18
1 of 78 Input Noise: Current, Voltage (i n , e n )

Input Noise: Current, Voltage (i n , e n )

  • Upload
    hao

  • View
    23

  • Download
    4

Embed Size (px)

DESCRIPTION

Input Noise: Current, Voltage (i n , e n ). Op Amp Noise Model. V N. I N +. I N -. Noise Model (I N + and I N - are not correlated). OPA277 Data. Tina Simplified Model. V N. I N. Understanding The Spectrum: Total Noise Equation (Current or Voltage). - PowerPoint PPT Presentation

Citation preview

Page 1: Input Noise: Current, Voltage (i n , e n )

1 of 78

Input Noise: Current, Voltage (in, en)

Page 2: Input Noise: Current, Voltage (i n , e n )

2 of 78

Op Amp Noise Model

OPA277 Data

VVNN

IINN--IINN

++

Noise Model

(IN+ and IN- are not correlated)

Tina Simplified Model

*n

VU

1

*fA

U2

-

+

IOP1

INVN

Page 3: Input Noise: Current, Voltage (i n , e n )

3 of 78

Understanding The Spectrum:Total Noise Equation (Current or Voltage)

0.1 1 10 100 1k 10k1

10

100

1k

10k

100k

)V

olt

age

No

ise

(nV

/H

z

1/f Noise Region(Pink Noise Region)

White Noise Region(Broadband Noise Region)

en1/f calculation

fHfL

Frequency (Hz)

enBB calculation

enT = √[(en1/f)2 + (enBB)2]

where:enT = Total rms Voltage Noise in volts rms en1/f = 1/f voltage noise in volts rmsenBB = Broadband voltage noise in volts rms

Page 4: Input Noise: Current, Voltage (i n , e n )

4 of 78

fP fBF

Small Signal BW

Noise BW

Skirt of1-Pole FilterResponse

Brickwall

Frequency (f)

0

0.1fP 10fP

-20

-40

-80

Fil

ter

Att

en

ua

tio

n (

dB

)

Skirt of2-Pole FilterResponse

Skirt of3-Pole FilterResponse

Real Filter Correction vs Brickwall Filter

where: fP = roll-off frequency of pole or polesfBF = equivalent brickwall filter frequency

Page 5: Input Noise: Current, Voltage (i n , e n )

5 of 78

Number of Poles in Filter

KnAC Noise Bandwidth Ratio

1 1.57

2 1.22

3 1.16

4 1.13

5 1.12

AC Noise Bandwidth Ratios for nth Order Low-Pass Filters

Real Filter Correction vs Brickwall Filter

BWn = (fH)(Kn) Effective Noise Bandwidth

Page 6: Input Noise: Current, Voltage (i n , e n )

6 of 78

Broadband Noise Equation

enBB = (eBB)(√[BWn])

where:enBB = Broadband voltage noise in volts rmseBB = Broadband voltage noise density ; usually in nV/√HzBWn = Noise bandwidth for a given system

BWn = (fH)(Kn)

where:BWn = noise bandwidth for a given systemfH = upper frequency of frequency range of operationKn = “Brickwall” filter multiplier to include the “skirt” effects of a low pass filter

eBB

Page 7: Input Noise: Current, Voltage (i n , e n )

7 of 78

1/f Noise Equation

en1/f = (e1/f@1Hz)(√[ln(fH/fL)])

where:en1/f = 1/f voltage noise in volts rms over frequency range of operatione1/f@1Hz = voltage noise density at 1Hz; (usually in nV)fH = upper frequency of frequency range of operation (Use BWn as an approximation for fH)fL = lower frequency of frequency range of operation

e1/f@1Hz = (e1/f@f)(√[f])

where: e1/f@1Hz = normalized noise at 1Hz (usually in nV)e1/f@f = voltage noise density at f ; (usually in nV/√Hz)f = a frequency in the 1/f region where noise voltage density is known

e1/f@1Hz

Page 8: Input Noise: Current, Voltage (i n , e n )

8 of 78

Example Noise Calculation

Given:OPA627 Noise Gain of 101

Find (RTI, RTO): Voltage NoiseCurrent NoiseResistor Noise

V1 15

V2 15

-

+ +U1 OPA627/BB

R1 100kR2 1k+

VG1

VF1

Page 9: Input Noise: Current, Voltage (i n , e n )

9 of 78

Unity Gain Bandwidth = 16MHz

Closed Loop Bandwidth = 16MHz / 101 = 158kHz

Voltage Noise Spectrum and Noise Bandwidth

50nV/rt-Hz

5nV/rt-Hz

Page 10: Input Noise: Current, Voltage (i n , e n )

10 of 78

Example Voltage Noise Calculation

Voltage Noise Calculation:

Broadband Voltage Noise Component:BWn ≈ (fH)(Kn) (note Kn = 1.57 for single pole)BWn ≈ (158kHz)(1.57) =248kHz

enBB = (eBB)(√BWn)enBB = (5nV/√Hz)(√248kHz) = 2490nV rms

1/f Voltage Noise Component:e1/f@1Hz = (e1/f@f)(√f)e1/f@1Hz = (50nV/√Hz)(√1Hz) = 50nV

en1/f = (e1/f@1Hz)(√[ln(fH/fL)]) Use fH = BWn

en1/f = (50nV)(√[ln(248kHz/1Hz)]) = 176nV rms

Total Voltage Noise (referred to the input of the amplifier):enT = √[(en1/f)2 + (enBB)2]enT = √[(176nV rms)2 + (2490nV rms)2] = 2496nV rms

Page 11: Input Noise: Current, Voltage (i n , e n )

11 of 78

Example Current Noise Calculation

Note: This example amp doesn’t have 1/f component for current noise.

Gain

Req = R1 || Rf

*

Rf 3k

-

+

IOP1

VF1

*fA

U2

R1 1k Rf 3k

-

+

IOP1

VF1

*fA

U2

R1 1k

en-out= Gain x (in)x(Req)en-in= (in)x(Req)

Page 12: Input Noise: Current, Voltage (i n , e n )

12 of 78

Example Current Noise Calculation

Broadband Current Noise Component:BWn ≈ (fH)(Kn)BWn ≈ (158kHz)(1.57) =248kHz

inBB = (iBB)(√BWn)inBB = (2.5fA/√Hz)(√248kHz) = 1.244pA rms

Req = Rf || R1 = 100k || 1k = 0.99k

eni = (In)( Req) = (1.244pA)(0.99k) = 1.23nV rms

Since the Total Voltage noise is envt = 2496nV rms the current noise can be neglected.

neglect

Page 13: Input Noise: Current, Voltage (i n , e n )

13 of 78

Resistor Noise – Thermal Noise

The mean- square open- circuit voltage (e) across a resistor (R) is:

en = √√ (4kTKRΔf) where: TK is Temperature (ºK) R is Resistance (Ω) f is frequency (Hz) k is Boltzmann’s constant

(1.381E-23 joule/ºK) en is volts (VRMS)

To convert Temperature Kelvin to

TK = 273.15oC + TC

Page 14: Input Noise: Current, Voltage (i n , e n )

14 of 78

Noise Spectral Density vs. Resistance

Resistance (Ohms)

Noi

se S

pect

ral D

ensi

ty v

s. R

esis

tanc

e

nV/r

t-H

z

10 100 1 103

1 104

1 105

1 106

1 107

0.1

1

10

100

1 103

468.916

0.347

4 1.38065 1023 25 273.15( ) X 10

9

4 1.38065 1023 125 273.15( ) X 10

9

4 1.38065 1023 55 273.15( ) X 10

9

10710 X

1000

10 100 1 103

1 104

1 105

1 106

1 107

0.1

1

10

100

1 103

468.916

0.347

4 1.380651023 25 273.15( ) X 10

9

4 1.380651023 125 273.15( ) X 10

9

4 1.380651023 55 273.15( ) X 10

9

10710 X

25C

125C

-55C

en density = √√ (4kTKR)

Resistor Noise – Thermal Noise

Page 15: Input Noise: Current, Voltage (i n , e n )

15 of 78

eenr = √(4kT = √(4kTKKRRΔΔf) f)

where:where:

R = Req = R1||RfR = Req = R1||Rf

ΔΔf = BWf = BWnn

eenr = √(4 ( = √(4 (1.38E-23) (273 + 25) (0.99k)((273 + 25) (0.99k)(248kHz)) = 2010nV rms

Example Resistor Noise Calculation

Gain

Req = R1 || Rf

*

R1 2kR2 1k

-

+

IOP1

VF1

*nV

U1

*nV

U1

RfR1

en-out= Gain x (√(4kTR√(4kTRΔΔf)f))en-in= √(4kTR√(4kTRΔΔf)f)

Page 16: Input Noise: Current, Voltage (i n , e n )

16 of 78

Total Noise Calculation

Voltage Noise From Op-Amp RTI:env = 2510nV rms

Current Noise From Op-Amp RTI (as a voltage):eni = 1.24nV rms

Resistor Noise RTI:enr = 2020nV rms

Total Noise RTI:en in = √((2510nV)2 + ((1.2nV)2 + ((2010nV)2) = 3216nV rms

Total Noise RTO:en out = en in x gain = (3216nV)(101) = 325uV rms

Page 17: Input Noise: Current, Voltage (i n , e n )

17 of 78

Calculating Noise Vpp from Noise Vrms

Peak-to-PeakAmplitude

Probability of Havinga Larger Amplitude

2 X rms 32%

3 X rms 13%

4 X rms 4.6%

5 X rms 1.2%

6 X rms * 0.3%

6.6 X rms 0.1%

Relation of Peak-to-Peak Value of AC Noise Voltage to rms Value

*Common Practice is to use: Peak-to-Peak Amplitude = 6 X rms

Page 18: Input Noise: Current, Voltage (i n , e n )

18 of 78

Voltage Noise (f = 0.1Hz to 10Hz) Low Frequency

Low frequency noise spec and curve:Over specific frequency range: 0.1Hz < f < 10HzGiven as Noise Voltage in pp units

Measured After Bandpass Filter:

0.1Hz Second−Order High−Pass

10Hz Fourth−Order Low−Pass