22
1 Dr. Rogelio Cuevas García 1 Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio Cuevas García 2 En el calculo de un reactor químico se utiliza necesariamente la ecuación de diseño. CSTR PFR (PBR) Intermitente Forma integrada Forma diferencial (o en diferencias) Tipo reactor ( ) = 0 , A A A A N dX R TX V dt ( ) = 0 0 , A A X A A A A X dX t N R TX V ( ) 0 0 A = = C , A A A A V X F R TX τ Δ ( ) =− 0 , A A A A dV dX F R TX ( ) τ = 0 0 , A X A A A A dX N R TX V Reactores ideales No isotérmicos

Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

  • Upload
    hangoc

  • View
    232

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

1

Dr. Rogelio Cuevas García 1

Ingeniería de Reactores

Reactores idealesNo isotérmicos

Dr. Rogelio Cuevas García 2

En el calculo de un reactor químico se utiliza necesariamente la ecuación de diseño.

CSTR

PFR (PBR)

Intermitente

Forma integradaForma diferencial (o en diferencias)

Tipo reactor

( )= −⎡ ⎤⎣ ⎦0

,A A

A A

N dXR T X

V dt ( )=

−⎡ ⎤⎣ ⎦∫

0

0 ,

A

A

XA

AA AX

dXt N

R T X V

( )00 A

= =C ,

A

A A A

V XF R T X

τ Δ⎡− ⎤⎣ ⎦

( )= −

−⎡ ⎤⎣ ⎦

0 ,A

A A A

dV dXF R T X ( )

τ =−⎡ ⎤⎣ ⎦

∫ 0

0 ,

AXA

AA A

dXN

R T X V

Reactores ideales No isotérmicos

Page 2: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

2

Dr. Rogelio Cuevas García 3

Por ejemplo, para calcular el tiempo de operación de un reactor intermitente se utiliza la correspondiente ecuación de diseño en su forma integral

( )=

−⎡ ⎤⎣ ⎦∫

0 0,

A

A

XA

A A AX

t dXC R T X

El primer requisito para resolver esta integral es plantearla enfunción de una variable, como se indica XA. Si la reacción es de primer orden (-RA)=kCA=kCA0(1-XA), que se substituye en la ecuación anterior:

=−∫

0 00( ) (1 )

A

A

XA

A A AX

t dXC k T C X

Reactores ideales No isotérmicos

Dr. Rogelio Cuevas García 4

0 0 0

1

(1 )

A

A

XA

A A AX

t dXC kC X

=−∫

en realidad k es una función de la temperatura, de acuerdo a la ecuación de Arrhenius:

0( )AE

RTk T A e−

=

Reactores ideales No isotérmicos

En el caso isotérmico, el coeficiente cinético (k), puede considerarse constante y por lo tanto sale de la integral

Page 3: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

3

Dr. Rogelio Cuevas García 5

Pero de acuerdo a la discusión anterior, un posible método de solución es encontrar k(XA)

Para lo cual es suficiente determinar una función donde:

T=T(XA)

Reactores ideales No isotérmicos

( )

0 00(1 )

A

A

XA

A A AX

t dXC k T C X

=−∫

Conservando la suposición de una reacción de primer orden: (-RA)=k(T)CA=k(T)CA0(1-XA), de esta manera, el caso no isotérmico la integral que debe resolverse es:

Dr. Rogelio Cuevas García 6

Efectos del cambio de temperatura

Cualquier cambio de temperatura trae consigo cambios en diversos parámetros relacionados con la reacción química que se esta analizando, estos son:a)Velocidad de reacción.b)Calor de reacción.c)Constante de equilibrio.d)Conversión de equilibrio.

Reactores ideales No isotérmicos

Page 4: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

4

Dr. Rogelio Cuevas García 7

Formas de control de temperatura en reactores CSTR

(a) enchaquetado, (b) serpentín interno, (c) tubos internos, (d) intercambiador de calor externo, (e) condensador externo con reflujo, (f) calentador a fuego directo.

Dr. Rogelio Cuevas García 8

Formas de control de temperatura en reactores CSTR

Nitrador Hough de hierro fundido con túneles exteriores (Grogins(1), cortesía McGraw-Hill bookcompany, New, York)

Page 5: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

5

Dr. Rogelio Cuevas García 9

Formas de control de temperatura en reactores PFR

Horno de Schoenherrpara la obtención de NO a partir del aire

Dr. Rogelio Cuevas García 10

Formas de control de temperatura en reactores PFR

Page 6: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

6

Dr. Rogelio Cuevas García 11

Cambios en el coeficiente cinético con la temperatura

La función que describe al efecto de la temperatura sobre el coeficiente cinético es la ecuación de Arrhenius

0

EARTk A e

⎛ ⎞−⎜ ⎟⎝ ⎠=

0 0

0

ln ln( ) ln ln

ln ln

A AE ERT RT

A

k A e A eEk ART

− −= = + =

= −

Ecuación de Arrhenius

y = -9913.4x + 24.186R2 = 0.9992

-13

-12

-11

-10

-9

-8

-7

0.0032 0.0033 0.0034 0.0035 0.0036 0.00371/T, K-1

ln k

Dr. Rogelio Cuevas García 12

Cambios en el coeficiente cinético con la temperatura

A0=2.1(1010), EA=18 Kcal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 20 40 60 80Temperatura, °C

k, s

eg-1

0

25000

50000

75000

100000

125000

150000

0 100 200 300 400 500 600Temperatura, °C

k, s

eg-1

Page 7: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

7

Dr. Rogelio Cuevas García 13

Calculo del calor de reacción

Para una reacción dada: aA rR sS⎯⎯→ +

Por convenio se define el calor de reacción (ΔHR) a una temperatura T, como el calor suministrado al sistema reaccionante cuando a moles de A desaparecen para formar r moles de R y s moles de S, permaneciendo el sistema a la misma temperatura y presión antes y después de la reacción.

ΔHR (+) Positivo, endotérmico (el sistema recibe calor)(-) Negativo, exotérmico (el sistema genera calor)

Dr. Rogelio Cuevas García 14

Calculo del calor de reacción

2

1

01 2

0

R R

T

R R PT

P R S A

H H H H

H H C T

C T rCp sCp aCp

Δ = −Δ + Δ + Δ

Δ = Δ + Δ

Δ = + −

Page 8: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

8

Dr. Rogelio Cuevas García 15

Calculo del calor de reacción

( )

( ) ( ) ( )

α β γ

α β γ

α β γ

α β γ

β γα

Δ = Δ + Δ

Δ = + −

= + +

= + +

= + +

Δ = Δ + Δ + Δ + Δ =

Δ Δ= Δ + Δ − + − + −

2

1

2

1

0

2

2

2

0 2

0 2 2 3 32 1 2 1 2 12 3

T

R R PT

P R S A

A A A A

R R R R

S S S S

T

R RT

R

H H C T

C T rCp sCp aCp

Cp T T

Cp T T

Cp T T

H H T T dT

H T T T T T T

Dr. Rogelio Cuevas García 16

Calculo del calor de reacción

( ) ( ) ( )β γα

α α α αβ β β βγ γ γ γ

⎯⎯→ +Δ Δ

Δ = + Δ − + − + −

Δ = + −Δ = + −Δ = + −

0 2 2 3 32 1 2 1 2 12 3R R

R S A

R S A

R S A

aA rR sS

H H T T T T T T

r s a

r s a

r s a

Page 9: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

9

Dr. Rogelio Cuevas García 17

Efecto sobre la constante de equilibrio

La ecuación que define el equilibrio termodinámico es:0 lnG RT KΔ = −

Para una reacción dada:

aA rR sS⎯⎯→ +Entonces

y 0 0

0 0 0 0

0

r s

R sR S A a

A

f ff f

G r G s G a G Kff

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Δ = Δ + Δ − Δ =

⎛ ⎞⎜ ⎟⎝ ⎠

Dr. Rogelio Cuevas García 18

Efecto sobre la constante de equilibrio

En la ecuación anterior f: es la fugacidad en el equilibrio. f0 fugacidad del componente en las condiciones de referencia, estas

condiciones son elegidas arbitrariamente; pero corresponden la misma temperatura elegida para evaluar ΔG0.

Los estados de referencia generalmente elegidos y donde (f0=1) se asigna corresponden a:

Gas (ideal): 1 atmósfera de presión.Sólido: componente puro, presión unitariaLíquido: liquido puro a su tensión de vapor Soluciones líquidas: solución 1M o la concentración que presenta

una actividad igual a 1.

Page 10: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

10

Dr. Rogelio Cuevas García 19

Efecto sobre la constante de equilibrio

De manera similar, existen otras constantes de equilibrio en función de diversas variables que expresen composición, así para la misma reacción;

aA rR sS⎯⎯→ +

Se tiene:

;r s

R Sf a

A

f fK

f= ;

r sR S

p aA

P PK

P= ;

r sR S

y aA

Y YK

Y= ;

r sR S

C aA

C CK

C=

Dr. Rogelio Cuevas García 20

Efecto sobre la constante de equilibrio

Al cumplir con los estados de referencia anteriores es posible utilizar simplificaciones. Por ejemplo, si se tiene un comportamiento de gas ideal, para cualquier componente i, las bajas presiones permiten que:

i i p T If P y P C RT= = =Esto implica que, Kf=KP; además:

{ } { }( )

{ }0 0 0p =1 atm p =1 atm p =1 atm

nny T CP

n n n

K P K RTKΔΔ

Δ Δ Δ= =

Para un componente sólido que participa en la reacción, la presión no tiene efecto en las variaciones de fugacidad y entonces:

0

1SÓLIDO

ff

⎛ ⎞=⎜ ⎟

⎝ ⎠

Page 11: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

11

Dr. Rogelio Cuevas García 21

Efectos sobre la conversión de equilibrio

La conversión de equilibrio depende de la constante de equilibrio, que a su vez presenta una dependencia con la temperatura de acuerdo a la ecuación de Van’t Hoff

( )2Rd lnK H

dT RTΔ

=

Para resolver la ecuación anterior es necesario conocer el tipo de función de ΔHR respecto a la temperatura. Cuando se pueda considerar constante:

2

1 2 1

1 1ln RK H

K R T T⎡ ⎤Δ

= − −⎢ ⎥⎣ ⎦

Dr. Rogelio Cuevas García 22

Efectos sobre la conversión de equilibrio

2

1

22

1

1ln

TR

T

K HdT

K R TΔ

= ∫

Δ = Δ + Δ∫2

1

0T

R R PT

H H C dT

En realidad ΔHR es una función de la temperatura y entonces:

Donde ΔHR se calcula de acuerdo a:

Realizando la integral respectiva:

( ) ( )β γα

β γα

Δ Δ= Δ + − + − +

⎛ ⎞Δ Δ⎛ ⎞Δ Δ + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0R + H +

2 22 22 1 2 1

1 1

2 30 0 0

2 1

ln ln2 3

1 1

2 3

K TR T T T T

K T

T T TT T

Page 12: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

12

Dr. Rogelio Cuevas García 23

Balance de energía para reactores ideales

Dr. Rogelio Cuevas García 24

Balance de Energía

Cuando se trabaja con reactores no isotérmicos se debe de utilizar la ecuación del balance de energía.

Ec. (1)De acuerdo a Bird 1: La energía puede entrar y salir del elemento de volumen por cualquiera de las siguientes causas:

Radiación:QRAD

Flujo convectivo

Conducción de calor

( )j j jj

M C cp u T⋅∇∑)( Tλ⋅∇

1. R.B. Bird, W. E. Stewart, L. N. Lightfoot, “Transport Phenomena”,John Wiley and son, N. Y. 1964

Page 13: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

13

Dr. Rogelio Cuevas García 25

Balance de Energía

Difusión molecular

Donde a su vez

Adicionalmente y dependiendo de las condiciones de operación particulares se deben considerar los fenómenos asociados a:

ExpansiónDisipación viscosaEfectos de campos externos:a)Mecánicos.b)Magnéticos.

Tomando en consideración las condiciones imperantes en un reactor químico, podemos despreciar el calor de radiación (puesto que no se opera a temperaturas altas) y la difusión (porque es mucho más importante el flujo convectivo).

∑ ∇ ji HJ

⎟⎟⎠

⎞⎜⎜⎝

⎛∇=

f

ijmfi

CDJρ

ρ

Dr. Rogelio Cuevas García 26

Balance de Energía

El termino de consumo o desaparición de calor debido a la reacción se representa como:

Mientras que el termino de acumulación de energía es:

Por lo que podemos reescribir el balance de energía como: (considerando coordenadas rectangulares)

Se debe recordar que:

j j ji

TM C cpt

∂∂∑

( )( ) ,j j jj

H r T X⎡ ⎤−Δ −⎣ ⎦∑

( ) ( ) ( ) , (2)j j j j j jj j

TM C cp u T H r T X Tt

λ∂⎛ ⎞ ⎡ ⎤+ ⋅∇ = −Δ − +∇⋅ ∇⎜ ⎟ ⎣ ⎦∂⎝ ⎠∑ ∑

( ) ⎟⎠⎞

⎜⎝⎛

∂∂

∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

+⎟⎠⎞

⎜⎝⎛

∂∂

∂∂

=∇⋅∇zT

zyT

yxT

xT zcycxc ,,, λλλλ

Page 14: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

14

Dr. Rogelio Cuevas García 27

Balance de Energía

Aunque la anterior ecuación de la energía representa una forma completa es conveniente trabajar con una expresión más simple, para ello se puede proceder de la siguiente manera:

Simplificación de la ecuación de la energía.a) El flujo predominante en el reactor se presenta en el eje axial (z) .b)La transferencia de calor se presenta como flujo convectivo (en la dirección z) y transferencia a través de las paredes del recipiente. De tal manera que promediando a lo largo de la dirección de flujo principal (z) y utilizando coordenadas cilíndricas, la ecuación del balance de energía se convierte en:

Dr. Rogelio Cuevas García 28

Balance de Energía

c) La transferencia de calor a través de las paredes del recipiente se introduce como una condición de frontera, representada como:

Donde: n = dirección normal a la pared.αw= coeficiente de transferencia.Tw= temperatura en la pared del reactor.

De esta manera para un reactor adiabático:

αw(Tw-TR)=0 (5)

( )

, ,4 (3)

j j j i ij i

c z c nr w

T TM C cp u H r

t z

T Tz z d n

λ λ

∂ ∂⎛ ⎞+ = −Δ − +⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞∂+⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑

(4) )(, Rwww

nc TTnT

−=⎟⎠⎞

⎜⎝⎛

∂∂ αλ

Page 15: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

15

Dr. Rogelio Cuevas García 29

Balance de Energía

d) Volviendo a la transferencia de calor a través de las paredes del recipiente, esta transferencia se realiza solo en una capa delgada alrededor de la pared del reactor.

Donde Tr= temperatura de los alrededores del sistema.U=Coeficiente de transferencia de energía global<T>=Temperatura promedio en el reactor.

Por lo tanto la ecuación del balance de energía puede escribirse como:

( ) ( ) (6)w w R rT T U T Tα − = −

( ) ( )

( ),

,

4 (7)

j j j j j jj j

c zr

T TM C cp u H r T X

t z

T U Tr Tz z d

λ

∂ ∂⎛ ⎞+ = −Δ − +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞∂+ + −⎜ ⎟∂ ∂⎝ ⎠

∑ ∑

Dr. Rogelio Cuevas García 30

Balance de Energía

Finalmente un balance macroscópico riguroso se obtiene al integrar sobre todo el volumen del reactor.

( )

( ) ( ) ( )π

= − +

⎡ ⎤+ −Δ − + −⎣ ⎦

∑ ∑

∑ ∫ (8)

, , ,

,

j j j j o j o j ej j

j j j t rj

dTm C cp F H H

dt

V H r T X d U T T dz

El término en la integral representa en realidad la superficie de intercambio de calor, que puede llamarse Ak. Entonces el B.E. Se convierte en:

( )( )( ) ( )

= − +

+ −Δ − +

∑ ∑

∑ (8a)-

j j j jo jo jj j

i i k ri

dTm C cp F H H

dt

V H r AU T T

( )π∫ td

Page 16: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

16

Dr. Rogelio Cuevas García 31

Reactor Intermitente

Dado que en el reactor intermitente no existen entradas ni salidas del sistema, el termino de flujo convectivo en la ecuación (8) es igual a cero:

( )− =∑ 0jo jo jj

F H H

Llamando Q al calor transferido desde (o hasta) los alrededores.

)( TTUQ r −=Entonces el balance de energía para este tipo de reactores se escribe:

( ) ( ) k, A Q (9)j j j j j jj j

dTm C cp V H r T Xdt

⎡ ⎤= −Δ +⎣ ⎦∑ ∑Se debe recordar que el termino de reacción [-rj(T,Xj)] es función de la temperatura y conversión (Xi). Pero, a su vez en este reactor, X(θ).

( ) ( ) ( ) ( )⎡ ⎤= − + −Δ − +⎣ ⎦∑ ∑ ∑ , -j j j jo jo j i i j k rj j i

dTm C cp F H H V H r T X A U T T

dt

Dr. Rogelio Cuevas García 32

Reactor Intermitente

En realidad la relación entre la conversión y la velocidad de reacción se obtiene a través del balance de materia.

( )( )0

, , (10)AA A A

dXV r T X Ndt

θ⎡ − ⎤ =⎣ ⎦

Substituyendo en el balance de energía (ec. 9) y refiriéndonos a una reacción simple:

( ) 0 kA Q (11)AT i A

dT dXm Cp H Ndt dt

− −Δ =

Separando variables:

( )− −Δ = 0 (11 )T i A A km CpdT H N dX AQdt a

Integrando

( ) ( ) ( ) (11b) QAk000 tXXNHTTCpm AAAiT =−Δ−−−

Page 17: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

17

Dr. Rogelio Cuevas García 33

Reactor Intermitente

Reactor intermitente adiabático.

En condiciones de aislamiento térmico ideal el calor transferido desde (o hasta) los alrededores es igual a cero (Q=0), en estas condiciones el balance de energía se escribe:

( ) ( ) ( )0 0 0 0 (12)T i A A Am Cp T T H N X X− − −Δ − =

De donde:

( ) ( ) ( ) (12b) 00

0 AAT

Ai XXCpm

NHTT −Δ−

=−

Dr. Rogelio Cuevas García 34

Reactor Intermitente

El cambio máximo de temperaturas o cambio máximo adiabático (ΔT)ADB se presenta cuando XA=1 y XA0=0. Esto es:

( ) ( ) ( ) (13) 00 Cpm

NHTTTT

AiMAXADB

Δ−=−=Δ

Utilizando esta ecuación en la ec. 12, obtenemos el cambio en la temperatura en función de la conversión:

( ) (14) 0 AADB XTTT Δ+=

Page 18: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

18

Dr. Rogelio Cuevas García 35

Reactor PFR (o PBR)

El balance de energía presenta la siguiente forma:

( ) ( ) ( ) ( ),ii i i io io i R i i k r

i i i

dTm C cp F H H V ΔH r T X A U T - T dt

⎡ ⎤= − + − − +⎣ ⎦∑ ∑ ∑

En este caso las simplificaciones que se pueden realizar son las siguientes:

1. Este reactor opera de manera continua y en estado estable; por lo tanto, no existe acumulación de energía:

dtdT 0= Que implica que 0=∑ dt

dTcpCmi

iii

Dr. Rogelio Cuevas García 36

Reactor PFR (o PBR)

recordando que: ( )io io ii

F H H−∑

representa en realidad los cambios de entalpía de las corrientes de entrada y salida estas se pueden representar como:

( )i

mcpdTio io iF H H•

− =∑ ∑Entonces la ecuación del balance de materia se reduce a (considerando que para este tipo de reactor se realiza el balance de manera diferencial):

( ), ( ) 0 ik i i R

i

mcpdT A Q r T X H dV•

⎡ ⎤+ − − −Δ =⎣ ⎦∑

Page 19: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

19

Dr. Rogelio Cuevas García 37

Reactor PFR (o PBR)

( ), ( ) 0 ik i i R

imcpdT A Q r T X H dV•

⎡ ⎤+ − − −Δ =⎣ ⎦∑Por otra parte el balance de materia:

0

( , )ii i

i

dX r T XVdF

=⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠

Las ecuaciones deben resolver simultáneamente utilizando métodos numéricos y entonces la agrupación

cpdTmi∑

debe de ajustarse en cada cálculo. La alternativa es utilizar Cp medio en todo el intervalo de cálculo. En ese caso también el ΔHR debe promediarse en el intervalo de temperaturas trabajado.

Dr. Rogelio Cuevas García 38

Reactor PFR (o PBR)

Para resolver estas ecuaciones un método consiste en introducir el balance de materia en el balance de energía para obtener:

0

i

ii k R

i

i

dXmcp dT A Q ( ΔH )dVVdF

⎡ ⎤⎢ ⎥⎢ ⎥+ = − ⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

De donde:0

( ) ii k R i i

i

mcp dT A Q H F dX•

+ = −Δ∑

Utilizando cP medio para toda la mezcla, el término ∑•

iii cpm

puede substituirse por y entonces :cpmT

Page 20: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

20

Dr. Rogelio Cuevas García 39

Reactor PFR (o PBR)

0( )

iT k R i im cpdT A Q H F dX

+ = −Δ

En condiciones adiabáticas AkQ=0. y entonces:

)(0 iiRT dXFHdTcpm

iΔ−=

De donde:

0( )

iR ii

T

H FdT dX

m cp•

−Δ=

que es una EDO de variables separables que puede integrarse fácilmente para obtener:

( ) ( )0

0)(

0 ii

T

iR XXcpm

FHTT i −

Δ−=− •

Dr. Rogelio Cuevas García 40

Reactor PFR (o PBR)

También en este caso el máximo cambio de temperatura se presenta cuando XJ=1 (XJ0=0)

0max

( )iR i

AD

T

H FT T

m cpλ •

−ΔΔ = Δ = =

y finalmente

( )00 i iT T X Xλ= + −

Page 21: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

21

Dr. Rogelio Cuevas García 41

Reactores CSTR

( ) ( ) ( ) ( )k ri

, A U T -T T i io io i Ri i ii

dTm C cp F H H V H r T Xdθ

⎡ ⎤= − + −Δ − +⎣ ⎦∑ ∑

El balance general de energía nos lleva a la siguiente ecuación

Por otra parte, el balance de materia para este tipo de reactor se escribe como:

0 0( )( , )

i

i i i i

V XC F r T Xτ Δ

= =−

Dado que este tipo de reactor opera en estado estable entonces: dT/dθ=0, utilizando otra vez las capacidades caloríficas medias.

( ) ( )0 0 K0 ( ) , A Q if R i i

i

Q cp T T V H r T Xρ ⎡ ⎤= − + −Δ − +⎣ ⎦∑

Pero: 0 [ ]fvol masa masaQ m

tiempo vol tiempoρ = = = &

Dr. Rogelio Cuevas García 42

Reactores CSTR

Reordenando en balance de materia0

0

( , )j jjj j

j

F XXr T XV V

F

ΔΔ⎡ ⎤= = −⎣ ⎦Δ

Substituyendo de nueva cuenta en el balance de energía

Se obtiene: ( ) 00 0 k( ) A Q

j

j jf R

j

F XQ cp T T V H

Δ− = −Δ +∑

( ) ( )ρ ⎡ ⎤= − + −Δ − +⎣ ⎦∑0 00 ( ) ,jf R j j k

j

Q cp T T V H r T X A Q

En condiciones adiabáticas, Q=0. y entonces tenemos una ecuación en diferencias:

( ) 00 jf R j jj

Q cp T H F Xρ Δ = −Δ Δ∑

Page 22: Ingeniería de Reactores - depa.fquim.unam.mxdepa.fquim.unam.mx/amyd/archivero/reactoresnoisotermicos_9305.pdf · Ingeniería de Reactores Reactores ideales No isotérmicos Dr. Rogelio

22

Dr. Rogelio Cuevas García 43

Reactores CSTR

De donde:( ) 0

0

jR jj

jf

H FT X

Q cpρ

−ΔΔ = Δ

O cuando se analiza solo una reacción:

( ) ( )0

000

( )iR j

j jf

H FT T X X

Q cpρ

−Δ− = −

Para este caso, también, el máximo cambio de temperatura se presentaría cuando XJ=1 y XJ0=0.

0max

0

( )iR j

ADf

H FT T

Q cpλ

ρ

−ΔΔ = Δ = =

Dr. Rogelio Cuevas García 44

Reactores CSTRY finalmente la línea de operación (en realidad, el punto de operación) del reactor se escribe de acuerdo a:

( )00 ii XXTT −+= λ