12
Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4 , M. Koehler 2,4 , O.N. Menzies 3,4 , M. M. Grady 1,4 1 The Natural History Museum, London

Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Embed Size (px)

Citation preview

Page 1: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of

an Early Solar System.

A. Morlok1,4, M. Koehler2,4, O.N. Menzies3,4, M. M. Grady1,4

1 The Natural History Museum, London2 Institut fuer Planetologie, Muenster

3 Imperial College, London 4 IARC

Page 2: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

© European Southern Observatory

Astronomical Infrared Spectra

Page 3: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Formation of a Solar System

© Bill Hartmann

Page 4: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Primitive Meteorites: Components

Calcium-Aluminum Rich Inclusions Chondrules and Matrix

Mainly Silicates, e.g.:Olivine (Mg,Fe)2SiO4

Pyroxene (Mg,Fe)SiO3

‘Glass’

Highly refractory phases, e.g.:Corundum Al2O3

Hibonite CaAl12O19

Melilite Ca2MgSi2O7

Ca2Al2SiO7

Page 5: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

What ?

?

(Mid-)infrared spectra from sub-micron dust clouds, young solar systems, circumstellar discs etc. obtained with earth and space based telescopes

Mid-infrared analysis of sub-micron powder of mineral separates and components, from primitive meteorites for comparison with these astronomical spectra

Aim: Comparison of laboratory infrared data of minerals and components with astronomical spectra

© European Southern Observatory

Page 6: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Challenges-Sample Preparation:

-’Pure’ grains/material needed But primitive meteorites are very fine grained, most mineral grains <<100m

-Characterization: What are we actually measuring ?-Preparation of tiny grains for identification, measurement of chemical composition, estimation of homogeneity

-Infrared Measurements-Small amounts of material (~ng) Difficult to prepare/handle Danger of artefacts

-Generally: Efficiency of process – each individual grain counts !

Page 7: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Sample Preparation

Cleaning with Isopropanol and Deionised Water

Picking

Embedding

PolishingCharacterisation

Separation

Grinding FT-IR Analysis (at last)

Separation

Sample

Page 8: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

How: FT-IR Techniques (Microscope)-Perkin Elmer AutoImage FT-IR microscope system for mid-infrared: 4000cm-1 to 650cm-1 (2.5m to ~16m), spectral resolution 4cm-1

Transmission/Absorbance

Source

Sample

Detector

+High Quality+Common

-Thin Samples Needed

Reflectance

Source

Sample

Detector

+Easy&Fast

-(Less Common)

ATR

Source

Sample

Detector

+High Quality

-Artefacts-Resolution

Page 9: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Results: Enstatites from Primitive Meteorites I

TW Hya

-Pictoris

Enstatite (En99) From Primitive Meteorite

Page 10: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

60 65 70 75 80 85 90 95 100

Enstatite Mol%

Ban

d P

ositi

on in

Mic

ron

Results: Enstatites from Primitive Meteorites

Page 11: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Compact, Melilite/Spinel-rich Inclusion (Vigarano CV3.3)

Wark-Lovering Rim:Diopside, Forsterite, Spinel

Interior:Melilite, Spinel

Material Separated ‘In Situ’ from Polished Thick Section

A

8 9 10 12 13m11

TW Hya

-Pictoris

Page 12: Infrared Spectroscopy of Minerals from Primitive Meteorites: An IR Snapshot of an Early Solar System. A. Morlok 1,4, M. Koehler 2,4, O.N. Menzies 3,4,

Conclusions & Outlook

-Analyses over a wider range of wavelengths needed (far IR !)-Systematic analysis of all types of components like CAI and chondrules-Effects of environment (temperature…) and size

andso…

-Mid-infrared spectra of components and minerals from primitivechondrites can be easily measured with a variety of techniques-Preliminary comparison with astronomical spectra shows potential -But much more work has to be done ….