1
How is the development of cortical maps in V1 coordinated across cortical lamina? Many neural models propose how maps of orientation(OR), ocular dominance (OD), disparity, etc., self-organize. These models show how spontaneous activity, before eye opening, combined with correlation learning, can generate map structures strikingly similar t o those found in vivo. Most of these models do not discuss laminar architecture or how cells develop their connections across cortical layers. This is an especially important probl em giv en anatomic al evidence th a t clust ers of horizontal connections, between iso-oriented regions, in layer 2/3 form before being innervated by layer 4 afferents. Anatomical evidence demonstrates that thalamic afferents wait in the subplate for weeks before innervating layer 4. These problems are addressed within a model of how the cortical subplate self-organizes OR and OD maps which then entrain those of the other lamina. Other evidence shows that subplate ablation interferes with the development of OD co lu mns. We d emonstrate th a t the same types of mechanisms which have been proposed to develop OR and OD maps in earlier models of the cortical plate can drive their development in the subplate. The model demonstrates how these maps may then be transferred to layer 4 by a known transient subplate-layer 4 circuit. The model also suggests how development within o ther lamina may be similarly entrained aft er axons from the subplate to marginal zone contact dendrites of the supragranular and infragranular cortical layers. Supported by: Supported in part by AFOSR, DARPA, NSF, and ONR . 1. ABSTRACT Grinvald (http://www.weizmann.ac.il/brain/images/cubes.html) 2. ADULT ORGANIZATION OF V1 Ocular Dominance Columns (ODCs) Alternating stripes of cortex respond preferentially to visual inputs of each eye R/L in Figure Orientation Columns A smooth pattern of changing orientation preference Organized in a pinwheel like fashion ( in Figure) Horizontal projections connect areas of same ocular dominance Bosking et al., 1997 Horizontal projections connect areas similar orientation preference Lowel et al., 1992 3. LATERAL CONNECTIONS IN V1 Clusters of lateral projections are found in the supragranular and infragranular layers 5. DEVELOPMENTAL QUESTIONS How do Ocular Dominance & Orientation maps form in V1? Ocular dominance columns and orientation tuning are found before eye opening in the cat How do cortical columns form? Consistent tuning is found across vertical penetrations in V1 How can this occur when maps develop before interlaminar cortical connections have matured? How are orientation columns and clusters of horizontal connections coordinated? Crude clusters of horizontal connections are found in layer 2/3 prior to arrival of afferents from layer 4 These clusters connect iso-oriented columns in mature animals The connected regions are consistent before and after interlaminar connections develop Molecular gradients provide a crude map Epherins, Netrins, Semaphorins, Slit, etc. Activity refines existing maps Activity provides correlations between related cells Migrating Neuron Retina Tectum Nasal Temporal Anterior Posterior A Nasal-Temporal gradient of Eph receptors in retinal ganglion cells interact with anterior to posterior gradients of repellant epherin ligand in the Tectum. The result is a crude retinotopic map. Normal Development Binocular Deprivation Monocular Deprivation Cook et al,. 1999 LGN 6. DEVELOPMENTAL MECHANISMS TTX 7. CORTICAL SUBPLATE Cortical subplate forms circuit with LGN LGN afferents wait in subplate for weeks before they synapse in cortical plate (Ghosh & Shatz 1994) Ablation of subplate stops map formation When subplate is ablated, ocular dominance columns fail to form (Ghosh & Shatz 1992) Orientation tuning and orientation maps do not develop after subplate ablation (Kanold et al., 2001) Subplate connects to Layer 4 (Ghosh 1995) Connections exist from subplate to Layer 4 when LGN afferents begin to grow into Layer 4 Subplate connects to Layer 2/3 Subplate connects to Layer 1 (Allendoerfer & Shatz 1994) Layer 2/3 has dendritic arborizations in Layer 1 Albus & Wolf 1984 8. EARLY TUNING CHARACTERISTICS Early visual response in Layers 4 and 6 First light evoked responses at P8 (postnatal day 8) 11% of cells are orientationally tuned; 58% biased Number of tuned cells increases after eye opening Late visual response in layers 2/3 and 5 Sluggish response to light until W4 (week 4) By W3 most cells show orientation tuning OFF field bias Cortical cells respond to negative contrast stimuli 76% at P8 Equalizes by W4 Receptive field size decreases with age Refinement of initial receptive field Cells that fire together wire togetherLateral connections are between cells with similar tuning characteristics Ocular Dominance ODCs project more to areas of same dominance than other dominance Blobs and Interblobs project more to their own type Orientation Iso-oriented areas project primarily to areas of similar orientation Diversity ~20-30% of projections to different modulesYoshioka et al., 1996 Bosking et al., 1997 9. HORIZONTAL CONNECTIONS Retina Oriented Learns geniculocortical map Unoriented On Center / Off surround Learns corticogenicular map Random retinal activity drives network before eye opening Subplate LGN 10. MODEL SUBPLATE MAP Orientation Map Learned in Subplate Left Monocular Stripes Afferents compete for territory Monocular Layers Conserved # synapses Eyes are uncorrelated Subplate LGN Ocular Dominance Map Learned in Subplate Retina Right Subplate map is taught to Layer 4 Patterned visual inputs drive segregation of ON and OFF subfields in Layer 4 neurons At stimulus edges, ON and OFF thalamic cells are spatially out of phase and thus anti-correlated Left Right Retina LGN Subplate Layer 4 11. MODEL LAYER 4 MAP Oriented Learned Layer 4 map emulates LGN-Subplate map Subplate activity guides migration of axons and pattern of synaptogensis from LGN to Layer 4 ON and OFF layers become equally active when eyes open When eyes open, random retinal activity is replaced by patterned visual inputs 12. MODEL LAYER 2/3 MAP Subplate guides horizontal connections Retina LGN Subplate Left Right Layer 2/3 Synapses with Subplate in Layer 1 Clustered horizontal connections Subplate activity instructs development of Layer 2/3 connections On Center / Off surround Random retinal activity drives network before eye opening 13. MODEL LGN-TO-SUBPLATE MAP Orientation Columns Ocular Dominance Columns Ocular Dominance Columns develop in subplate with help of conservation of LGN synapses [plot of ocularity index] Oriented cells self organize in subplate [Length shows degree of orientation tuning and angle shows prefered orientation] 14. QUANTIFICATION OF SUBPLATE TUNING Matrices of Weights Feedforward pattern of connections from the LGN Receptive fields initialized as weight noise Oriented profiles develop Peak Orientation Network is probed with stimuli of different orientation Peak orientation is plotted Length shows orientation index Orientation Tuning Curves Orientation tuning curves calculated for each cell Most fit a gaussian profile with halfwidths ~30˚ for tuned cells 0.79 1.00 0.54 0.48 15. LEARNED LGN-TO-4 MAP Subplate Layer 4 Ocular Dominance Columns Orientation Columns Maps in the Subplate are taught to Layer 4 AFFERENTS FROM ON LAYERS AFFERENTS FROM OFF LAYERS 16. ON/OFF IN LAYER 4 ON and OFF segregation when eyes open Spatially offset ON & OFF cells fire to same edge Anticorrelation drives segregated receptive fields Significant diversity exists in arrangement of ON and OFF subfields in cortical receptive fields 17. MODEL SUBPLATE ABLATION Ocular Dominance Columns fail to develop Orientation Tuning fails to develop Some cells have a significant tuning index but inspection of the curves show no tuning (Ghosh & Shatz 1992) (Kanold et al., 2001) 18. LAYER 2/3 CLUSTERED HORIZONTAL CONNECTIONS Subplate Guides Horizontal Clusters Clustering is similar to in vivo at eye opening Reciprocal connections between layer 2/3 cells Diversity in shape and orientation of clusters Model Results Data from Sincich and Blasdel 2001 19. OTHER MODELS Most models are single layered Other developmental models have not demonstrated how vertical columns arise Clustering in Layer 2/3 rarely addressed The coordinated development of layer 2/3 horizontal connections with maps of orientation and ocular dominance has not previously been modeled The subplate goes unnoticed Our model is the first to use the subplate to explain cortical development LAMINART Model (Grossberg and Williamson 2001) Demonstrates how patterned vision can refine horizontal connections in Layer 2/3 After development these circuits generate properties of adult perceptual grouping The present model is consistent with these results 20. CONCLUSIONS Subplate enables development of Columns Learns Orientation and Ocular Dominance Maps Teaches OR and ODC to Layer 4 Instructs clustering of Layer 2/3 connections Removal of Subplate eliminates map formation Eye opening segregates ON & OFF inputs The introduction of patterned vision provides a spatial anticorrelation of ON and OFF cells Future Directions Develop interlaminar connections Allow subplate to die Develop layer 2/3 maps Incorporate more realistic inhibitory circuit and develop inhibitory connections Generalizes model to other cortical areas, such as A1 and extrastriate areas 21. REFERENCES Albus, K., & Wolf, W. (1984). J Physiol, 348, 153-185. Allendoerfer, K. L., & Shatz, C. J. (1994). Annu Rev Neurosci, 17, 185-218. Bosking, W. H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). J Neurosci, 17(6), 2112-2127. Cook, P. M., Prusky, G., & Ramoa, A. S. (1999). Vis Neurosci, 16(3), 491-501. Crair, M. C., Horton, J. C., Antonini, A., & Stryker, M. P. (2001).. J Comp Neurol, 430(2), 235-249. Ghosh, A., & Shatz, C. J. (1992).. Science, 255(5050), 1441-1443. Ghosh, A., & Shatz, C. J. (1994). J Neurosci, 14(6), 3862- 3880 Grossberg, S., & Williamson, J. R. (2001). Cereb Cortex, 11(1), 37-58. Kanold, P.O., Kara, P., Reid, R.C., Shatz, C.J. (2001). Soc. Neurosci. Abstr., P27.16. Lowel, S., & Singer, W. (1992). Science, 255(5041), 209- 212. Yoshioka, T., Blasdel, G. G., Levitt, J. B., & Lund, J. S. (1996). Cereb Cortex, 6(2), 297-310. COORDINATION OF LAMINAR DEVELOPMENT IN V1 BY THE CORTICAL SUBPLATE Aaron Seitz ([email protected]) & Stephen Grossberg ([email protected]) Cognitive & Neural Systems, Boston University, Boston, MA, USA Crair et al., 2001 4. VISUAL DEVELOPMENT TIMELINE Birth The first connections from LGN to layer 4 arrive Neither cortex nor LGN is developed Week 1 Eyes remain closed LGN completes laminar differentiation Week 2 Eyes Open Orientation tuning is first detected Sluggish cortical responses becoming more responsive by end of W2 Ocular dominance columns first detected end of W2 Visual Cortex Lateral Geniculate Nucleus E37 E44 E51 E58 E65/P0 P7 P14 P21 P28 LGN axons in Subplate LGN axons in cortical plate (layers 5 and 6) LGN axons in Layer 4 Ocular dominance columns emerge Orientation selective neurons detected Critical period for visual deprivation Retinal ganglion cell afferents in LGN Retinogeniculate afferents segregate LGN cytoarchitechtonic lamina differentiate

Information Technology Solutions - f o n s L n F o s F i t o P n h u …faculty.ucr.edu/~aseitz/pubs/sfn01.pdf · 2013. 7. 19. · H o w i s s t h e t d e v e l o p m e n t, o f h

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Information Technology Solutions - f o n s L n F o s F i t o P n h u …faculty.ucr.edu/~aseitz/pubs/sfn01.pdf · 2013. 7. 19. · H o w i s s t h e t d e v e l o p m e n t, o f h

How

is th

e de

velo

pmen

t of c

ortic

al m

aps

in V

1 co

ordi

nate

dac

ross

cor

tical

lami

na?

Man

y ne

ural

mod

els p

ropo

se h

owm

aps

of o

rient

ation

(OR)

, ocu

lar d

omina

nce

(OD)

, dis

parit

y,et

c., s

elf-o

rgan

ize.

Thes

e m

odels

sho

w ho

w sp

onta

neou

sac

tivity

, be

fore

eye

ope

ning

, co

mbin

ed w

ith c

orre

latio

nlea

rnin

g, c

an g

ener

ate

map

str

uctur

es s

triki

ngly

simi

lar

toth

ose

foun

d in

viv

o. M

ost o

f the

se m

odel

s do

not

disc

uss

lamin

ar a

rchit

ectu

re o

r how

cell

s de

velo

p th

eir c

onne

ctio

nsac

ross

cor

tical

lay

ers.

This

is

an e

spec

ially

im

porta

ntpr

oblem

gi

ven

anato

mic

al ev

iden

ce th

at clu

sters

ofho

rizon

tal

conn

ectio

ns,

betw

een

iso-

orie

nted

regi

ons,

in

laye

r 2/3

form

bef

ore

bein

g in

nerv

ated

by la

yer 4

affe

rent

s.An

atom

ical e

viden

ce d

emon

stra

tes

that

tha

lamic

affe

rent

swa

it in

the

subp

late

for

week

s be

fore

inne

rvat

ing

laye

r 4.

Thes

e pr

oblem

s ar

e ad

dres

sed

with

in a

mod

el o

f how

the

corti

cal s

ubpla

te se

lf-or

gani

zes O

R an

d OD

map

s whi

ch th

enen

train

thos

e of

the o

ther

lam

ina.

Othe

r evi

denc

e sh

ows

that

subp

late

abla

tion

inter

feres

with

the

dev

elopm

ent o

f OD

colu

mns.

W

e de

mon

strat

e th

at th

e sa

me

type

s of

mec

hani

sms

whic

h ha

ve b

een

prop

osed

to d

evelo

p OR

and

OD m

aps i

n ea

rlier

mod

els o

f the

cor

tical

plat

e ca

n dr

ive th

eirde

velo

pmen

t in

the

subp

late.

The

mod

el de

mon

stra

tes

how

thes

e m

aps

may

the

n be

tran

sferr

ed to

laye

r 4 b

y a

know

ntra

nsien

t sub

plat

e-lay

er 4

circ

uit.

The

mod

el als

o su

gges

tsho

w de

velo

pmen

t with

in o

ther

lamin

a m

ay b

e sim

ilarly

entra

ined

afte

r ax

ons

from

the

sub

plat

e to

mar

gina

l zon

eco

ntac

t de

ndrit

es o

f th

e su

prag

ranu

lar a

nd i

nfra

gran

ular

corti

cal la

yers

.S

up

por

ted

by:

Su

ppo

rted

in p

art

by

AFO

SR

, D

AR

PA

, N

SF

,an

d O

NR

.

1. A

BSTR

ACT

Grin

vald

(http

://ww

w.we

izman

n.ac

.il/b

rain

/imag

es/cu

bes.h

tml)

2. A

DULT

ORG

ANIZ

ATIO

N OF

V1

Ocul

ar D

omin

ance

Col

umns

(ODC

s)Al

tern

atin

g st

ripes

of c

orte

x re

spon

d pr

efer

entia

llyto

visu

al in

puts

of e

ach

eye

R/L

in F

igur

e

Orien

tatio

n Co

lum

nsA

smoo

th p

atte

rn o

f cha

ngin

g or

ienta

tion

pref

eren

ceOr

gani

zed

in a

pinw

heel

like f

ashi

on

(

in

Fig

ure)

Horiz

onta

l pro

jectio

nsco

nnec

t are

as o

f sam

eoc

ular

dom

inan

ce

Bosk

ing

et al

., 199

7

Horiz

onta

l pro

jectio

nsco

nnec

t are

as s

imila

ror

ienta

tion

pref

eren

ce

Lowe

l et a

l., 19

92

3. L

ATER

AL C

ONNE

CTIO

NS IN

V1

Clus

ters

of l

ater

al p

roje

ctio

ns a

re fo

und

in th

esu

prag

ranu

lar an

d in

fragr

anul

ar la

yers

5. DE

VELO

PMEN

TAL

QUES

TION

S

How

do O

cula

r Dom

inan

ce &

Orie

ntat

ion

map

s for

m in

V1?

Ocul

ar d

omin

ance

col

umns

and

orie

ntat

ion

tuni

ngar

e fou

nd b

efor

e eye

ope

ning

in th

e cat

How

do co

rtica

l col

umns

form

?Co

nsis

tent

tuni

ng is

foun

d ac

ross

ver

tical

pene

tratio

ns in

V1

How

can

this

occu

r whe

n m

aps d

evelo

p be

fore

inte

rlam

inar

corti

cal c

onne

ctio

ns h

ave m

atur

ed?

How

are

orien

tatio

n co

lum

ns an

d clu

ster

s of

horiz

onta

l con

nect

ions

coo

rdin

ated

?Cr

ude c

lust

ers o

f hor

izont

al co

nnec

tions

are f

ound

in la

yer 2

/3 pr

ior t

o ar

rival

of af

fere

nts f

rom

laye

r 4

Thes

e clu

ster

s con

nect

iso-

orien

ted

colu

mns

inm

atur

e ani

mals

The

conn

ecte

d re

gion

s ar

e co

nsis

tent

bef

ore

and

afte

r int

erlam

inar

con

nect

ions

dev

elop

Mol

ecul

ar g

radi

ents

pro

vide

a c

rude

map

Ephe

rins,

Netri

ns, S

emap

horin

s, Sl

it, et

c.

Activ

ity re

fines

exi

stin

g m

aps

Activ

ity p

rovid

es co

rrelat

ions

bet

ween

relat

ed ce

lls

Mig

ratin

g N

euro

n

Ret

ina

Tec

tum

Nas

al

Tem

pora

lA

nter

ior

Po

ster

ior

A Na

sal-T

empo

ral

grad

ient o

f Eph

rece

ptor

sin

retin

al ga

nglio

n ce

llsin

tera

ct w

ith an

terio

r to

post

erio

r gra

dien

ts o

fre

pella

nt e

pher

in lig

and

in th

e Te

ctum

. The

resu

ltis

a cru

de re

tinot

opic

map

.

Norm

al De

velo

pmen

t ‡‡‡‡

Bino

cular

Dep

rivat

ion

‡‡‡‡

Mono

cular

Dep

rivat

ion

‡‡‡‡

Coo

k et

al,.

199

9

LGN

6. D

EVEL

OPM

ENTA

L M

ECHA

NISM

S TTX

7. C

ORTI

CAL

SUBP

LATE

Corti

cal s

ubpl

ate f

orm

s circ

uit w

ith L

GNLG

N af

fere

nts w

ait in

sub

plat

e fo

r wee

ks b

efor

e the

ysy

naps

e in

corti

cal p

late

(Gho

sh &

Sha

tz 19

94)

Ablat

ion

of su

bplat

e sto

ps m

ap fo

rmat

ion

Whe

n su

bplat

e is a

blat

ed, o

cular

dom

inan

ceco

lum

ns fa

il to

form

(Gho

sh &

Sha

tz 19

92)

Orien

tatio

n tu

ning

and

orien

tatio

n m

aps d

o no

tde

velo

p af

ter s

ubpl

ate

ablat

ion

(Kan

old

et al

., 200

1)

Subp

late

conn

ects

to L

ayer

4 (G

hosh

1995

)

Conn

ectio

ns ex

ist fr

om su

bplat

e to

Laye

r 4 w

hen

LGN

affe

rent

s beg

in to

gro

w in

to L

ayer

4

Subp

late

conn

ects

to L

ayer

2/3

Subp

late

conn

ects

to L

ayer

1 (A

llend

oerfe

r & S

hatz

1994

)

Laye

r 2/3

has d

endr

itic

arbo

rizat

ions

in L

ayer

1

Albu

s & W

olf 1

984

8. E

ARLY

TUN

ING

CHAR

ACTE

RIST

ICS

Early

vis

ual r

espo

nse

in L

ayer

s 4

and

6Fi

rst l

ight

evo

ked

resp

onse

s at

P8

(pos

tnat

al d

ay 8

)11

% o

f cell

s are

orie

ntat

iona

lly tu

ned;

58%

bias

edNu

mbe

r of t

uned

cel

ls in

crea

ses

afte

r eye

ope

ning

Late

vis

ual r

espo

nse

in la

yers

2/3

and

5Sl

uggi

sh re

spon

se to

light

unt

il W4 (

week

4)By

W3 m

ost c

ells s

how

orien

tatio

n tu

ning

OFF

field

bias

Corti

cal c

ells r

espo

nd to

neg

ative

cont

rast

stim

uli

76%

at P

8Eq

ualiz

es b

y W4

Rece

ptiv

e fie

ld s

ize d

ecre

ases

with

age

Refin

emen

t of i

nitia

l rec

eptiv

e fiel

d

“Cel

ls th

at fi

re to

geth

er w

ire to

geth

er”

Late

ral c

onne

ctio

ns ar

e bet

ween

cells

with

sim

ilar

tuni

ng ch

arac

teris

tics

Ocul

ar D

omin

ance

ODCs

pro

ject m

ore t

o ar

eas o

f sam

e dom

inan

ceth

an o

ther

dom

inan

ce

Blob

s and

Inte

rblo

bs p

rojec

t mor

e to

their

own

type

Orie

ntat

ion

Iso-o

rient

ed ar

eas p

rojec

t prim

arily

to ar

eas o

fsim

ilar o

rient

atio

n

Dive

rsity

~20-

30%

of p

rojec

tions

to d

iffer

ent “

mod

ules

Yosh

ioka

et al

., 199

6

Bosk

ing

et al

., 199

7

9. HO

RIZO

NTAL

CON

NECT

IONS

Retin

a

Orien

ted

Lear

ns g

enicu

loco

rtica

l map

Unor

iente

d

On C

ente

r / O

ff su

rroun

d

Lear

ns c

ortic

ogen

icular

map

Rand

om re

tinal

activ

itydr

ives n

etwo

rk b

efor

e eye

open

ing

Subp

late

LGN

10. M

ODEL

SUB

PLAT

E M

AP

Orien

tatio

n Ma

p Le

arne

d in

Sub

plat

e

Left

Mono

cular

Stri

pes

Affe

rent

s com

pete

for

terri

tory

Mono

cular

Lay

ers

Cons

erve

d # s

ynap

ses

Eyes

are u

ncor

relat

ed

Subp

late

LGN

Ocul

ar D

omin

ance

Map

Lea

rned

in S

ubpl

ate

Retin

aRi

ght

Subp

late

map

is ta

ught

to L

ayer

4

Patte

rned

vis

ual in

puts

driv

e se

greg

atio

n of

ON an

d OF

F su

bfiel

ds in

Lay

er 4

neu

rons

At s

timul

us e

dges

, ON

and

OFF

thal

amic

cel

ls a

resp

atia

lly o

ut o

f pha

se a

nd th

us a

nti-c

orre

late

d

Left

Righ

t

Retin

a

LGN

Subp

late

Laye

r 4

11. M

ODEL

LAY

ER 4

MAP

Ori

ente

d

Lea

rned

Lay

er 4

map

emul

ates

LG

N-S

ubpl

ate

map

Subp

late

act

ivity

gui

des

mig

ratio

n of

axo

ns a

ndpa

ttern

of s

ynap

toge

nsis

from

LG

N to

Lay

er 4

ON

and

OFF

laye

rsbe

com

e eq

ually

act

ive

whe

n ey

es o

pen

Whe

n ey

es o

pen,

rand

om r

etin

al a

ctiv

ityis

rep

lace

d by

pat

tern

edvi

sual

inpu

ts

12. M

ODEL

LAY

ER 2/

3 MAP

Subp

late

guid

es h

orizo

ntal

con

nect

ions

Retin

a

LGN

Subp

late

Left

Righ

t

Laye

r 2/3

Syna

pses

with

Sub

plat

ein

Lay

er 1

Clus

tere

d ho

rizon

tal

conn

ectio

ns

Subp

late

activ

ityin

stru

cts d

evelo

pmen

tof

Lay

er 2/

3 con

nect

ions

On C

ente

r / O

ff su

rroun

d

Rand

om re

tinal

activ

itydr

ives n

etwo

rk b

efor

eey

e ope

ning

13. M

ODEL

LGN

-TO-

SUBP

LATE

MAP

Orien

tatio

n Co

lum

ns

Ocul

ar D

omin

ance

Col

umns Oc

ular

Dom

inan

ce C

olum

nsde

velo

p in

sub

plat

e wi

thhe

lp o

f co

nser

vatio

n of

LGN

syna

pses

[plo

t of o

cular

ity in

dex]

Orien

ted

cells

self

orga

nize

in s

ubpl

ate

[Len

gth

show

s deg

ree o

for

ienta

tion

tuni

ng an

d an

gle

show

s pr

efer

ed o

rient

atio

n]

14. Q

UANT

IFIC

ATIO

N OF

SUB

PLAT

ETU

NING

Matri

ces o

f Weig

hts

Feed

forw

ard

patte

rn o

fco

nnec

tions

from

the L

GNRe

cept

ive fi

elds i

nitia

lized

aswe

ight

noi

se

Orien

ted

prof

iles d

evelo

p

Peak

Orie

ntat

ion

Netw

ork i

s pro

bed

with

stim

uli o

f diff

eren

t orie

ntat

ion

Peak

orie

ntat

ion

is pl

otte

d

Leng

th sh

ows o

rient

atio

nin

dex

Orien

tatio

n Tu

ning

Cur

ves

Orien

tatio

n tu

ning

curv

esca

lculat

ed fo

r eac

h ce

ll

Most

fit a

gau

ssian

pro

file

with

half

widt

hs ~

30˚ f

or tu

ned

cells

0.79

1.00

0.54

0.48

15. L

EARN

ED L

GN-T

O-4

MAP

Subp

late

Laye

r 4Oc

ular

Dom

inan

ce C

olum

ns

Orien

tatio

n Co

lum

ns

Maps

in th

e Su

bplat

e ar

e tau

ght t

o La

yer 4

AFFE

RENT

S FR

OM O

N LA

YERS

AFFE

RENT

S FR

OM O

FF L

AYER

S

16. O

N/OF

F IN

LAY

ER 4

ON a

nd O

FF s

egre

gatio

n wh

en e

yes

open

Spat

ially

offs

et O

N &

OFF

cells

fire

to s

ame

edge

Antic

orre

latio

n d

rives

segr

egat

ed re

cept

ive fi

elds

Sign

ifica

nt d

iver

sity

exi

sts

in a

rrang

emen

t of O

Nan

d OF

F su

bfiel

ds in

corti

cal r

ecep

tive f

ields

17. M

ODEL

SUB

PLAT

E AB

LATI

ON

Ocul

ar D

omin

ance

Col

umns

fail t

o de

velo

p

Orien

tatio

n Tu

ning

fails

to d

evelo

p

Som

e ce

lls h

ave

a si

gnifi

cant

tuni

ng in

dex

but i

nspe

ctio

n of

the c

urve

s sho

w no

tuni

ng

(Gho

sh &

Sha

tz 1

992)

(Kan

old

et al

., 200

1)

18. L

AYER

2/3 C

LUST

ERED

HORI

ZONT

AL C

ONNE

CTIO

NSSu

bplat

e Gu

ides

Hor

izont

al C

lust

ers

Clus

terin

g is

simila

r to

in vi

vo at

eye o

peni

ng

Recip

roca

l con

nect

ions

bet

ween

laye

r 2/3

cells

Dive

rsity

in sh

ape a

nd o

rient

atio

n of

clus

ters

Mode

l Res

ults

Data

from

Sin

cich

and

Blas

del 2

001

19. O

THER

MOD

ELS

Most

mod

els ar

e sin

gle l

ayer

edOt

her d

evelo

pmen

tal m

odels

hav

e not

dem

onst

rate

d ho

w ve

rtica

l col

umns

arise

Clus

terin

g in

Lay

er 2

/3 ra

rely

add

ress

edTh

e coo

rdin

ated

dev

elopm

ent o

f lay

er 2/

3 hor

izont

alco

nnec

tions

with

map

s of

orie

ntat

ion

and

ocul

ardo

min

ance

has

not

pre

viou

sly

been

mod

eled

The

subp

late

goe

s unn

otice

dOu

r mod

el is

the f

irst t

o us

e the

sub

plat

e to

expl

ainco

rtica

l dev

elopm

ent

LAMI

NART

Mod

el (G

ross

berg

and

Willi

amso

n 20

01)

Dem

onst

rate

s ho

w pa

ttern

ed v

isio

n ca

n re

fine

horiz

onta

l con

nect

ions

in L

ayer

2/3

Afte

r dev

elop

men

t the

se c

ircui

ts g

ener

ate

prop

ertie

s of a

dult

perc

eptu

al gr

oupi

ng

The

pres

ent m

odel

is c

onsi

sten

t with

thes

e re

sults

20. C

ONCL

USIO

NS

Subp

late

enab

les d

evelo

pmen

t of C

olum

nsLe

arns

Orie

ntat

ion

and

Ocul

ar D

omin

ance

Map

s

Teac

hes

OR a

nd O

DC to

Lay

er 4

Inst

ruct

s clu

ster

ing

of L

ayer

2/3 c

onne

ctio

ns

Rem

oval

of S

ubpl

ate

elim

inat

es m

ap fo

rmat

ion

Eye

open

ing

segr

egat

es O

N &

OFF

inpu

tsTh

e in

trodu

ctio

n of

pat

tern

ed v

isio

n pr

ovid

es a

spat

ial a

ntico

rrelat

ion

of O

N an

d OF

F ce

lls

Futu

re D

irect

ions

Deve

lop

inte

rlam

inar

conn

ectio

ns

Allo

w su

bplat

e to

die

Deve

lop

layer

2/3 m

aps

Inco

rpor

ate m

ore r

ealis

tic in

hibi

tory

circ

uit a

ndde

velo

p in

hibi

tory

con

nect

ions

Gene

raliz

es m

odel

to o

ther

corti

cal a

reas

, suc

h as

A1 an

d ex

trast

riate

are

as

21. R

EFER

ENCE

S

Albu

s, K

., & W

olf,

W. (

1984

). J P

hysio

l, 34

8, 15

3-18

5.

Allen

doer

fer,

K. L

., & S

hatz

, C. J

. (19

94).

Annu

Rev

Neur

osci

, 17,

185

-218

.

Bosk

ing,

W. H

., Zha

ng, Y

., Sch

ofie

ld, B

., & F

itzpa

trick

, D.

(199

7). J

Neu

rosc

i, 17

(6),

2112

-212

7.

Cook

, P. M

., Pr

usky

, G.,

& Ra

moa

, A. S

. (19

99).

Vis

Neur

osci

, 16(

3), 4

91-5

01.

Crai

r, M

. C.,

Horto

n, J

. C.,

Anto

nini,

A., &

Stry

ker,

M. P

.(2

001)

.. J C

omp

Neur

ol, 4

30(2

), 23

5-24

9.

Ghos

h, A

., &

Shat

z, C.

J.

(199

2)..

Scien

ce,

255(

5050

),14

41-1

443.

Ghos

h, A

., &

Shat

z, C.

J. (

1994

). J N

euro

sci,

14(6

), 38

62-

3880

Gros

sber

g, S

., &

Willi

amso

n, J

. R. (

2001

). Ce

reb

Corte

x,11

(1),

37-5

8.

Kano

ld, P

.O., K

ara,

P., R

eid, R

.C., S

hatz

, C.J.

(200

1). S

oc.

Neur

osci.

Abs

tr., P

27.16

.

Lowe

l, S.

, & S

inge

r, W

. (19

92).

Scien

ce, 2

55(5

041)

, 209

-21

2.

Yosh

ioka

, T., B

lasde

l, G.

G., L

evitt

, J. B

., & L

und,

J. S

.(1

996)

. Cer

eb C

orte

x, 6(

2), 2

97-3

10.

CO

OR

DIN

ATI

ON

OF

LAM

INA

R D

EVEL

OPM

ENT

IN V

1 B

Y TH

E C

OR

TIC

AL

SUB

PLA

TEA

aron

Sei

tz (a

seitz

@bu

.edu

) &

Ste

phen

Gro

ssbe

rg (s

teve

@cn

s.bu

.edu

)C

ogni

tive

& N

eura

l Sys

tem

s, B

osto

n U

nive

rsity

, Bos

ton,

MA

, USA

Crair

et a

l., 20

01

4. V

ISUA

L DE

VELO

PMEN

T TI

MEL

INE

Birth Th

e fir

st c

onne

ctio

ns fr

om L

GN to

laye

r 4 a

rrive

Neith

er c

orte

x no

r LGN

is d

evel

oped

Wee

k 1Ey

es re

main

clos

ed

LGN

com

plet

es la

min

ar d

iffer

entia

tion

Wee

k 2Ey

es O

pen

Orien

tatio

n tu

ning

is fi

rst d

etec

ted

Slug

gish

cor

tical

resp

onse

s be

com

ing

mor

e re

spon

sive

by

end

of W

2

Ocul

ar d

omin

ance

col

umns

firs

t det

ecte

d en

d of

W2

Visu

alCo

rtex

Late

ral

Geni

culat

eNu

cleus

E37

E44

E51

E58

E65/P

0P7

P14

P21

P28

LGN

axon

sin

Subp

late

LGN

axon

s in

corti

cal p

late

(laye

rs 5

and

6)LG

N ax

ons

in L

ayer

4

Ocul

ardo

min

ance

colu

mns

emer

ge

Orien

tatio

nse

lectiv

ene

uron

sde

tect

edCr

itica

l per

iod

for v

isual

depr

ivatio

n

Retin

al g

angl

ion

cell a

ffere

nts i

nLG

NRe

tinog

enicu

late

affe

rent

sse

greg

ate

LGN

cyto

arch

itech

toni

clam

ina d

iffer

entia

te