1
A1 G1 H1 A M1 AL 1 AK 1 A3 F3 E3 B3 C3 D3 A2 F2 E2 B2 C2 D2 A4 G4 C4 B4 F4 E4 B1 F1 C1 E1 K2 J2 I2 H2 AJ 4 AK 4 AL 4 A M4 AH 3 AI3 AG 3 AK 3 T1 AT 1 AI4 AH 4 AF 3 AG 4 AB 3 AB 4 AA 3 AA 4 AC 3 AD 4 Y3 AC 4 AD 3 AE 4 AF 4 AE 3 AE 3 AG 4 AH 4 AF 3 AN 1 AA 2 S1 D1 L2 M2 AP 1 N2 R1 O2 Q1 P2 T1 Z2 U1 Y2 G3 J3 H3 I3 AH 1 AG 1 I1 J1 AL 2 AK 2 A M2 AJ 2 L4 K4 D4 H4 J4 I4 AH 2 AI2 Y4 Z4 Q2 X2 X3 Z3 P1 W 1 K3 L3 K1 AF 1 AJ 1 AI1 AN 2 A M2 0.00065 0.0006 0.00037 0.00036 0.0017 0.0012 0.0012 4.115m 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0006 0.0003 0.0017 0.00038 0.0015 0.0005 0.0006 0.0006 0.0006 0.0025 0.0014 0.0014 0.0013 0.0006 0.0006 0.0005 0.0005 0.0009 0.0004 0.0010 0.0003 0.0003 0.0003 0.0003 0.0010 0.0003 0.0003 0.0003 0.0009 0.0011 0.0009 0.0005 0.0005 0.0003 0.0011 0.0003 0.0003 0.0003 0.0003 0.0009 0.0009 0.0015 0.0010 0.0010 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0009 0.0003 0.0003 0.0003 0.0003 0.0013 0.0003 0.0003 0.0006 0.0003 0.0003 0.0003 0.0003 0.0003 0.00036 0.0037 0.0006 0.00065 0.00038 0.0017 0.0015 0.0005 0.0005 0.0006 0.0006 0.0014 0.0025 0.0014 0.0005 0.0005 0.0015 0.0017 0.0006 0.00065 0.0006 0.0006 0.00038 0.0015 0.00038 0.00065 0.0006 0.00037 0.00037 0.0002 0.0003 0.0003 0.0003 0.0003 0.0006 0.0012 0.0006 0.0011 0.0003 0.0003 0.0003 0.0003 0.0005 0.0003 0.00036 0.0017 0.00036 0.0003 0.0003 0.0017 L1 AD 1 M1 AB 1 N1 AA 1 O1 X1 0.0003 0.0001 0.0005 0.0008 0.0008 0.0008 0.0008 0.0001 0.0006 AE 1 AC 1 Z1 Y1 0.0013 0.0013 0.0013 0.0013 0.0007 0.0004 0.0005 0.0005 0.0005 0.0004 0.0007 0.0007 0.0003 0.0015 BAY11 0.0005 BAY12 0.0006 BAY13 0.0006 BAY14 0.0001 BAY15 BAY16 BAY17 BAY18 0.0006 0.0006 0.0001 0.0003 BAY116 BAY115 BAY114 BAY113 BAY112 BAY111 BAY110 BAY19 0.0003 0.0005 0.0009 0.0006 0.0004 0.0006 0.0006 0.0005 M3 N3 Q3 R3 S3 T3 W 3 V3 0.0003 0.0001 0.0005 0.0008 0.0008 0.0008 0.0008 0.0001 0.0006 P3 O3 V3 U3 0.0013 0.0013 0.0013 0.0013 0.0007 0.0004 0.0005 0.0005 0.0005 0.0004 BAY31 0.0003 BAY32 0.0006 BAY35 0.0006 BAY36 0.0001 BAY310 BAY312 BAY313 BAY315 0.0006 0.0006 0.0001 0.0003 BAY33 BAY34 BAY37 BAY38 BAY39 BAY311 BAY314 BAY316 0.0003 0.0005 0.0009 0.0006 0.0004 0.0006 0.0006 0.0005 M4 N4 R4 Q4 S4 T4 W 4 X4 0.0003 0.0001 0.0005 0.0008 0.0008 0.0008 0.0008 0.0001 0.0006 O4 P4 V4 U4 0.0013 0.0013 0.0013 0.0013 0.0007 0.0004 0.0005 0.0005 0.0005 0.0004 BAY416 0.0005 BAY414 0.0006 BAY412 0.0006 BAY411 0.0001 BAY47 BAY45 BAY44 BAY42 0.0006 0.0006 0.0001 0.0003 BAY415 BAY413 BAY410 BAY49 BAY48 BAY46 BAY43 BAY41 0.0003 0.0005 0.0009 0.0006 0.0004 0.0006 0.0006 0.0005 AG 2 AF 2 AB 2 AC 2 U2 T2 V2 W 2 0.0003 0.0001 0.0005 0.0008 0.0008 0.0008 0.0008 0.0001 0.0006 AE 2 AD 2 R2 S2 0.0013 0.0013 0.0013 0.0013 0.0007 0.0004 0.0005 0.0005 0.0005 0.0004 BAY216 0.0005 BAY213 0.0006 BAY212 0.0006 BAY211 0.0001 BAY27 BAY26 BAY24 BAY22 0.0006 0.0006 0.0001 0.0003 BAY215 BAY214 BAY210 BAY29 BAY28 BAY25 BAY23 BAY21 0.0003 0.0005 0.0009 0.0006 0.0004 0.0006 0.0006 0.0005 AQ 1 0.0004 AR 1 0.0003 A M3 AL 3 0.0003 0.0003 0.0004 AO 4 AN 4 0.0003 0.0003 0.0004 AO 2 AN 2 0.0003 0.0003 0.0004 AQ 2 AP 2 0.0003 0.0003 0.0004 AQ 4 AP 4 0.0003 0.0003 0.0004 AO 3 AN 3 0.0003 0.0003 0.0004 AS 1 AT 1 0.0003 0.0003 0.0004 D1 D1 0.0003 0.0003 AT 1 0.0003 T1 0.0003 48 secs i. Linear (current practice): = 10 + ii. Piece-wise Linear: = 10 + , 20 + (10) , iii. Big M: = 10 + , , n number of vehicles on an edge t time taken to travel an empty edge e(n) time to traverse jammed edge with n vehicles Routing of automated material handling systems (AMHS) vehicles in wafer fabs. Increasing number of FOUP pickup/ delivery requests are causing: Increase in number of vehicles Increase in vehicle congestion Increase in wait time for FOUPs 1. Homogeneous Simulations : Equally probable pickup/delivery requests. 2. Heterogeneous Simulations : Doubly probable pickup/delivery from any one bay. Pickup Protocols continued: c. Reservation with ETA Policy: Every scheduling cycle, busy vehicles with estimated time of arrival under some threshold, get reserved by lots in queue that are nearest to their current location (via current destination). Any idle reserved vehicle is re-reserved by nearer lots in queue. d. Reservation without ETA Policy: Same as Reservation with ETA except there’s no ETA threshold. INTRODUCTION TOOLS OBJECTIVES 15 server (vehicle) stylized system Stable pickup request arrival rate - determined by trial and error Stability - vehicle utilization 98% Graphical system stability verification: a. FIFO : Idle vehicle picks up a lot from the queue that has waited the longest. b. Nearest Lot Policy: Pickup lot that’s nearest in terms of the time an idle vehicle will take to travel to it. METHODOLOGY (1/3) METHODOLOGY (3/3) ONGOING WORK Python simulate & test algorithms AutoCAD design stylized fab Microsoft Visio – - Toy lattice networks for building & testing simulator: - Network representation of stylized fab METHODOLOGY (2/3) John J Hasenbein a , Shreya Gupta b a: Associate Professor, [email protected]; b: PhD Candidate, [email protected]; OR/IE Group, Department of Mechanical Engineering, The University of Texas at Austin Improving Scheduling and Control of the OHTC Controller in Wafer Fab AMHS Systems Lot 10, 40 secs Lot 11, 10 secs Lot 12, 33 secs Lot n, 27 secs (Lots in queue Time from vehicle 3) , Sequence in which vehicles become idle 3 8 5 7 Lot 10, NA Lot 11, NA Lot 12, NA Lot n, NA (Lots in queue Time from vehicle 3) , Sequence in which vehicles become idle 3 8 5 7 Lot 10, 300 secs Lot 11, 10 secs Lot n, 27 secs (Lots in queue Time from vehicle 3) , Sequence in which vehicles become idle 3 8 7 1 st reservation of vehicles with ETA under 4 mins ETA, 3.3 mins ETA, 3.7 mins ETA, 1.0 min Scheduling Cycle 1 (Cycle time = 3mins) Lot 10, 28 secs Lot 11, reserved Lot n, 5 secs (Lots in queue Time from vehicle 8) , Sequence in which vehicles become idle 3 8 7 2 nd reservation of vehicles with ETA under 4 mins ETA, reserved ETA, 3.7 mins ETA, 1.0 min Lot 10, 400 secs Lot 11, 10 secs Lot 12, 330 secs Lot n, 27 secs (Lots in queue Time from vehicle 3) , Sequence in which vehicles become idle 3 1 9 7 1 st reservation of vehicles with no ETA threshold Scheduling Cycle 1 (Cycle time = 3mins) Lot 13, 120 secs 8 Additional vehicles available for reservation between vehicles 3 & 8 No. of vehicles threshold Time No. of vehicles threshold Time Bay 1 25% Bay 2 25% Bay 4 25% Bay 3 25% Bay 1 50% Bay 2 16.67% Bay 3 16.67% Bay 4 16.67% PICKUP PROTOCOLS PARAMETER ESTIMATION ROUTING ALGORITHMS Symmetric & unidirectional Asymmetric & bidirectional No. of vehicles threshold M Time > > B C A D B Sub-optimal route decided using the actual distance between nodes D & B. Optimal route decided using state dependent time (or cost) between nodes D & B. From To A B 18 secs 0 B C 18 secs 0 C D 18 secs 0 D B 18 secs 3 B A 18 secs 1 Network State Edges Edge Travel Time 48 secs 36 secs 18 secs State Dependent Edge Travel Time 18 secs 18 secs A D C 36 secs 0.035 0.016 A B C D H G F E I J K L 0.005 0.015 0.007 0.019 0.013 0.010 0.006 0.005 0.023 0.002 0.007 0.012 0.014 0.020 0.007 0.014 0.013 0.004 0.022 0.014 0.014 0.003 0.011 0.002 0.008 0.005 0.012 0.020 0.025 0.013 0.008 0.015 A B C D H G F E I J K L 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 FAB CONTROLLER MCS OHTC 1 2 N Improve throughput via better routing algorithms for the over hoist transport control (OHTC) system. Enhance state dependent cost functions used in Dijkstra's algorithm. State of the network at time t is the number of vehicles on the various edges of the network. vehicles

informs_poster_v9_sg

Embed Size (px)

Citation preview

  • RESEARCH POSTER PRESENTATION DESIGN 2015

    www.PosterPresentations.com

    A1

    G1

    H1AM1

    AL1

    AK1

    A3

    F3

    E3B3

    C3 D3

    A2

    F2

    E2 B2

    C2D2

    A4

    G4

    C4 B4

    F4E4

    B1

    F1

    C1

    E1

    K2

    J2

    I2

    H2

    AJ4

    AK4

    AL4

    AM4

    AH3AI3

    AG3AK3

    T1

    AT1 AI4

    AH4

    AF3

    AG4

    AB3 AB

    4

    AA3

    AA4

    AC3

    AD4

    Y3 AC4

    AD 3 AE4

    AF 4AE 3

    AE3

    AG4

    AH 4AF 3

    AN1 AA2

    S1

    D1 L2

    M2

    AP1 N2

    R1

    O2

    Q1

    P2

    T1Z2

    U1

    Y2

    G3

    J3

    H3

    I3

    AH1

    AG1

    I1

    J1

    AL2

    AK2

    AM2

    AJ2

    L4

    K4

    D4

    H4

    J4

    I4

    AH2

    AI2

    Y4

    Z4

    Q2

    X2

    X3

    Z3

    P1

    W1

    K3

    L3

    K1

    AF1

    AJ1

    AI1

    AN2

    AM2

    0.00065

    0.0006

    0.00037

    0.00036

    0.0017

    0.0012

    0.0012

    4.115m

    0.0003

    0.0003

    0.0003

    0.0003

    0.0003

    0.0005

    0.0006

    0.0003

    0.0017

    0.00038

    0.0015 0.0005

    0.0006

    0.0006 0.0006

    0.0025

    0.0014 0.00140.0013

    0.0006 0.0006

    0.0005

    0.0005

    0.0009

    0.0004

    0.0010

    0.0003

    0.0003

    0.0003

    0.0003

    0.0010

    0.0003

    0.00

    03

    0.0003

    0.0009

    0.0011

    0.0009

    0.0005 0.0005

    0.0003

    0.0011

    0.0003

    0.0003

    0.00

    03

    0.0003

    0.00090.0009

    0.0015

    0.00100.0010

    0.0003

    0.0003

    0.0003

    0.0003

    0.0003

    0.0004

    0.0009

    0.0003

    0.0003

    0.0003

    0.0003

    0.0013

    0.0003

    0.0003

    0.0006

    0.0003

    0.0003

    0.0003 0.0003

    0.0003

    0.00036

    0.0037

    0.0006

    0.00065

    0.00038

    0.0017

    0.0015 0.0005

    0.0005

    0.00060.0006

    0.0014

    0.0025

    0.0014 0.0005

    0.0005

    0.0015

    0.0017

    0.0006

    0.00065

    0.00060.0006

    0.00038

    0.0015

    0.00038

    0.00065

    0.0006

    0.00037

    0.00037

    0.0002

    0.0003

    0.0003

    0.0003

    0.0003

    0.0006

    0.0012

    0.0006

    0.0011

    0.0003

    0.0003

    0.0003

    0.0003

    0.0005

    0.0003

    0.00036

    0.0017

    0.00036

    0.0003

    0.00

    03

    0.0017

    L1

    AD1

    M1

    AB1

    N1

    AA1

    O1

    X1

    0.0003 0.0001 0.0005

    0.0008 0.00080.0008 0.0008

    0.0001

    0.0006

    AE1

    AC1

    Z1

    Y10.0013 0.00130.00130.0013

    0.0007 0.0004 0.0005

    0.00050.0005

    0.0004

    0.00070.0007

    0.0003

    0.0015

    BAY11 0.0005 BAY12 0.0006 BAY13

    0.0006 BAY14 0.0001 BAY15 BAY16 BAY17 BAY180.0006 0.0006 0.0001 0.0003

    BAY116 BAY115 BAY114 BAY113 BAY112 BAY111 BAY110 BAY190.0003 0.0005 0.0009 0.0006 0.0004 0.0006

    0.00060.0005

    M3

    N3

    Q3

    R3

    S3

    T3

    W3

    V3

    0.0003 0.0001 0.0005

    0.0008 0.00080.0008 0.0008

    0.0001

    0.0006

    P3

    O3

    V3

    U30.0013 0.00130.00130.0013

    0.0007 0.0004 0.0005

    0.00050.0005

    0.0004BAY31 0.0003 BAY32 0.0006 BAY35 0.0006 BAY36 0.0001 BAY310 BAY312 BAY313 BAY3150.0006 0.0006 0.0001 0.0003

    BAY33 BAY34 BAY37 BAY38 BAY39 BAY311 BAY314 BAY3160.0003 0.0005 0.0009 0.0006 0.0004 0.0006 0.00060.0005M4

    N4

    R4

    Q4

    S4

    T4

    W4

    X4

    0.00030.00010.0005

    0.00080.0008 0.00080.0008

    0.0001

    0.0006

    O4

    P4

    V4

    U4 0.00130.0013 0.0013 0.0013

    0.00070.00040.0005

    0.0005 0.0005

    0.0004 BAY4160.0005BAY4140.0006BAY4120.0006BAY4110.0001BAY47BAY45BAY44

    BAY42

    0.00060.00060.0001

    0.0003

    BAY415BAY413BAY410BAY49BAY48BAY46BAY43BAY410.0003

    0.00050.00090.00060.00040.00060.0006 0.0005

    AG2

    AF2

    AB2

    AC2

    U2

    T2

    V2

    W2

    0.00030.00010.0005

    0.00080.0008 0.00080.0008

    0.0001

    0.0006

    AE2

    AD2

    R2

    S2 0.00130.0013 0.0013 0.0013

    0.00070.00040.0005

    0.0005 0.0005

    0.0004 BAY2160.0005BAY2130.0006BAY2120.0006BAY2110.0001BAY27BAY26BAY24BAY22 0.00060.00060.00010.0003

    BAY215BAY214BAY210BAY29BAY28BAY25BAY23BAY21 0.00030.00050.00090.00060.00040.00060.0006 0.0005

    AQ1

    0.0004

    AR1

    0.0003

    AM3

    AL3

    0.0003

    0.0003

    0.0004

    AO 4AN 4

    0.0003

    0.0003

    0.0004

    AO 2AN 2

    0.0003

    0.0003

    0.0004

    AQ 2AP 2

    0.0003

    0.0003

    0.0004

    AQ4

    AP4

    0.0003

    0.0003

    0.0004

    AO3

    AN3

    0.0003

    0.0003

    0.0004

    AS 1AT 1

    0.0003

    0.0003

    0.0004

    D1D1

    0.0003

    0.0003

    AT1

    0.0003T1

    0.0003

    48 secs

    i. Linear (current practice): = 10 +

    ii. Piece-wise Linear:

    = 10 + , 20 + (10) ,

    iii. Big M:

    = 10 + ,,

    n number of vehicles on an edge t time taken to travel an empty edge e(n) time to traverse jammed edge with n vehicles

    Routing of automated material handlingsystems (AMHS) vehicles in wafer fabs.

    Increasing number of FOUP pickup/delivery requests are causing:

    Increase in number of vehiclesIncrease in vehicle congestionIncrease in wait time for FOUPs

    1. HomogeneousSimulations:Equally probable pickup/delivery requests.

    2. HeterogeneousSimulations:Doubly probable pickup/delivery from any one bay.

    Pickup Protocols continued:

    c. Reservation with ETA Policy:

    Every scheduling cycle, busy vehicles withestimated time of arrival under somethreshold, get reserved by lots in queuethat are nearest to their current location(via current destination).

    Any idle reserved vehicle is re-reserved bynearer lots in queue.

    d. Reservation without ETA Policy:

    Same as Reservation with ETA excepttheres no ETA threshold.

    INTRODUCTION TOOLS

    OBJECTIVES

    15 server (vehicle) stylized system Stable pickup request arrival rate -

    determined by trial and error Stability - vehicle utilization 98% Graphical system stability verification:

    a. FIFO:Idle vehicle picks up a lot from the queuethat has waited the longest.

    b. Nearest Lot Policy:Pickup lot thats nearest in terms of thetime an idle vehicle will take to travel to it.

    METHODOLOGY (1/3) METHODOLOGY (3/3)

    ONGOING WORK

    Python simulate & test algorithms AutoCAD design stylized fab

    Microsoft Visio - Toy lattice networks for building &testing simulator:

    - Network representation of stylized fab

    METHODOLOGY (2/3)

    John J Hasenbein a, Shreya Gupta ba: Associate Professor, [email protected]; b: PhD Candidate, [email protected]; OR/IE Group, Department of Mechanical Engineering, The University of Texas at Austin

    Improving Scheduling and Control of the OHTC Controller in Wafer Fab AMHS Systems

    Lot 10, 40 secs

    Lot 11, 10 secs

    Lot 12, 33 secs

    Lot n, 27 secs

    (Lots in queue

    Time from vehicle 3)

    , Sequence in which vehicles become idle

    3

    8

    5

    7

    Lot 10, NA

    Lot 11, NA

    Lot 12, NA

    Lot n, NA

    (Lots in queue

    Time from vehicle 3)

    , Sequence in which vehicles become idle

    3

    8

    5

    7

    Lot 10, 300 secs

    Lot 11, 10 secs

    Lot n, 27 secs

    (Lots in queue

    Time fromvehicle 3)

    , Sequence in which vehicles become idle

    3

    8

    7

    1st reservation of vehicles with ETA under 4 mins

    ETA, 3.3 mins

    ETA, 3.7 mins

    ETA, 1.0 min

    Scheduling Cycle 1 (Cycle time = 3mins)

    Lot 10, 28 secs

    Lot 11, reserved

    Lot n, 5 secs

    (Lots in queue

    Time from vehicle 8)

    , Sequence in which vehicles become idle

    3

    8

    7

    2nd reservation of vehicles with ETA under 4 mins

    ETA, reserved

    ETA, 3.7 mins

    ETA, 1.0 min

    Lot 10, 400 secs

    Lot 11, 10 secs

    Lot 12, 330 secs

    Lot n, 27 secs

    (Lots in queue

    Time from vehicle 3)

    , Sequence in which vehicles become idle

    3

    1

    9

    7

    1st reservation of vehicles with no ETA threshold

    Scheduling Cycle 1 (Cycle time = 3mins)

    Lot 13, 120 secs 8

    Additional vehicles available for reservationbetween vehicles 3 & 8

    No. of vehiclesthreshold

    Tim

    e

    No. of vehiclesthreshold

    Tim

    e

    Bay 125%

    Bay 225%

    Bay 425%

    Bay 325%

    Bay 150%

    Bay 216.67%

    Bay 316.67%

    Bay 416.67%

    PICKUP PROTOCOLS

    PARAMETER ESTIMATION ROUTING ALGORITHMS

    Symmetric & unidirectional

    Asymmetric & bidirectional

    No. of vehiclesthreshold

    M

    Tim

    e

    >

    >

    B

    C

    A

    D

    B

    Sub-optimal route decidedusing the actual distancebetween nodes D & B.

    Optimal route decided usingstate dependent time (orcost) between nodes D & B.

    From ToA B 18 secs 0B C 18 secs 0C D 18 secs 0D B 18 secs 3B A 18 secs 1

    Network State

    Edges Edge Travel Time

    48 secs36 secs

    18 secs

    State Dependent Edge Travel Time

    18 secs18 secs

    A

    D C

    36 secs

    0.035

    0.016

    A B C D

    H G F E

    I J K L

    0.005

    0.015

    0.007

    0.019

    0.013

    0.010

    0.006

    0.005

    0.023

    0.002

    0.007

    0.012

    0.014

    0.020

    0.007

    0.014

    0.013

    0.004

    0.022 0.0140.014 0.0030.011 0.0020.008

    0.005 0.0120.020 0.0250.013 0.0080.015

    A B C D

    H G F E

    I J K L

    0.005 0.005 0.005

    0.0050.005 0.005

    0.0050.005 0.005

    0.005 0.005 0.005 0.005

    0.005 0.005 0.005 0.005

    FAB CONTROLLER

    MCS

    OHTC

    1 2 N

    Improve throughput via better routingalgorithms for the over hoist transportcontrol (OHTC) system.

    Enhance state dependent cost functionsused in Dijkstra's algorithm.

    State of the network at time t is thenumber of vehicles on the various edges ofthe network.

    vehicles

    Sheet1

    EdgesEdge Travel TimeNetwork StateState Dependent Edge Travel Time

    FromTo

    AB18 secs018 secs

    BC18 secs018 secs

    CD18 secs018 secs

    DB18 secs348 secs

    BA18 secs136 secs

    Slide Number 1