38
Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Influence of turbulence on the dynamo threshold

B. Dubrulle, GIT/SPEC

N. Leprovost, R. Dolganov, P. Blaineau

J-P. Laval and F. Daviaud

Page 2: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Basic equations

v

RBBcurlRpRvvRv

BBvcurlRB

mmmmt

mt

Re

Maxwell equations

Navier-Stokes equations

Field strectching

Field diffusion

Competition characterized by magnetic Reynolds number

Dynamo if Rm > Rmc (Instability)

Page 3: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

« Classical dynamo » paradigm

Pas dynamo Dynamo

Em

t

Em

t

Rmc Rm

No dynamo

Dynamo

2 ln B2

tIndicator:

Page 4: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Dynamos in the Universe

Def: Magnetic field generation through movement of a conductor

In the universe….

stars, galaxies

planets

Control Parameters: Re UL /Rm UL /Pr Rm / Re /

Re 108

Rm 106

vv0.1 0.2

Page 5: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Problem

Turbulent flow:

v

V

v '

t

B Rmcurl

V

B B Rmcurl

v '

B

Multiplicative noiseClassical linear instability 

Mean Flow Fluctuation

Page 6: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

« Classical turbulence » paradigm

v '

B 2

B curl

B Mean Field argument:

t

B 2

B ( )

B

k ( )k 2

km

2( )

m 2

4( )

Mean Field equation:

Mean Field dispersion:

Mean Field instability:

Turbulence creates dynamo « most of the time »« Helical turbulence is good for dynamo »

Page 7: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Numerical test ?

1

10

100

1 10 100 1000

Rm

Re

Schekochihin et al, 2004 Ponty et al, 2005, 2006Laval et al, 2006

Re

RmPm=1

Pm=1

Whithout mean velocity With mean-velocity

Page 8: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

*Karlsruhe

Experimental test ?

Page 9: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Dynamos with low “unstationarity”: success

Riga

Karlsruhe

R Stieglitz, U. Müller, Phys.of Fluids,2001A. Gailitis et al., Phys. Rev. Lett., 2001

Page 10: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Experiments with unstationarity…

Re 107

Rm 50

vv0.3

“TM60”, no dynamo Field “TM28”, dynamo

No dynamo

Dynamo

VKS ExperimentSodium

MeasureOptimisation

Kinematic code

Page 11: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

…Failure!

Page 12: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

1

10

100

1 10 100 1000

Rm

Re

Turbulence increases thresholdWith respect to time-averaged!

Explanation: numerics

Simulation with time averaged velocity

Simulation with real velocity

Page 13: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Explanation: theory

Kraichnan model

t B

B B

Mean Field Theorie

Perturbative computation (Petrelis, Fauve)

Rmc C v'B(1)

C V B(0)

CB(0)

CB(0)

(<V>=0)

(with mean velocity fiel)

(<V>=0)

v'(x, t)v '(x r, t ) (1 r )()

Dynamo only for

1 2

Who is right ??????

Page 14: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Importance of the order parameter

MFT, Petrelis, Fauve: transition over <B>

KM : transition over <B2>

<B>=0… No dynamo (MFT, Petrelis)

<B2> non zero…Dynamo (KM)

Vote: What is good order parameter?

Page 15: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Problem

Turbulent flow:

v

V

v '

t

B Rmcurl

V

B B Rmcurl

v '

B

Multiplicative noiseClassical linear instability 

Mean Flow Fluctuation

Page 16: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Troubles

B B BModel equation:

Problem: how to define threshold?

B

(D ) B

B2

2(2D ) B2

Instability threshold depends on moment order!!! Etc, etc...

Solution: work with PDF and Lyapunov exponent

2 ln B2

t

2 ln B2

t

Page 17: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Stochastic approach

v

RBBcurlRpRvvRv

BBvcurlRB

mmmmt

mt

Re

Basic Equations

Approximation 1

Approximation 2

v

V

v '

Noise delta-correlated in timeMean Flow

BKBBvcurlBt

�2

Page 18: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Fokker-Planck Equation

tP VkkP kVi BiBkP KBi

B2BiP k kl lP 2Bi

BkliklP ijklBiB jBk

BlP with

Equation for P(B,x,t)

kl vk' vl

'

ijk vi'kv j

'

ijkl jvi'lvk

'

Page 19: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Mean-Field Equation

t Bi Vkk Bi kVi Bk K B2Bi

k kll Bi 2kilk Bl

beta effect(turbulent diffusion) Alpha effect

Helicity if isotropy

Mean Field Theory EquationStability governed by alpha et beta….!!!???

Page 20: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Isotropic case

t

B 2

B ( )

B

t B2 B2 ( ) B2

Mean Field Magnetic energy

k ( )k 2

( )k 2

km

2( )

m 2

4( )

km 0

m

Page 21: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Stationary solutions

P B Always solution!

Other solution: P P(B)G ei ,x j Bi Bei

P(B) 1

ZB / a D exp KB2 /a

a ijkleie jekel G

kVieiek G ijkl ikeiek kjeiel

G

Z: normalizationD: space dimensiona et : coefficients

Lyapunov exponent!

Page 22: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Bifurcations

Non-zero Solution (normalisation) Most probable value

a 0 eta 0

aD

0 aDNo dynamo IntermittentDynamo

TurbulentDynamo

Page 23: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

New theoretical turbulent paradigm

RmRm1 Rm2No dynamo IntermittentDynamo

TurbulentDynamo

Pas dynamo Dynamo

Em

t

Em

t

Rmc

Turbulent

Laminar

Rm

Page 24: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

The Lyapunov exponent…

a ijkleie jekel G 0

kVieiek G ijkl ikeiek kjeiel

G

Orientation (<0)(zero if <V>=0)

>0 and proportional to noise( KM effect)

Unstable Direction

Rmc

Expected result

StableDirection

Noise intensity

Rmc <V>

Leprovost, Dubrulle, EPJB 2005

Page 25: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Illustration: Bullard

Homopolar Dynamo

Noise intensity

Intermittent Dynamo

No Dynamo

Leprovost, PhD thesis

Page 26: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Discussion

Noise influences threshold through mu AND vector orientation

Influence of alpha and beta through vector orientation

Threshold different from Mean Field Theory prediction

Dangerous to optimize dynamo experiments from mean field!

Turbulent threshold can be very different from « laminar » ones

Page 27: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Simulations

t

B Rmcurl

V

B B Rmcurl

v '

B

V Time-average of velocity field computed through Navier-Stokes

v 'Type of simulation

MHD-DNSKinematicNoisy

Computed through NS0

Markovian noise (F,tc, ki)

Page 28: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Numerical code

Spectral methodIntegration scheme: Adams-BrashfordResolution: 64*64*64 to 256*256*256Forcing with Taylor-Green vortexConstant velocity forcing

Cf Ponty et al, 2004, 2005

Page 29: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Time-averaged vs real dynamo

• Laval, Blaineau, Leprovost, Dubrulle, FD: PRL 2006

1

10

100

1 10 100 1000

Rm

Re

2 dynamo

windows

Page 30: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Results for noisy delta-correlated

Forcing at ki=1

Forcing at ki=16

0

10

20

30

40

50

60

1 10

Rm

a)

0

10

20

30

40

50

60

1 10

Rm

c)

Linear in (-1)(Fauve-Petrelis)

v

V

v '

Page 31: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Results for noisy tc=0.1

Forcing at ki=1

Forcing at ki=16

0

10

20

30

40

50

60

1 10

Rm

0

10

20

30

40

50

60

1 10

Rm

d)

Page 32: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Results for noisy tc=1 s

Forcing at ki=1

0

10

20

30

40

50

60

1 10

Rm

b)

Page 33: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Summary of noisy

ki=1

ki=160

10

20

30

40

50

1 10

Rm

a)

0

5

10

15

20

25

30

35

40

1 2 3 4

Rm

DNS

Tc=1

Compa DNSStochastic noise k=1Tauc=1 s

Summary of noisysimulations

00.11

50

8

Page 34: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Interpretation

0

5

10

15

20

0 0,2 0,4 0,6 0,8 1

Rm

*

b)

Kinetic energy of of theVelocity Fluid

Rm*

Rm

Universal curve

Page 35: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

In VKS =30=0.97

Definition of a universal « control parameter »

1

2

3

4

0 20 40 60 80 100 120

= <

V2>

/ <<

V>

2>

Re

V 2

X/ V 2

X

Page 36: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Comparison stochastic/DNS

0

10

20

30

40

50

1 10

Rm

a)

Compa DNSStochastic noise k=1Tauc=1 s

Summary of noisysimulations

Tauc

ki=1

ki=16

10

100

10 100

Rm

Re3

2

Page 37: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

Comparison DNS and mean flow

Laval, Blaineau, Leprovost, Dubrulle, Daviaud (2005)

Dynamo CM

No dynamo

Intermittent Dynamo

1

10

100

1 10 100 1000

Rm

Re

Page 38: Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud

ConclusionsIn Taylor-Green, turbulence is not favourable to dynamo

Large scale turbulence (unstationarity) increases dynamo threshold-> desorientation effectSmall scale turbulence decreases dynamo threshold-> « friction »

Turbulence looks like a large scale noiseBad influence through desorientation effect

Possible transition to dynamo via intermittent scenario

In natural objects: importance of Coriolis force (kills large-scale)

Possibility of stochastic simulations to replace DNS