123
Coherence modulo and double groupoids Benjamin Dupont Institut Camille Jordan, Université Lyon 1 joint work with Philippe Malbos Category Theory 2019 Edinburgh, 11 July 2019

Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherence modulo and double groupoids

Benjamin Dupont

Institut Camille Jordan, Université Lyon 1

joint work with Philippe Malbos

Category Theory 2019

Edinburgh, 11 July 2019

Page 2: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Plan

I. Introduction and motivations

II. Double groupoids

III. Polygraphs modulo

IV. Coherence modulo

Page 3: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

I. Introduction and motivations

Page 4: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1}

,

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 5: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1}

,

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 6: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1}

,

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 7: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

00

..

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1}

,

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 8: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

��

00

..

HH

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1}

,

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 9: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

��

00

..

HH��

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1}

,

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 10: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

��

00

..

HH��

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1},

the confluence diagramx

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 11: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivations: algebraic context

I Algebraic rewriting: constructive methods to study algebraic structures presented bygenerators and relations.

I Example. Computation of syzygies.

I Squier’s coherence theorem: basis of syzygies from a convergent presentation.

��

00

..

HH��

I If a group G = 〈X | R〉 is presented as a monoid M = 〈X∐

X | R ∪ {xx− αx→ 1, x−x αx→ 1},the confluence diagram

x

=

xx−1x

αx x 11

xαx -- x

is an artefact induced by the algebraic structure and should not be considered as a syzygy.

Page 12: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivation: objectives

I Objective: Study diagrammatic algebras arising in representation theory using algebraicrewriting.

I Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;

I Temperley-Lieb algebras in statistichal mechanics;

I Brauer algebras and Birman-Wenzl algebras in knot theory.

I Main questions:

I Coherence theorems;

I Categorification constructive results;

I Computation of linear bases for these algebras by rewriting.

I Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

= = • = • = •

Page 13: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivation: objectives

I Objective: Study diagrammatic algebras arising in representation theory using algebraicrewriting.

I Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;

I Temperley-Lieb algebras in statistichal mechanics;

I Brauer algebras and Birman-Wenzl algebras in knot theory.

I Main questions:

I Coherence theorems;

I Categorification constructive results;

I Computation of linear bases for these algebras by rewriting.

I Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

= = • = • = •

Page 14: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivation: objectives

I Objective: Study diagrammatic algebras arising in representation theory using algebraicrewriting.

I Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;

I Temperley-Lieb algebras in statistichal mechanics;

I Brauer algebras and Birman-Wenzl algebras in knot theory.

I Main questions:

I Coherence theorems;

I Categorification constructive results;

I Computation of linear bases for these algebras by rewriting.

I Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

= = • = • = •

Page 15: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivation: objectives

I Objective: Study diagrammatic algebras arising in representation theory using algebraicrewriting.

I Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;

I Temperley-Lieb algebras in statistichal mechanics;

I Brauer algebras and Birman-Wenzl algebras in knot theory.

I Main questions:

I Coherence theorems;

I Categorification constructive results;

I Computation of linear bases for these algebras by rewriting.

I Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

= = • = • = •

Page 16: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Motivation: objectives

I Objective: Study diagrammatic algebras arising in representation theory using algebraicrewriting.

I Khovanov-Lauda-Rouquier (KLR) algebras for categorification of quantum groups;

I Temperley-Lieb algebras in statistichal mechanics;

I Brauer algebras and Birman-Wenzl algebras in knot theory.

I Main questions:

I Coherence theorems;

I Categorification constructive results;

I Computation of linear bases for these algebras by rewriting.

I Structural rules of these algebras make the study of local confluence complicated.

Example: Isotopy relations

= = • = • = •

Page 17: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let P be the rewriting system on the set of diagrams composed of:

, , , , • , • , , .

I submitted to relations:

•µ → •µ , •µ → •µ , •µ → •µ , •µ → •µ for µ in {0, 1}

• → • , • → • , • → • , • → • ,

→ , → , → , → , → .

I If no rewriting modulo:22

..

Not confluent !

Page 18: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let P be the rewriting system on the set of diagrams composed of:

, , , , • , • , , .

I submitted to relations:

•µ → •µ , •µ → •µ , •µ → •µ , •µ → •µ for µ in {0, 1}

• → • , • → • , • → • , • → • ,

→ , → , → , → , → .

I If no rewriting modulo:22

..

Not confluent !

Page 19: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let P be the rewriting system on the set of diagrams composed of:

, , , , • , • , , .

I submitted to relations:

•µ → •µ , •µ → •µ , •µ → •µ , •µ → •µ for µ in {0, 1}

• → • , • → • , • → • , • → • ,

→ , → , → , → , → .

I If no rewriting modulo:22

..

Not confluent !

Page 20: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let P be the rewriting system on the set of diagrams composed of:

, , , , • , • , , .

I submitted to relations:

•µ → •µ , •µ → •µ , •µ → •µ , •µ → •µ for µ in {0, 1}

• → • , • → • , • → • , • → • ,

→ , → , → , → , → .

I If no rewriting modulo:22

..

Not confluent !

Page 21: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let P be the rewriting system on the set of diagrams composed of:

, , , , • , • , , .

I submitted to relations:

•µ → •µ , •µ → •µ , •µ → •µ , •µ → •µ for µ in {0, 1}

• → • , • → • , • → • , • → • ,

→ , → , → , → , → .

I If no rewriting modulo:22

..

Not confluent !

Page 22: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 23: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 24: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 25: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 26: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 27: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 28: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v

=��u′

R// v

Page 29: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Three paradigms of rewriting modulo

I Rewriting system R:

I Coherence and confluence results in n-categories.

I Rewriting modulo: we consider a rewriting system R and a set of equations E .

I Three paradigms of rewriting modulo:

I Rewriting with R modulo E , Huet ’80.

uR //

E ��

u′R // w

E��v

R

// v ′R

// w ′

IERE : Rewriting with R on E -equivalence classes

uE RE //

E ��

v

E��u′

R

// v ′

I Rewriting with any system S such that R ⊆ S ⊆ ERE , Jouannaud - Kirchner ’84.

I Main interest and results for ER.

uER //

E ��

v=��

u′R// v

Page 30: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

II. Double groupoids

Page 31: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64

.

(C0)0 (C0)0

(C0)0 (C0)0

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 32: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0 (C0)0

(C0)0 (C0)0

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 33: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0

(C0)0

(C0)0 (C0)0

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 34: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0

(C0)1��

(C0)0

(C0)0

(C0)0

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 35: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0

(C0)1��

(C0)0

(C0)1��

(C0)0 (C0)0

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 36: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0(C1)0 //

(C0)1��

(C0)0

(C0)1��

(C0)0(C1)0

// (C0)0

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 37: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0(C1)0 //

(C0)1��

(C0)0

(C0)1��

(C0)0(C1)0

// (C0)0

(C1)1��

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 38: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0(C1)0 //

(C0)1��

(C0)0

(C0)1��

(C0)0(C1)0

// (C0)0

(C1)1��

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 39: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I We introduce a cubical notion of coherence, in n-categories enriched in double groupoids.

I A double category is an internal category (C1,C0, ∂C−, ∂

C+, ◦C, iC) in Cat, Ehresmann ’64.

(C0)0(C1)0 //

(C0)1��

(C0)0

(C0)1��

(C0)0(C1)0

// (C0)0

(C1)1��

I It gives four related categories

Cvo := (Cv ,Co , ∂v−,0, ∂v+,0, ◦v , iv0 ), Cho := (Ch,Co , ∂h−,0, ∂

h+,0, ◦h, ih0 ),

Csv := (Cs ,Cv , ∂v−,1, ∂v+,1, �v , iv1 ), Csh := (Cs ,Ch, ∂h−,1, ∂

h+,1, �h, ih1 ),

where Csh is the category C1 and Cvo is the category C0.

I Elements of Co : point cells, elements of Ch and Cv : horizontal cells and vertical cells.

x1f // x2

x1

e

��x2

Page 40: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I Elements of Cs are square cells:

·∂h−,1(A)

//

∂v−,1(A)

��

·

∂v+,1(A)

��·∂h+,1(A)

// ·

A��

, with identities

x1f //

iv0 (x1)

��

x2

iv0 (x2)

��x1

f// x2

ih1(f )��

xih0(x) //

e

��

x

e

��y

ih0(y)

// y

iv1 (e)��

I Compositionsx1

f1 //

e1

��

x2

e2

��

f2 // x3

e3

��y1 g1

// y2

A��

g2// y3

B��

x1f1◦hf2 //

e1

��

x3

e3

��y1

g1◦hg2// y3

A�vB��

x1f1 //

e1

��

x2

e2

��y1

f2//

e′1��

y2

e′2��

A��

z1f3// z2

A′��

x1f1 //

e1◦v e′1

��

x2

e2◦v e′2

��z1

f3// z2

A�hA′��

for all xi ,yi ,zi in Co , fi in Ch, ei ,e′i in Cv and A, A′,B in Cs .

Page 41: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I Elements of Cs are square cells:

·∂h−,1(A)

//

∂v−,1(A)

��

·

∂v+,1(A)

��·∂h+,1(A)

// ·

A�� , with identities

x1f //

iv0 (x1)

��

x2

iv0 (x2)

��x1

f// x2

ih1(f )��

xih0(x) //

e

��

x

e

��y

ih0(y)

// y

iv1 (e)��

I Compositionsx1

f1 //

e1

��

x2

e2

��

f2 // x3

e3

��y1 g1

// y2

A��

g2// y3

B��

x1f1◦hf2 //

e1

��

x3

e3

��y1

g1◦hg2// y3

A�vB��

x1f1 //

e1

��

x2

e2

��y1

f2//

e′1��

y2

e′2��

A��

z1f3// z2

A′��

x1f1 //

e1◦v e′1

��

x2

e2◦v e′2

��z1

f3// z2

A�hA′��

for all xi ,yi ,zi in Co , fi in Ch, ei ,e′i in Cv and A, A′,B in Cs .

Page 42: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I Elements of Cs are square cells:

·∂h−,1(A)

//

∂v−,1(A)

��

·

∂v+,1(A)

��·∂h+,1(A)

// ·

A�� , with identities

x1f //

iv0 (x1)

��

x2

iv0 (x2)

��x1

f// x2

ih1(f )��

xih0(x) //

e

��

x

e

��y

ih0(y)

// y

iv1 (e)��

I Compositionsx1

f1 //

e1

��

x2

e2

��

f2 // x3

e3

��y1 g1

// y2

A��

g2// y3

B��

x1f1◦hf2 //

e1

��

x3

e3

��y1

g1◦hg2// y3

A�vB��

x1f1 //

e1

��

x2

e2

��y1

f2//

e′1��

y2

e′2��

A��

z1f3// z2

A′��

x1f1 //

e1◦v e′1

��

x2

e2◦v e′2

��z1

f3// z2

A�hA′��

for all xi ,yi ,zi in Co , fi in Ch, ei ,e′i in Cv and A, A′,B in Cs .

Page 43: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I Elements of Cs are square cells:

·∂h−,1(A)

//

∂v−,1(A)

��

·

∂v+,1(A)

��·∂h+,1(A)

// ·

A�� , with identities

x1f //

iv0 (x1)

��

x2

iv0 (x2)

��x1

f// x2

ih1(f )��

xih0(x) //

e

��

x

e

��y

ih0(y)

// y

iv1 (e)��

I Compositionsx1

f1 //

e1

��

x2

e2

��

f2 // x3

e3

��y1 g1

// y2

A��

g2// y3

B��

x1f1◦hf2 //

e1

��

x3

e3

��y1

g1◦hg2// y3

A�vB��

x1f1 //

e1

��

x2

e2

��y1

f2//

e′1��

y2

e′2��

A��

z1f3// z2

A′��

x1f1 //

e1◦v e′1

��

x2

e2◦v e′2

��z1

f3// z2

A�hA′��

for all xi ,yi ,zi in Co , fi in Ch, ei ,e′i in Cv and A, A′,B in Cs .

Page 44: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 45: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 46: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

�v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 47: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 48: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 49: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 50: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 51: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 52: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 53: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double groupoids

I These compositions satisfy the middle four interchange law:

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A��

x2f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h �v �h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′��

y2g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

=

x1f1 //

e1��

x2

e2��

y1 g1 // y2

A�� �vx2

f2 //

e2��

x3

e3��

y2 g2 // y3

B��

�h

y1g1 //

e′1��

y2

e′2��

z1 h1 // z2

A′�� �vy2

g2 //

e′2��

y3

e′3��

z2 h2 // z3

B′��

I Double groupoid: double category in which horizontal, vertical and square cells areinvertible.

I n-category enriched in double groupoids: n-category C such that any homset Cn(x , y) is adouble groupoid.

I Horizontal (n + 1)-category: category of rewritings, vertical (n + 1)-category: category ofmodulo rules.

Page 54: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1 P∗2 (. . .) P∗n−1 P∗n

P0 P1 P2 (. . .) Pn−1 Pn

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 55: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1 P∗2 (. . .) P∗n−1 P∗n

P0 P1 P2 (. . .) Pn−1 Pn

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 56: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0

P∗1 P∗2 (. . .) P∗n−1 P∗n

P0 P1

bb bb

P2 (. . .) Pn−1 Pn

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 57: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1

P∗2 (. . .) P∗n−1 P∗n

P0 P1

bb bb OO

P2 (. . .) Pn−1 Pn

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 58: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1

P∗2 (. . .) P∗n−1 P∗n

P0 P1

bb bb OO

P2

bb bb

(. . .) Pn−1 Pn

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 59: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1 P∗2

(. . .) P∗n−1 P∗n

P0 P1

bb bb OO

P2

bb bb OO

(. . .) Pn−1 Pn

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 60: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1 P∗2 (. . .) P∗n−1 P∗n

P0 P1

bb bb OO

P2

bb bb OO

(. . .)

cc cc OO

Pn−1

dd dd OO

Pn

cc cc OO

P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 61: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1 P∗2 (. . .) P∗n−1 P∗n

P0 P1

bb bb OO

P2

bb bb OO

(. . .)

cc cc OO

Pn−1

dd dd OO

Pn

cc cc OO

��P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 62: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs

I Polygraphs are higher-dimensional generating systems of higher-dimensional globular strictcategories.

I An n-polygraph generates a free n-category.

P∗0 P∗1 P∗2 (. . .) P∗n−1 P∗n

P0 P1

bb bb OO

P2

bb bb OO

(. . .)

cc cc OO

Pn−1

dd dd OO

Pn

cc cc OO

��P>n

I An (n − 1)-category C is presented by an n-polygraph (P0, . . . ,Pn) if

C ' P∗n−1/ ≡Pn

Page 63: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double (n + 2, n)-polygraphs

I A double n-polygraph is a data (Pv ,Ph,Ps) made of:

I two (n + 1)-polygraphs Pv and Ph such that Pvk = Ph

k for k ≤ n,

I a 2-square extension Ps of the pair of (n + 1)-categories ((Pv )∗, (Ph)∗), that is a set equippedwith four maps making Γ a 2-cubical set.

I A double (n + 2, n)-polygraph is a double n-polygraph in which Ps is defined on((Pv )>, (Ph)>).

I A double (n + 2, n)-polygraph (Pv ,Ph,Ps) generates a free (n − 1)-category enriched indouble groupoids, denoted by (Pv ,Ph,Ps)

|=

.

Page 64: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double (n + 2, n)-polygraphs

I A double n-polygraph is a data (Pv ,Ph,Ps) made of:

I two (n + 1)-polygraphs Pv and Ph such that Pvk = Ph

k for k ≤ n,

I a 2-square extension Ps of the pair of (n + 1)-categories ((Pv )∗, (Ph)∗), that is a set equippedwith four maps making Γ a 2-cubical set.

Pvn+1

//// P∗n Phn+1oooo

I A double (n + 2, n)-polygraph is a double n-polygraph in which Ps is defined on((Pv )>, (Ph)>).

I A double (n + 2, n)-polygraph (Pv ,Ph,Ps) generates a free (n − 1)-category enriched indouble groupoids, denoted by (Pv ,Ph,Ps)

|=

.

Page 65: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double (n + 2, n)-polygraphs

I A double n-polygraph is a data (Pv ,Ph,Ps) made of:

I two (n + 1)-polygraphs Pv and Ph such that Pvk = Ph

k for k ≤ n,

I a 2-square extension Ps of the pair of (n + 1)-categories ((Pv )∗, (Ph)∗), that is a set equippedwith four maps making Γ a 2-cubical set.

(Pvn+1)∗

$$$$

(Phn+1)∗

zzzzPvn+1

////

OO

P∗n Phn+1oooo

OO

I A double (n + 2, n)-polygraph is a double n-polygraph in which Ps is defined on((Pv )>, (Ph)>).

I A double (n + 2, n)-polygraph (Pv ,Ph,Ps) generates a free (n − 1)-category enriched indouble groupoids, denoted by (Pv ,Ph,Ps)

|=

.

Page 66: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double (n + 2, n)-polygraphs

I A double n-polygraph is a data (Pv ,Ph,Ps) made of:

I two (n + 1)-polygraphs Pv and Ph such that Pvk = Ph

k for k ≤ n,

I a 2-square extension Ps of the pair of (n + 1)-categories ((Pv )∗, (Ph)∗), that is a set equippedwith four maps making Γ a 2-cubical set.

Ps

$$$$zzzz(Pv

n+1)∗

$$$$

(Phn+1)∗

zzzzPvn+1

////

OO

P∗n Phn+1oooo

OO

I A double (n + 2, n)-polygraph is a double n-polygraph in which Ps is defined on((Pv )>, (Ph)>).

I A double (n + 2, n)-polygraph (Pv ,Ph,Ps) generates a free (n − 1)-category enriched indouble groupoids, denoted by (Pv ,Ph,Ps)

|=

.

Page 67: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double (n + 2, n)-polygraphs

I A double n-polygraph is a data (Pv ,Ph,Ps) made of:

I two (n + 1)-polygraphs Pv and Ph such that Pvk = Ph

k for k ≤ n,

I a 2-square extension Ps of the pair of (n + 1)-categories ((Pv )∗, (Ph)∗), that is a set equippedwith four maps making Γ a 2-cubical set.

Ps

$$$$zzzz(Pv

n+1)∗

$$$$

(Phn+1)∗

zzzzPvn+1

////

OO

P∗n Phn+1oooo

OO

I A double (n + 2, n)-polygraph is a double n-polygraph in which Ps is defined on((Pv )>, (Ph)>).

I A double (n + 2, n)-polygraph (Pv ,Ph,Ps) generates a free (n − 1)-category enriched indouble groupoids, denoted by (Pv ,Ph,Ps)

|=

.

Page 68: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Double (n + 2, n)-polygraphs

I A double n-polygraph is a data (Pv ,Ph,Ps) made of:

I two (n + 1)-polygraphs Pv and Ph such that Pvk = Ph

k for k ≤ n,

I a 2-square extension Ps of the pair of (n + 1)-categories ((Pv )∗, (Ph)∗), that is a set equippedwith four maps making Γ a 2-cubical set.

Ps

$$$$zzzz(Pv

n+1)∗

$$$$

(Phn+1)∗

zzzzPvn+1

////

OO

P∗n Phn+1oooo

OO

I A double (n + 2, n)-polygraph is a double n-polygraph in which Ps is defined on((Pv )>, (Ph)>).

I A double (n + 2, n)-polygraph (Pv ,Ph,Ps) generates a free (n − 1)-category enriched indouble groupoids, denoted by (Pv ,Ph,Ps)

|=

.

Page 69: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Acyclicity

I A 2-square extension Ps of ((Pv )>, (Ph)>) is acyclic if for any square

S =

·(Ph)>//

(Pv )>

��

·

(Pv )>

��·

(Ph)>// ·

there exists a square (n + 1)-cell A in (Pv ,Ph,Ps)

|=

such that ∂(A) = S .

I A 2-fold coherent presentation of an n-category C is a double (n + 2, n)-polygraph(Pv ,Ph,Ps) such that:

I the (n + 1)-polygraph Pv ∐Ph presents C;

I Ps is acyclic

I Example: Let E be a convergent (n+1)-polygraph. Cd(E) := square extension containing

· = //

e1?n−1e′1 ��

·e2?n−1e

′2��

·=// ·

for a choice of confluence of any critical branching (e1, e2) of E .

I From Squier’s theorem, (E , ∅,Cd(E)) is a 2-fold coherent presentation of C.

Page 70: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Acyclicity

I A 2-square extension Ps of ((Pv )>, (Ph)>) is acyclic if for any square

S =

·(Ph)>//

(Pv )>

��

·

(Pv )>

��·

(Ph)>// ·

A��

there exists a square (n + 1)-cell A in (Pv ,Ph,Ps)

|=

such that ∂(A) = S .

I A 2-fold coherent presentation of an n-category C is a double (n + 2, n)-polygraph(Pv ,Ph,Ps) such that:

I the (n + 1)-polygraph Pv ∐Ph presents C;

I Ps is acyclic

I Example: Let E be a convergent (n+1)-polygraph. Cd(E) := square extension containing

· = //

e1?n−1e′1 ��

·e2?n−1e

′2��

·=// ·

for a choice of confluence of any critical branching (e1, e2) of E .

I From Squier’s theorem, (E , ∅,Cd(E)) is a 2-fold coherent presentation of C.

Page 71: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Acyclicity

I A 2-square extension Ps of ((Pv )>, (Ph)>) is acyclic if for any square

S =

·(Ph)>//

(Pv )>

��

·

(Pv )>

��·

(Ph)>// ·

A��

there exists a square (n + 1)-cell A in (Pv ,Ph,Ps)

|=

such that ∂(A) = S .

I A 2-fold coherent presentation of an n-category C is a double (n + 2, n)-polygraph(Pv ,Ph,Ps) such that:

I the (n + 1)-polygraph Pv ∐Ph presents C;

I Ps is acyclic

I Example: Let E be a convergent (n+1)-polygraph. Cd(E) := square extension containing

· = //

e1?n−1e′1 ��

·e2?n−1e

′2��

·=// ·

for a choice of confluence of any critical branching (e1, e2) of E .

I From Squier’s theorem, (E , ∅,Cd(E)) is a 2-fold coherent presentation of C.

Page 72: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Acyclicity

I A 2-square extension Ps of ((Pv )>, (Ph)>) is acyclic if for any square

S =

·(Ph)>//

(Pv )>

��

·

(Pv )>

��·

(Ph)>// ·

A��

there exists a square (n + 1)-cell A in (Pv ,Ph,Ps)

|=

such that ∂(A) = S .

I A 2-fold coherent presentation of an n-category C is a double (n + 2, n)-polygraph(Pv ,Ph,Ps) such that:

I the (n + 1)-polygraph Pv ∐Ph presents C;

I Ps is acyclic

I Example: Let E be a convergent (n+1)-polygraph.

Cd(E) := square extension containing

· = //

e1?n−1e′1 ��

·e2?n−1e

′2��

·=// ·

for a choice of confluence of any critical branching (e1, e2) of E .

I From Squier’s theorem, (E , ∅,Cd(E)) is a 2-fold coherent presentation of C.

Page 73: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Acyclicity

I A 2-square extension Ps of ((Pv )>, (Ph)>) is acyclic if for any square

S =

·(Ph)>//

(Pv )>

��

·

(Pv )>

��·

(Ph)>// ·

A��

there exists a square (n + 1)-cell A in (Pv ,Ph,Ps)

|=

such that ∂(A) = S .

I A 2-fold coherent presentation of an n-category C is a double (n + 2, n)-polygraph(Pv ,Ph,Ps) such that:

I the (n + 1)-polygraph Pv ∐Ph presents C;

I Ps is acyclic

I Example: Let E be a convergent (n+1)-polygraph. Cd(E) := square extension containing

· = //

e1?n−1e′1 ��

·e2?n−1e

′2��

·=// ·

for a choice of confluence of any critical branching (e1, e2) of E .

I From Squier’s theorem, (E , ∅,Cd(E)) is a 2-fold coherent presentation of C.

Page 74: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Acyclicity

I A 2-square extension Ps of ((Pv )>, (Ph)>) is acyclic if for any square

S =

·(Ph)>//

(Pv )>

��

·

(Pv )>

��·

(Ph)>// ·

A��

there exists a square (n + 1)-cell A in (Pv ,Ph,Ps)

|=

such that ∂(A) = S .

I A 2-fold coherent presentation of an n-category C is a double (n + 2, n)-polygraph(Pv ,Ph,Ps) such that:

I the (n + 1)-polygraph Pv ∐Ph presents C;

I Ps is acyclic

I Example: Let E be a convergent (n+1)-polygraph. Cd(E) := square extension containing

· = //

e1?n−1e′1 ��

·e2?n−1e

′2��

·=// ·

for a choice of confluence of any critical branching (e1, e2) of E .

I From Squier’s theorem, (E , ∅,Cd(E)) is a 2-fold coherent presentation of C.

Page 75: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

III. Polygraphs modulo

Page 76: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs modulo

A n-polygraph modulo is a data (R,E , S) made of

I an n-polygraph R of primary rules,

I an n-polygraph E such that Ek = Rk for k ≤ n − 2 and En−1 ⊆ Rn−1, of modulo rules,

I S is a cellular extension of R∗n−1 such that R ⊆ S ⊆ ERE , where the cellular extension

ERE is defined byγ ERE : ERE → Sphn−1(R∗n−1)

where ERE is the set of triples (e, f , e′) in E> × R∗(1) × E> such that

u v

and the map γ ERE is defined by γ ERE (e, f , e′) = (∂−,n−1(e), ∂+,n−1(e′)).

Page 77: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs modulo

A n-polygraph modulo is a data (R,E , S) made of

I an n-polygraph R of primary rules,

I an n-polygraph E such that Ek = Rk for k ≤ n − 2 and En−1 ⊆ Rn−1, of modulo rules,

I S is a cellular extension of R∗n−1 such that R ⊆ S ⊆ ERE , where the cellular extension

ERE is defined byγ ERE : ERE → Sphn−1(R∗n−1)

where ERE is the set of triples (e, f , e′) in E> × R∗(1) × E> such that

u v

and the map γ ERE is defined by γ ERE (e, f , e′) = (∂−,n−1(e), ∂+,n−1(e′)).

Page 78: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs modulo

A n-polygraph modulo is a data (R,E , S) made of

I an n-polygraph R of primary rules,

I an n-polygraph E such that Ek = Rk for k ≤ n − 2 and En−1 ⊆ Rn−1, of modulo rules,

I S is a cellular extension of R∗n−1 such that R ⊆ S ⊆ ERE , where the cellular extension

ERE is defined byγ ERE : ERE → Sphn−1(R∗n−1)

where ERE is the set of triples (e, f , e′) in E> × R∗(1) × E> such that

u v

and the map γ ERE is defined by γ ERE (e, f , e′) = (∂−,n−1(e), ∂+,n−1(e′)).

Page 79: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs modulo

A n-polygraph modulo is a data (R,E , S) made of

I an n-polygraph R of primary rules,

I an n-polygraph E such that Ek = Rk for k ≤ n − 2 and En−1 ⊆ Rn−1, of modulo rules,

I S is a cellular extension of R∗n−1 such that R ⊆ S ⊆ ERE ,

where the cellular extension

ERE is defined byγ ERE : ERE → Sphn−1(R∗n−1)

where ERE is the set of triples (e, f , e′) in E> × R∗(1) × E> such that

u v

and the map γ ERE is defined by γ ERE (e, f , e′) = (∂−,n−1(e), ∂+,n−1(e′)).

Page 80: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs modulo

A n-polygraph modulo is a data (R,E , S) made of

I an n-polygraph R of primary rules,

I an n-polygraph E such that Ek = Rk for k ≤ n − 2 and En−1 ⊆ Rn−1, of modulo rules,

I S is a cellular extension of R∗n−1 such that R ⊆ S ⊆ ERE , where the cellular extension

ERE is defined byγ ERE : ERE → Sphn−1(R∗n−1)

where ERE is the set of triples (e, f , e′) in E> × R∗(1) × E> such that

u��##;; GGv

e��

f

��

e′��

and the map γ ERE is defined by γ ERE (e, f , e′) = (∂−,n−1(e), ∂+,n−1(e′)).

Page 81: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Polygraphs modulo

A n-polygraph modulo is a data (R,E , S) made of

I an n-polygraph R of primary rules,

I an n-polygraph E such that Ek = Rk for k ≤ n − 2 and En−1 ⊆ Rn−1, of modulo rules,

I S is a cellular extension of R∗n−1 such that R ⊆ S ⊆ ERE , where the cellular extension

ERE is defined byγ ERE : ERE → Sphn−1(R∗n−1)

where ERE is the set of triples (e, f , e′) in E> × R∗(1) × E> such that

u������������������##;; GGGGGGGGGGGGGGGGGGv

e��

f

��

e′��

and the map γ ERE is defined by γ ERE (e, f , e′) = (∂−,n−1(e), ∂+,n−1(e′)).

Page 82: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Branchings and confluence modulo

I A branching modulo E of the n-polygraph modulo S is a triple (f , e, g) where f and g arein S∗n and e is in E>n , such that:

uf //

e��

u′

vg// v ′

I It is local if f is in S∗(1)n , g is in S∗n and e in E>n such that `(g) + `(e) = 1.

I It is confluent modulo E if there exists f ′, g ′ in S∗n and e′ in E>n :

uf //

e��

u′f ′ // w

e′��v

g// v ′

g′// w ′

I Confluence modulo E (resp. local confluence modulo E): any branching (resp. localbranching) of S modulo E is confluent modulo E .

Page 83: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Branchings and confluence modulo

I A branching modulo E of the n-polygraph modulo S is a triple (f , e, g) where f and g arein S∗n and e is in E>n , such that:

uf //

e��

u′

vg// v ′

I It is local if f is in S∗(1)n , g is in S∗n and e in E>n such that `(g) + `(e) = 1.

I It is confluent modulo E if there exists f ′, g ′ in S∗n and e′ in E>n :

uf //

e��

u′f ′ // w

e′��v

g// v ′

g′// w ′

I Confluence modulo E (resp. local confluence modulo E): any branching (resp. localbranching) of S modulo E is confluent modulo E .

Page 84: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Branchings and confluence modulo

I A branching modulo E of the n-polygraph modulo S is a triple (f , e, g) where f and g arein S∗n and e is in E>n , such that:

uf //

e��

u′

vg// v ′

I It is local if f is in S∗(1)n , g is in S∗n and e in E>n such that `(g) + `(e) = 1.

I It is confluent modulo E if there exists f ′, g ′ in S∗n and e′ in E>n :

uf //

e��

u′f ′ // w

e′��v

g// v ′

g′// w ′

I Confluence modulo E (resp. local confluence modulo E): any branching (resp. localbranching) of S modulo E is confluent modulo E .

Page 85: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Branchings and confluence modulo

I A branching modulo E of the n-polygraph modulo S is a triple (f , e, g) where f and g arein S∗n and e is in E>n , such that:

uf //

e��

u′

vg// v ′

I It is local if f is in S∗(1)n , g is in S∗n and e in E>n such that `(g) + `(e) = 1.

I It is confluent modulo E if there exists f ′, g ′ in S∗n and e′ in E>n :

uf //

e��

u′f ′ // w

e′��v

g// v ′

g′// w ′

I Confluence modulo E (resp. local confluence modulo E): any branching (resp. localbranching) of S modulo E is confluent modulo E .

Page 86: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

IV. Coherence modulo

Page 87: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent confluence modulo

I We consider Γ a 2-square extension of (E>, S∗).

I A branching modulo E is Γ-confluent modulo E if there exist f ′, g ′ in S∗n , e′ in E>n and asquare-cell A in (E ,S ,E o Γ ∪ Peiff(E ,S))

|=

,v :

I (E , S,−)

|=

,v is the free n-category enriched in double categories generated by (E , S,−), inwhich all vertical cells are invertible.

I Peiff(E , S) is the 2-square extension containing the following squares for all e,e′ ∈ E> andf ∈ S∗.

u ?i vf ?i v //

u?i e ��

u′ ?i v

u′?i e��u ?i v

f ?i v′// u′ ?i v ′

w ?i uw?i f //

e′?i u ��

w ?i u′

e′?i u′

��w ′ ?i u

w′?i f// w ′ ?i u′

I Eo Γ is to avoid "redundant" elements in Γ for different squares corresponding to the samebranching of S modulo E :

uf //

e ��

vf ′ // v ′

e′��u′

g=e1g1e2// w

g′// w ′

and

uf //

e?n−1e1��

vf ′ // v ′

e′��u1 g1e2

// wg′// w ′

Page 88: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent confluence modulo

I We consider Γ a 2-square extension of (E>, S∗).

I A branching modulo E is Γ-confluent modulo E if there exist f ′, g ′ in S∗n , e′ in E>n

and asquare-cell A in (E ,S ,E o Γ ∪ Peiff(E ,S))

|=

,v :

uf //

e��

u′f ′ // w

e′��v

g// v ′

g′// w ′

I (E , S,−)

|=

,v is the free n-category enriched in double categories generated by (E , S,−), inwhich all vertical cells are invertible.

I Peiff(E , S) is the 2-square extension containing the following squares for all e,e′ ∈ E> andf ∈ S∗.

u ?i vf ?i v //

u?i e ��

u′ ?i v

u′?i e��u ?i v

f ?i v′// u′ ?i v ′

w ?i uw?i f //

e′?i u ��

w ?i u′

e′?i u′

��w ′ ?i u

w′?i f// w ′ ?i u′

I Eo Γ is to avoid "redundant" elements in Γ for different squares corresponding to the samebranching of S modulo E :

uf //

e ��

vf ′ // v ′

e′��u′

g=e1g1e2// w

g′// w ′

and

uf //

e?n−1e1��

vf ′ // v ′

e′��u1 g1e2

// wg′// w ′

Page 89: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent confluence modulo

I We consider Γ a 2-square extension of (E>, S∗).

I A branching modulo E is Γ-confluent modulo E if there exist f ′, g ′ in S∗n , e′ in E>n and asquare-cell A in (E ,S ,E o Γ ∪ Peiff(E ,S))

|=

,v :

uf //

e��

u′f ′ //

A��

w

e′��v

g// v ′

g′// w ′

I (E , S,−)

|=

,v is the free n-category enriched in double categories generated by (E , S,−), inwhich all vertical cells are invertible.

I Peiff(E , S) is the 2-square extension containing the following squares for all e,e′ ∈ E> andf ∈ S∗.

u ?i vf ?i v //

u?i e ��

u′ ?i v

u′?i e��u ?i v

f ?i v′// u′ ?i v ′

w ?i uw?i f //

e′?i u ��

w ?i u′

e′?i u′

��w ′ ?i u

w′?i f// w ′ ?i u′

I Eo Γ is to avoid "redundant" elements in Γ for different squares corresponding to the samebranching of S modulo E :

uf //

e ��

vf ′ // v ′

e′��u′

g=e1g1e2// w

g′// w ′

and

uf //

e?n−1e1��

vf ′ // v ′

e′��u1 g1e2

// wg′// w ′

Page 90: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent confluence modulo

I We consider Γ a 2-square extension of (E>, S∗).

I A branching modulo E is Γ-confluent modulo E if there exist f ′, g ′ in S∗n , e′ in E>n and asquare-cell A in (E ,S ,E o Γ ∪ Peiff(E ,S))

|=

,v :

uf //

e��

u′f ′ //

A��

w

e′��v

g// v ′

g′// w ′

I (E , S,−)

|=

,v is the free n-category enriched in double categories generated by (E , S,−), inwhich all vertical cells are invertible.

I Peiff(E , S) is the 2-square extension containing the following squares for all e,e′ ∈ E> andf ∈ S∗.

u ?i vf ?i v //

u?i e ��

u′ ?i v

u′?i e��u ?i v

f ?i v′// u′ ?i v ′

w ?i uw?i f //

e′?i u ��

w ?i u′

e′?i u′

��w ′ ?i u

w′?i f// w ′ ?i u′

I Eo Γ is to avoid "redundant" elements in Γ for different squares corresponding to the samebranching of S modulo E :

uf //

e ��

vf ′ // v ′

e′��u′

g=e1g1e2// w

g′// w ′

and

uf //

e?n−1e1��

vf ′ // v ′

e′��u1 g1e2

// wg′// w ′

Page 91: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent confluence modulo

I We consider Γ a 2-square extension of (E>, S∗).

I A branching modulo E is Γ-confluent modulo E if there exist f ′, g ′ in S∗n , e′ in E>n and asquare-cell A in (E ,S ,E o Γ ∪ Peiff(E ,S))

|=

,v :

uf //

e��

u′f ′ //

A��

w

e′��v

g// v ′

g′// w ′

I (E , S,−)

|=

,v is the free n-category enriched in double categories generated by (E , S,−), inwhich all vertical cells are invertible.

I Peiff(E , S) is the 2-square extension containing the following squares for all e,e′ ∈ E> andf ∈ S∗.

u ?i vf ?i v //

u?i e ��

u′ ?i v

u′?i e��u ?i v

f ?i v′// u′ ?i v ′

w ?i uw?i f //

e′?i u ��

w ?i u′

e′?i u′

��w ′ ?i u

w′?i f// w ′ ?i u′

I Eo Γ is to avoid "redundant" elements in Γ for different squares corresponding to the samebranching of S modulo E :

uf //

e ��

vf ′ // v ′

e′��u′

g=e1g1e2// w

g′// w ′

and

uf //

e?n−1e1��

vf ′ // v ′

e′��u1 g1e2

// wg′// w ′

Page 92: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent confluence modulo

I We consider Γ a 2-square extension of (E>, S∗).

I A branching modulo E is Γ-confluent modulo E if there exist f ′, g ′ in S∗n , e′ in E>n and asquare-cell A in (E ,S ,E o Γ ∪ Peiff(E ,S))

|=

,v :

uf //

e��

u′f ′ //

A��

w

e′��v

g// v ′

g′// w ′

I (E , S,−)

|=

,v is the free n-category enriched in double categories generated by (E , S,−), inwhich all vertical cells are invertible.

I Peiff(E , S) is the 2-square extension containing the following squares for all e,e′ ∈ E> andf ∈ S∗.

u ?i vf ?i v //

u?i e ��

u′ ?i v

u′?i e��u ?i v

f ?i v′// u′ ?i v ′

w ?i uw?i f //

e′?i u ��

w ?i u′

e′?i u′

��w ′ ?i u

w′?i f// w ′ ?i u′

I Eo Γ is to avoid "redundant" elements in Γ for different squares corresponding to the samebranching of S modulo E :

uf //

e ��

vf ′ // v ′

e′��u′

g=e1g1e2// w

g′// w ′

and

uf //

e?n−1e1��

vf ′ // v ′

e′��u1 g1e2

// wg′// w ′

Page 93: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 94: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 95: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 96: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 97: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 98: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 99: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied.

Page 100: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied. uf //

e ��

v

v ′

Page 101: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied. uf //

e ��

v

v ′e−·f// v

Page 102: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent Newman and critical pair lemmas

I S is Γ-confluent modulo E (resp. locally Γ-confluent modulo E) if any of its branchingmodulo E (resp. local branching modulo E) is Γ-confluent modulo E .

I Theorem. [D.-Malbos ’18] If ERE is terminating, the following assertions are equivalent:

I S is Γ-confluent modulo E ;

I S is locally Γ-confluent modulo E ;

I S satisfies properties a) and b):

a):

uS∗(1) //

=

��

vS∗ // v ′

E>��u

R∗(1)

// wS∗// w ′

A�� b):

uS∗(1) //

E>(1)

��

vS∗ // v ′

E>��

u′S∗

// w

B��

for any local branching of S modulo E .

I S satisfies properties a) and b) for any critical branching of S modulo E .

I For S = ER, property b) is trivially satisfied. uf //

e ��

v

=��v ′

e−·f// v

Page 103: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherence modulo

I A set X of (n − 1)-cells in R∗n−1 is E -normalizing with respect to S if for any u in X ,

NF(S , u) ∩ Irr(E) 6= ∅.

I Theorem. [D.-Malbos ’18] Let (R,E , S) be an n-polygraph modulo, and Γ be a squareextension of (E>, S∗) such that

I E is convergent,

I S is Γ-confluent modulo E ,

I Irr(E) is E -normalizing with respect to S,

IERE is terminating,

then E o Γ ∪ Peiff(E ,S) ∪ Cd(E) is acyclic.

Page 104: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherence modulo

I A set X of (n − 1)-cells in R∗n−1 is E -normalizing with respect to S if for any u in X ,

NF(S , u) ∩ Irr(E) 6= ∅.

I Theorem. [D.-Malbos ’18] Let (R,E , S) be an n-polygraph modulo, and Γ be a squareextension of (E>, S∗) such that

I E is convergent,

I S is Γ-confluent modulo E ,

I Irr(E) is E -normalizing with respect to S,

IERE is terminating,

then E o Γ ∪ Peiff(E ,S) ∪ Cd(E) is acyclic.

Page 105: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent completion

I Coherent completion modulo E of S : square extension of (E>, S>) containing square cellsAf ,g and Bf ,e :

uf //

= ��

u′f ′ //

Af ,g��

w

e′��u

g// v

g′// w ′

uf //

e��

u′f ′ //

Bf ,e��

w

e′��v

g′// w ′

for any critical branchings (f , g) and (f , e) of S modulo E .

I Corollary. [D.-Malbos ’18] Let (R,E ,S) be an n-polygraph modulo such that

I E is convergent,

I S is confluent modulo E ,

I Irr(E) is E -normalizing with respect to S,

IERE is terminating,

For any coherent completion Γ of S modulo E , E o Γ ∪ Peiff(E , S) ∪ Cd(E) is acyclic.

I Corollary: Usual Squier’s theorem. (E = ∅)

Page 106: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent completion

I Coherent completion modulo E of S : square extension of (E>, S>) containing square cellsAf ,g and Bf ,e :

uf //

= ��

u′f ′ //

Af ,g��

w

e′��u

g// v

g′// w ′

uf //

e��

u′f ′ //

Bf ,e��

w

e′��v

g′// w ′

for any critical branchings (f , g) and (f , e) of S modulo E .

I Corollary. [D.-Malbos ’18] Let (R,E ,S) be an n-polygraph modulo such that

I E is convergent,

I S is confluent modulo E ,

I Irr(E) is E -normalizing with respect to S,

IERE is terminating,

For any coherent completion Γ of S modulo E , E o Γ ∪ Peiff(E , S) ∪ Cd(E) is acyclic.

I Corollary: Usual Squier’s theorem. (E = ∅)

Page 107: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Coherent completion

I Coherent completion modulo E of S : square extension of (E>, S>) containing square cellsAf ,g and Bf ,e :

uf //

= ��

u′f ′ //

Af ,g��

w

e′��u

g// v

g′// w ′

uf //

e��

u′f ′ //

Bf ,e��

w

e′��v

g′// w ′

for any critical branchings (f , g) and (f , e) of S modulo E .

I Corollary. [D.-Malbos ’18] Let (R,E ,S) be an n-polygraph modulo such that

I E is convergent,

I S is confluent modulo E ,

I Irr(E) is E -normalizing with respect to S,

IERE is terminating,

For any coherent completion Γ of S modulo E , E o Γ ∪ Peiff(E , S) ∪ Cd(E) is acyclic.

I Corollary: Usual Squier’s theorem. (E = ∅)

Page 108: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 109: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 110: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 111: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 112: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 113: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 114: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 115: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Example: diagrammatic rewriting modulo isotopy

I Let E and R be two 3-polygraphs defined by:

I E0 = R0 = {∗},

I E1 = R1 = {∧,∨},

I E2 =

, , , , • , •

R2 = E2∐ ,

I E3 =

•µ V •µ , •µ V •µ , •µ V •µ , •µ V •µ for µ in {0, 1} ,

• V • ,•

V•, • V • ,

•V

•}

I R3 = V , V , V , V , V

I Facts:

I E is convergent.

IERE is terminating.

IER is confluent modulo E .

Page 116: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 117: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 118: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 119: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 120: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 121: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 122: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Conclusion

I We proved a coherence result for polygraphs modulo.

I How to weaken E -normalization assumption ?

I Is any polygraph modulo Tietze-equivalent to an E -normalizing polygraph modulo ?

I Explicit a quotient of a square extension by all modulo rules.

I Constructions extended to the linear setting.

I Linear bases from termination (or quasi-termination) or ERE and confluence of R modulo E .

I Work in progress:

I Rise this construction in dimensions, in n-categories enriched in p-fold groupoids.

I Formalize these constructions with rewriting modulo all the algebraic axioms.

Page 123: Institut Camille Jordan, Université Lyon 1conferences.inf.ed.ac.uk/ct2019/slides/55.pdf · Coherence modulo and double groupoids BenjaminDupont Institut Camille Jordan, Université

Thank you !