500 sec.The samplingintervalsinmeters,all the aboveinstrumentsproduceanoutput thethreebandsarerespectively0.03,0.5and10sec..Itin the form of anelectricalsignal,a voltage,a current, shouldbenotedthatit isnotnecessarytorecordin theor a frequency,whichmustbe recordedin eitherana- threebandssimultaneously.After sufficientdatahavelog or digital form.Forinductionwork, analog beenobtainedinoneband,the filters andsampling

Page 9: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

P.H. Sermon,Instruments 321

interval canbe switchedto thenextband. CanerandDragert(1972)showexamplesof re-Thisreviewwill be concludedwith a shortdescrip- cordingsmadewith this systemindicatingthat it per-

tion of the portablewide-bandequipmentof Caner mitsthe resolutionof short-periodmagneticsignalsandDragert(1972).Thiswas designedto providemag- assmallas0.2 nT peakto peak,while at thesamenetic andtelluric dataforquantitativeinterpretation timeprovidinga usefulrecordof long-periodvaria-overthe periodrange l0—l0~seconds,with special tionsof severalhundrednT.attentionto the problemof obtainingusefulsignalsin theverticalcompontat shortperiods.Overa largeregionof westernNorthAmerica,variationsin Z are S.The futureattenuatedto aboutone tenth of the ‘normal’ ampli-tudeat periodsof 1000sec,butperiodslongerthan Limitationsof spacehaverestrictedthis surveytoanhour or two sufferno attenuation.Thusanespe- typesof instrumentswhich havealreadybeenusedincially wide dynamicrangeis required. inductionstudies.In conclusion,severalnewkindsof

Thesystemis designedto beusedeitherwitha magnetometerwhich promiseto beuseful in thisseven-trackslow-speedfrequency-modulatedtape field will bementionedbriefly.recorderof the typeemployedin seismicresearch,or Thin-film magnetometers(IronsandSchwee,1972)with a seven-trackscratchrecorder— a recording differ from thefluxgatesof section3.3 in that theirgalvanometerwhich scratchesa record on opaque35 operationdependson themagneticanisotropyof amm film. Whenonly magneticsignalsarerequired,the thin ferromagneticlayerdepositedin the presenceofentirerangeof periodscanbe recordedat once.The a magneticfield. Theyoffer the advantagesof smalloutputof a three-componentfluxgatemagnetometer size,low powerconsumption,andvery wide band-(Trigg et al., 1971)is recorded,in two frequency width(100 MHz). At present,theywould appeartobands.BandA (d.c.—200sec)isrecordedat a full- haveno advantageover fluxgatesin resolutionat fre-scalerangeof 200nT, butthe effectiverangeis in- quenciesbelow 1 Hz, but long-termstabilityis beingcreasedto 1600nT by including scaleexpanders improved.(Trigg, 1970)in thecircuit. Thesedevicesautomati- A vectorrubidiummagnetometer(Fairweathercally addor substractan incrementof 100 nT when andUsher,1972) permitstherecordingof threecom-everthe input tothe taperecorderexceedspreset ponentswithout theuseof biasfields.The directionlimits. Band B (500—5sec)canberecordedat a higher of thegeomagneticvectoris determinedfrom therela-sensitivity (e.g., 10 nT full-scale),becauseband-pass tive phasesof modulationof two perpendicularlightfilters removethelarge-amplitudefluctuationsof low beamspassingthrougha single rubidiumvapourcell.frequency. The total intensity is providedby the frequencyof

In magnetotelluricwork, the requirementfor five self-oscillation.Theresolution,for a bandwidthofdatachannelslimits recording,at anyonetime, to 1 Hz, is 0.1 nT in the field directionand0.01 nT ineitherthe long-periodbandor the short-periodband. themagnitude.Theearth-currentcircuits employ thesametype of Finally, superconductingquantummagnetometersscaleexpandersandband-passfilters as themagneto- with a resolutionof 1 O~nT (Webb,1972)shouldmeters. makepossiblethe recordingof time variationsin the

Theelectronicequipment,including a time-signal horizontalandverticalgradientsof themagneticfield.receiverandquartzclock,is mountedin a waterproof Sufficiently sensitivemeasurementsof suchgradientstransitcasegiving goodthermalandmechanicalpro- mayproveuseful in the interpretationof anomaliestection.Whenthemagnetictaperecorderis used,the of electromagneticinduction(Schmucker,1973).systemwill operateunattendedfrom automobile-typebatterie4for five days.The scratchrecorderhassignif-icantadvantagesin reliability andrecordingcapacity, Referenceswithequivalentdynamicrangeandresolutionto thetaperecorder,but its largepowerconsumption(30 Adam,A. andMajor, L., 1967.ActaGeod.Geophys.watts)prohibitsoperationfrom batteries. Montanistica,2 (1—2): 211.

Page 10: INSTRUMENTATION FOR INDUCFION STUDIES ON LAND* P.H. …

322 RH. Sermon,Instruments.

Alldredge,L.R., 1967.Instrumentsandgeomagneticstations. Lokken,J.E.,1964.Instrumentationfor receivingelectromag-In: S.MatsushitaandW.H. Campbell(Editors),Physicsof neticnoisebelow3,000 cps.In: D.F.Bleil (Editor),GeomagneticPhenomena.AcademicPress,NewYork, Natural ElectromagneticPhenomenaBelow30kc/s.N.Y.,p. 29. Plenum,NewYork, N.Y., p. 303.

Beblo,M., 1972.Z.Geophys.,38: 133. Meyer,0., 1954.Askanza-Warte,46: 2.Blackett,P.M.S.,1952.Phios.Trans.R. Soc.Lond.,Ser.A,. Mosmer,J., 1970.Ann. Geophys.,26 (1): 127.

245: 309. Nelson,J.H.,1958.J. Geophys.Res.,63: 880.Bobrov,V.N., 1971. Geomagn.Aeron., 11: 512. Rooney.,WJ.1939.Earth-currents.In: J.A.Fleming (Editor),Cagniard,L., 1953.Geophysics,18: 605. TerrestrialMagnetismandElectricity.M~raw-Hffl,NewCampbell,W.H., 1969.ESSATech.Rep.ERL 123-ESL6 York,N.Y.,p. 270.Caner,B. andAuld, D.R., 1968.Can. J. Earth Sci, 5: 1209. Roy,J.L., 1963.Pubi. Dom. Obs. Ottawa, Ont., 27 (9): 421.Caner,B. andDragert,H., 1972.Z. Geophys.,38: 121. Schmucker,U., 1973. Phys.EarthPlanet. Inter.,7:365—378.Duffus, HJ.andShand,J.A., 1958.Can. I. Phys.,36: 508. Scouten,D.C., 1972.IEEE Trans.Magn.,MAG-8: 223.Everett,J.E.andHyndman,R.D., 1967.J.SciInstrum.,44: 943. Selzer,E., 1957.Ann. Int. Geophy& Year, 4(4):287.Fairweather,A.J. andUsher,MJ., 1972.J. Phys.Earth: Stuart,W.F.,Gill, H.,Anderson,G. andFisher,M., 1972.

Sci Instruin., S : 986. J. Phys.Earth: SciInstrum.,5 : 450.Foster,J.H., 1965.IEEETrans..GeosciElectron,GE-3: 14. Thellier,E.,1957.Ann.mt. Geophys.Year, 4(4): 255.Gordon,Di. andBrown,R.E.,1972.IEEE Trans.Magn., Trigg, D.F., 19~70.Rev.Sci. Instrum.,41: 1298.

MAG-8: 76. Trigg, D.F., 1972.PubLEarth Phys.Branch,44 (1): 1.Gough,D.I. andReitzel.J.S.,1967.J.Geomagn.Geoelectr., Trigg, D.F.,Serson,PR.andCamfield,P.A., 1971.FubL

19: 203. EarthPhys.Branch,41: (5): 66.Hill, L.K. andBostick,F.X., 1962,Electr. Eng. Res.Lab. Usher,MJ.andStuart,W.F., 1970.J.Phy~Earth:Sci

Univ. TexasRep.,126: 1. Instrum. 3 : 203.Hurwitz, L.andNelson,J.H.,1960.J.Geophys.Rem.,65: Vozoff,K., 1972.Geophysics,37: 98.

1759. Webb,W.W., 1972.IEEE Trans.Magn.,MAG-8 :51.Irons,H.R.andSchwee,LI, 1972.IEEETrans.Magn., Whitham,K., 1960.Measurementof thegeomagneticelements.

MAG-8: 61. In: SIC. Runcorn(Editor),MethodsandT~hniquesinKato,Y., 1949.Proc.Jap.AcadScL,25:18. Geophysics.Interscience,NewYork, N.Y.,p. 104.Laursen,V. andOlsen,J., 1971.Classicalmethodsofgeomag- Wiese,H., 1960.TheoriederklassischengeomagnetischenIn-

neticobservations.In: K. Rawer(Editor),Handbuchder strumente.In: G.Fanselau(Editor),GeomagnetismusundPhysik,49/3.Springer,Berlin,p. 276. Aeronomie,2. VEB DeutscherVerlagderWissensciaften,

Berlin,p.~3.