6
Biography : SheGmingJIANG , Doctor , Professor ; EGmail : jiangsheming@263net ; ReceivedDate : September6 , 2013 JOURNALOFIRON ANDSTEELRESEARCH , INTERNATIONAL2014 , 21 ( 11 ): 1059G1064 InfluenceofOxideMor p holo g iesonGalvanizabilit y of ThirdGenerationAutomotiveSteel SheGmingJIANG , ShiGjieFENG 1,2 , XunGhuaYUAN , YuanGpengLI , ZhenGhuaLI , QiGfuZHANG ( 1.NationalEngineeringLaboratoryofAdvancedCoatingTechnologyforMetalMaterials , CentralIronand SteelResearchInstitute , Beijing100081 , China ; 2.FacultyofMaterialScienceandEngineering , Kunming UniversityofScienceandTechnology , Kunming650093 , Yunnan , China ) Abstract : Focusingonimprovingthegalvanizabilityofthethirdgenerationautomotivesteel , theeffectofsurfaceoxG idemorphologiesonthegalvanizabilitywasstudied.Theresultsshowthatthesurfaceoxidetypesofsamplesteelsby XGrayphotoelectronspectroscopy ( XPS ) analysisafterannealingindifferentconditionsarethesame.OnlyMnO , MnO andCr O weredetectedandnocomplexoxideexistsonthesurface.MorphologiesofsurfaceoxidescangreatG lyinfluencethegalvanizabilityofthethirdgenerationautomotivesteel.NoduleGlikeoxidesurfacecancontributeto betterwettabilityandinhibitionlayerthanvitreousfilmGlikeoxidesurface.GalvanizedpanelsofnoduleGlikeoxidesurG facesteelsonlyshowpinholeGsizedbarespots , whilepanelsgalvanizedfromvitreousfilmGlikeoxidesurfacesteelsreG veallargerareasofbarespotsanduncoatedareas.InhibitionlayerobservedingalvanizedpanelsofnoduleGlikeoxide surfacesteelsiscompactbutnothomogeneous ; someinhibitionlayergrainsarefine , andothersarecoarse , while theinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurfacesteelshaveanonGcompactmorG phologywithsomeparticularlyfineequiaxedcrystalswhichdevelopeddeficiently. Keywords : galvanizing ; thirdgenerationautomotivesteel ; oxidemorphology ; galvanizability Highstrengthsteelsarecurrentlythesubjectof intenseinterestoftheautomotiveindustry withthe objectofimprovinglightweightperformance , the fuelefficiencyandthecrushresistance ; thus , higher requirementsfortheautomotivesteelsareputforG ward , leadingtothe development ofautomotive steels.AccordingtoRm ×A ( theproductoftensile strengthandelongation ), interstitialfree ( IF ), dual phase ( DP ), transformationGinducedplasticity ( TRIP ) andmartensitic ( MART ) steelsarenamedasthefirst generationautomotivesteels , whose Rm× Aare10-20 GPa , butthelowRm× A cannotsatisfythereG quirementsofbothlightweightand highsafetyin thefuturedevelopmentoftheautomotiveindustry. Thesecond generation automotivesteelsinclude austeniticsteelsandtwinningGinducedplasticity ( TWIP ) steels , whose Rm× A are50-70GPa %. Becauseofthe high contentsofalloying elements suchasCr , Ni , Mn , SiandAl , thesecondgeneraG tionautomotivesteelsareusuallyofhighcostand poortechnologyperformances.ForthesakeofsavG ingresources , reducingcosts , lightweightandimproG vingthesafetyoftheautomobilesteels , thethirdgenG erationautomotivesteelshavebeendeveloped with lowcostandhighRm× A [1,2] .Inordertobeapplied inautomotiveproduction , thethirdgenerationautoG motivesteelsmusthaveagoodcorrosionresistance , andhotGdipgalvanizingisthemosteconomicaland effectivemethodtoachievethisobjective. Itiswellknownthatalloyingelementssuchas Mn , CrandSicanbeselectivelyoxidizedduringanG nealing [3-5] .Theselectiveoxidationofthesealloying elementshasa detrimentaleffectonthereactive wettingofthesteelsurfaceduringgalvanizingand resultsinbarespotdefects [6] , whilethestripgalvaG nizingbehaviorcanbedirectlyrelatedtotheamount ofexternaloxidationandthesurfaceoxidemorpholG ogies [7,8] .Inordertoimprovethegalvanizabilityof thethirdgenerationautomotivesteel , itisnecessary toinvestigatetheeffectofoxidemorphologiesonthe

Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

  • Upload
    qi-fu

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

BiographySheGmingJIANGDoctorProfessor EGmailjiangsheming2631049008net ReceivedDateSeptember62013

1051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271105127110512711051271

JOURNALOFIRONANDSTEELRESEARCHINTERNATIONAL1049008201421(11)1059G106410512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273105127310512731051273

InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel

SheGmingJIANG1 ShiGjieFENG12 XunGhuaYUAN1 YuanGpengLI1ZhenGhuaLI2 QiGfuZHANG1

(1NationalEngineeringLaboratoryofAdvancedCoatingTechnologyforMetalMaterialsCentralIronandSteelResearchInstituteBeijing100081China 2FacultyofMaterialScienceandEngineeringKunmingUniversityofScienceandTechnologyKunming650093YunnanChina)

AbstractFocusingonimprovingthegalvanizabilityofthethirdgenerationautomotivesteeltheeffectofsurfaceoxGidemorphologiesonthegalvanizabilitywasstudiedTheresultsshowthatthesurfaceoxidetypesofsamplesteelsbyXGrayphotoelectronspectroscopy(XPS)analysisafterannealingindifferentconditionsarethesameOnlyMnOMnO2andCr2O3weredetectedandnocomplexoxideexistsonthesurfaceMorphologiesofsurfaceoxidescangreatGlyinfluencethegalvanizabilityofthethirdgenerationautomotivesteelNoduleGlikeoxidesurfacecancontributetobetterwettabilityandinhibitionlayerthanvitreousfilmGlikeoxidesurfaceGalvanizedpanelsofnoduleGlikeoxidesurGfacesteelsonlyshowpinholeGsizedbarespotswhilepanelsgalvanizedfromvitreousfilmGlikeoxidesurfacesteelsreGveallargerareasofbarespotsanduncoatedareasInhibitionlayerobservedingalvanizedpanelsofnoduleGlikeoxidesurfacesteelsiscompactbutnothomogeneoussomeinhibitionlayergrainsarefineandothersarecoarsewhiletheinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurfacesteelshaveanonGcompactmorGphologywithsomeparticularlyfineequiaxedcrystalswhichdevelopeddeficientlyKeywordsgalvanizingthirdgenerationautomotivesteeloxidemorphologygalvanizability

  HighstrengthsteelsarecurrentlythesubjectofintenseinterestoftheautomotiveindustrywiththeobjectofimprovinglightweightperformancethefuelefficiencyandthecrushresistancethushigherrequirementsfortheautomotivesteelsareputforGwardleadingtothedevelopmentofautomotivesteelsAccordingtoRmtimesA (theproductoftensilestrengthandelongation)interstitialfree(IF)dualphase(DP)transformationGinducedplasticity(TRIP)andmartensitic(MART)steelsarenamedasthefirstgenerationautomotivesteelswhoseRmtimesAare10-20GPa1048944butthelowRmtimesAcannotsatisfythereGquirementsofbothlightweightandhighsafetyinthefuturedevelopmentoftheautomotiveindustryThesecond generation automotivesteelsincludeaustenitic steels and twinningGinduced plasticity(TWIP)steelswhoseRmtimesAare50-70GPa1048944BecauseofthehighcontentsofalloyingelementssuchasCrNiMnSiandAlthesecondgeneraGtionautomotivesteelsareusuallyofhighcostand

poortechnologyperformancesForthesakeofsavGingresourcesreducingcostslightweightandimproGvingthesafetyoftheautomobilesteelsthethirdgenGerationautomotivesteelshavebeendevelopedwithlowcostandhighRmtimesA[12]InordertobeappliedinautomotiveproductionthethirdgenerationautoGmotivesteelsmusthaveagoodcorrosionresistanceandhotGdipgalvanizingisthemosteconomicalandeffectivemethodtoachievethisobjective  ItiswellknownthatalloyingelementssuchasMnCrandSicanbeselectivelyoxidizedduringanGnealing[3-5]Theselectiveoxidationofthesealloyingelementshasadetrimentaleffectonthereactivewettingofthesteelsurfaceduringgalvanizingandresultsinbarespotdefects[6]whilethestripgalvaGnizingbehaviorcanbedirectlyrelatedtotheamountofexternaloxidationandthesurfaceoxidemorpholGogies[78]Inordertoimprovethegalvanizabilityofthethirdgenerationautomotivesteelitisnecessarytoinvestigatetheeffectofoxidemorphologiesonthe

wettingbehaviorSointhepresentworktheinfluGenceofoxidemorphologiesonthegalvanizabilityofthethirdgenerationautomotivesteelwasstudied

1 ExperimentalMaterialandMethod  ThestudywascarriedoutusingthethirdgenGerationautomotivesteelsuppliedby CentralIronandSteelResearchInstitute(CISRI)ThechemicalcompositionoftheteststeelsisgiveninTable1Allsteelsweresuppliedintheform offullGhardcoldsheetandwereshearedintospecimenswiththediGmensionsof220mmtimes120mmtimes110490088mm

Table1 Chemicalcompositionoftheteststeels  mass

C Si Mn P S Cr Fe

01049008096 01049008023 4104900850 010490080091 010490080021 01049008046 Balance

  AnnealingandhotGdippingtrialswereperformedinaCAGG2010hotGdipsimulatormanufacturedbyCISRIFig10490081showstheschematicdiagramofthecontinuousannealingandgalvanizingprocessforthesteelsinhotGdip galvanizing simulatorAllsamples wereheatGtreatedbyheatingto675ataheatingrateof12sandsoakingfor180sAftersoakingthesampleswerecooleddownattherateof15 stodippingtemperaturewhichis480foreachsamGpleAllsamplesweredippedinbathfor3sthencooledinairtoroomtemperatureThezincbathcontained010490082massdissolvedAlandwassaturatedwithironSample1wasannealedunderconditionsofaN2G5H2atmospherewithdewpointof-30andsample2wasannealedunderconditionsofaN2G3H2atmospherewithdewpointof0  ToobservethesteelcoatinginterfacethetopcoG

Fig10490081 SchematicofcontinuousannealingandgalvanizingprocessforsteelsinhotGdipgalvanizingsimulator

ating layer was removed by fuming nitric acid(HNO3)and10 H2SO4FumingHNO3and10H2SO4allowremovingonlyZn(η)GmixcrystalbutdoesnotattackFe2Al5andFeGZnphase  Scanningelectronmicroscopy (SEM)analysiswasperformedusinganFEIQuantaFEG650toobGservethesurfaceoxidemorphologiesafterannealingandinterfaceFe2Al5ofallsamples    XGrayphotoelectron microscopy (XPS)wasperformedtoidentifytheoxidesonthesurfacesoftheannealedsteelsamplesXPSanalysiswasperGformedusingaPHIG5300ESCAXPSwithanAlKαXGraysource(148610490086eV)Thespotsizeusedwas100μmandthetakeoffanglewas45degThebindingenergyvaluesobtainedusingtheXPSwereaccuratewithinplusmn010490084eV

2 Results210490081 Surfaceoxidemorphologiesoftheannealedsteels  Fig10490082showsmorphologiesofsurfaceoxidesonthesteelsamplesafterannealingindifferentatmosG

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490082 Morphologiesofsurfaceoxidesonthesteelsamplesafterannealingunderdifferentconditions

0601     JournalofIronandSteelResearchInternational              Vol104900821 

phereAsshowninFig10490082(a)afterannealingatdewpointof-30 inN2G5H2atmospheretheunGcoatedsamplesurfaceiscoveredbylotsofnoduleGlikeoxidesbuttherearestillmostbaresubstrateHoweverthesurfaceofsample2annealedatdewpointof0 in N2G3 H2 atmosphereiscoveredwithalayerofvitreousfilmGlikeoxide  InordertoclarifythechemicalelementsofthesurfaceoxidesandbindingstatewithoxygenaddiGtionalXPSanalysiswasperformedInXPSanalysisonlythecharacteristicpeaksofMnCrandOweredetectedFig10490083showstheMnandCrXPSnarrowspectraofsamples1and2obtainedfromthesurfaceoxidesXPSspectraofMn(Fig10490083(a))ofsample1

showthatoxidizedMnispresentinformoftwodifferGentcomponentsOnecomponenthasthe Mn2p32peakat64010490088eVandthesecondpeakisat64210490082eVcorrespondingtoMninMnOandMnO2respectively  Maximumintensity(Fig10490083(b))oftheCr2p32peakofsample1isat57610490085eVindicatingthepresGenceofCr2O3XPSspectraofMn (Fig10490083(c))ofsample2showthatoxidized MnisalsopresentinformoftwodifferentcomponentsOnecomponenthastheMn2p32peakat64110490085eVandthesecondpeakisat64310490084eVcorrespondingtoMnin MnOandMnO2respectivelyMaximumintensity(Fig10490083(d))oftheCr2p32peakofsample2isat57610490085eVindicatingthepresenceofCr2O3

(a)Mn2pofsample1  (b)Cr2pofsample1  (c)Mn2pofsample2  (d)Cr2pofsample2Fig10490083 XPSspectraofthesurfaceoxidesonthesamplesafterannealingunderdifferentannealingconditions

210490082 Appearancesofthegalvanizingpanels  Fig10490084showstheappearanceofthesamplepanG

elsgalvanizedinZnbathafterannealingunderdifGferentannealingconditionswhichrevealsthatbare

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490084 AppearanceofthesamplepanelsgalvanizedinZnbathafterannealingunderdifferentannealingconditions

1601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

spotsanduncoatedareasoccurredinallsamplesbutthebarespotsanduncoatedareasareobviouslylessinsample1annealedatdewpointof-30inN2G5H2atmospherethansample2whichwasanGnealedatdewpointof0inN2G3H2atmosphere

210490083 Morphologiesofinhibitionlayer    The morphologiesofinhibitionlayerdeterGminedbySEMareshowninFig10490085forsamplesanG

nealedindifferentannealingconditionsItcanbeseenthattheinhibitionlayerofsample1annealedatdewpointof -30 in N2G5H2 atmosphereiscompactbutnothomogenouswhereastheinhibiGtionlayerformedinsample2annealedatdewpointof0inN2G3H2atmospherehasanonGcompactmorphology withsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsinsample2deGvelopeddeficiently

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490085 Morphologiesofinhibitionlayerofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

210490084 MorphologiesofFeGZnphase  TheFeGZnphasesonthegalvanizedpanelswere

exposedbystrippingthezincoverlayusing10H2SO4AsshowninFig10490086allhotGdipcoatingplate

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490086 MorphologiesofFeGZnphasesofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

specimenshaveinterfacegenerationofζphase

3 Discussion  FornoduleGlikeoxidesurfaceofsample1anGnealedatdewpointof-30inN2G5H2atmosGpheretherearelotsofoxidenodulesandbaresubG

stratebuttheoxidedensitydistributionisnotuniGformInsomeregionsoxidenodulesgathertogethGertoformoxideaggregationandthesizeofoxidenodulesrangesfrom100to200nmWithregardtovitreousfilmGlikeoxidesurfaceofsample2annealedatdewpointof0 inN2G3H2atmospherethe

2601     JournalofIronandSteelResearchInternational              Vol104900821 

oxidelayerappearstobecontinuousandvitreousItisthedifferenceofoxygenpotentialthatleadstodifGferentsurfacemorphologies[9-11]  Thesurfaceoxidetypesofsamples1and2byXPSanalysisarethesameandonly MnOMnO2

andCr2O3 weredetectedandnocomplexoxideexGistsonthesurface  Fig10490084showstheappearanceofthesamplepanGelsgalvanizedinbathSample1onlyshowspinholeGsizedbarespotsandisobviouslybetterreactivelywettedthansample2whichrevealslargerareasofbarespotsanduncoatedareasThesecoatingdefectsoccurduetotheappearanceofnonGwettableexternalMnOxlayer[12]MnOx onthesteelsurfacecouldbeinGsitureducedbythebathdissolvedAlButifMncontentinthesteelishighenoughandtheformedMnOxareingreatnumberthereductionofMnOx

willbedifficultandcannotbedeoxidizedcompleteGly[1113]SurfacemorphologieswerefoundtostrongGlyaffectsteelgalvanizability[14]WhengalvanizingsteelsitisverylikelythatthesurfaceoxidescanbeliftedoffthroughtheFedissolutionfromthesubGstrateandnoduleGlikeoxidesshouldbeliftedoffmorereadilythanvitreousfilmGlikeoxides[14]BellGhouse[6]everindicatedthatreactivewettingoccurredbytwo methodswhengalvanizinghigh AlGlow SiTRIPsteelsreductionofMnObythedissolvedAlintheZn(AlFe)bathandbyZnbridgingoftheoxGideparticlesThemechanism wasdependentonthesurfacestructurepriortogalvanizingIftheoxidecoversthesurfaceofsteelthebridgingeffectwillnothappen[6]VitreousfilmGlikeoxidecanhamperthediffusionofzincandaluminumwhichisnecessaryforthemtoreactwithmetalliciron[15]andresultsinbarespot  OnthebasisoftheabovedescriptionthereacGtivewettingisstronglylinkedtothemorphologiesofsurfaceoxidesandnoduleGlikeoxidesurfacecanbemoreadvantageoustogalvanizingthanvitreousfilmGlikeoxidesurface  TwokindsofinhibitionlayergrainswereobGservedAsshowninFig10490085(a)someregionsarefineandothersarecoarseAsshowninFig10490082(a)inadditiontooxideparticlesthereis mostbaresubstrateThebaresubstratecancreateacleansteelsurfacefornucleationofFeGAlphaseandtheFeGAlnucleatesinagreatnumberleadingtotheformaGtionoffineFeGAlinhibitionlayergrainThenoduleGlikeoxidecanbethermodynamicallyreducedbythebathAlbecauseofaveryshortgalvanizingtimeof3sTherewasalimittothesizeofoxidesthatcouldbe

completelyreducedIntheprocessofhotdipgalvaniGzingbigoxideparticlesexistedinthesteelsurfaceandtheFeGAlgrainscouldonlynucleateoncleanspotsbetweenbigoxidesThustheformedFeGAlgrainswerescatteredandsparseInadditionbeGcausetheamountofnucleationsiteswasloweredforperunitareathedissolvedAlwassufficientforthegrowthofFeGAlgrainsintobiggerones[13]  TheinhibitionlayerformedinFig10490085(b)hasanonGcompactmorphologywithsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsweredevelopeddeficientlyVitreousfilmGlikeoxidescouldhamperthediffusionofFeandAltoreactwitheachothertoforminhibitionlayerandthusinfluencethereactivewetting  AsseenfromFig10490086allsamplepanelshaveinGterfacegenerationofζphaseInadditiontothealuGminothermicreductionofmanganeseoxidesthatledtothedecreaseofAlcontentinzincbathandcausedtheformationofζ phase[616]Blumenauetal1049008[17]

explainedthegrowthofFeGZnphasewithanalterGnativemechanismAstheFeGZnphaseisformedduetoAldepletionatthesteelGzincinterfaceareactionhastooccurconsumingtheAlpresentatthisposiGtionThehighaffinityofMnandAlcanleadtotheformationofMnGAlphaseInthisworkBlumenauetalassumedthatAldidnotreduceanymanganeseoxidesandnoaluminothermicreductionoccurredbutMnwasdissolvedoutofthesteelsurfaceintothezincbathandaMnGAlcompoundwasformedviathereGactionofMnZn+6AlZnrarrMnAl6uarr[17-19]  BecauseofthehighcontentofMninthethirdgenerationautomotivesteelwhetherthetheoryproposedbyBlumenauetaltookeffectornotinthisexperimentalsoneedstobefurtherconfirmed

4 Conclusion  MorphologiesofsurfaceoxidescangreatlyinGfluencethegalvanizabilityofthethirdgenerationauGtomotivesteelNoduleGlikeoxidesurfaceshowbetGter wettabilityandinhibitionlayerthan vitreousfilmGlikeoxidesurfaceGalvanizedpanelsofnoduleGlikeoxidesurfacesteelsonlyshowpinholeGsizedbarespotswhilepanelsgalvanizedfrom vitreousfilmGlikeoxidesurfacesteelsreveallargerareasofbarespotsanduncoatedareasInhibitionlayergrainsobGservedingalvanizedpanelsofnoduleGlikeoxidessurGfacesteelsarecompactandcomposedoftwokindsofinhibitionlayergrainssomeregionsarefineandothersarecoarsebuttheinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurG

3601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

facesteelshaveanonGcompact morphology withsomeparticularlyfineequiaxedcrystalswhicharedevelopeddeficiently

References

[1] W1049008QCaoCWangC1049008YWangJShiM1049008QWangHDongY1049008QWengSciChinaTechSci55(2012)1814G1822

[2] HDongW1049008QCaoJShiC1049008YWangM1049008QWangY1049008QWengIronandSteel46(2011)No104900861G11

[3] IOlefjordWLeijonUJelvestamApplSurfaceSci6(1980)241G255

[4] H1049008JGrabkeVLeroyHViefhausISIJInt35(1995)95G113

[5] PDrilletZZermoutDBouleauJMataigneSClaessensRevMetall101(2004)831G837

[6] E1049008MBellhouseJ1049008RMcDermidMaterSciEngA491(2008)39G46

[7] JMakiJMahieuB1049008CDeCoomanSClaessensMaterSciTechnol19(2003)125G131

[8] LBordignonJCrahayinGalvatechprime01BrusselsBelgium2001pp573G580

[9]  MNordenMBlumenauTWuttkeK1049008JPetersApplSurfSci271(2013)19G31

[10] MBlumenauABarnoushIThomasHHofmannHVehoffSurfCoatTechnol206(2011)542G552

[11] SAlibeigiRKavithaR1049008JMeguerianJ1049008RMcDermidActaMater59(2011)3537G3549

[12] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol206(2011)559G567

[13] YLiSJiangXYuanBChenQZhangSurfInterfaceAnal44(2012)472G477

[14] NGaoD1049008Y1049008HLiuN1049008YTangR1049008BParkM1049008SKiminGalvatechprime11AssociazioneItalianadiMetallurgiaGenoGvaItaly2011pp123G130

[15] X1049008VEyndeJ1049008PServaisMLamberigtsinGalvatechprime2004AISTChicagoUSApp361G372

[16] E1049008MBellhouseA1049008I1049008MMertensJ1049008RMcDermidMaterSciEngA463(2007)147G156

[17] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol205(2011)3319G3327

[18] RSaglAJarosikDStifterGAngeliCorrosSci70(2013)268G275

[19] RKavithaJ1049008RMcDermidSurfCoatTechnol212(2012)152G158

4601     JournalofIronandSteelResearchInternational              Vol104900821 

Page 2: Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

wettingbehaviorSointhepresentworktheinfluGenceofoxidemorphologiesonthegalvanizabilityofthethirdgenerationautomotivesteelwasstudied

1 ExperimentalMaterialandMethod  ThestudywascarriedoutusingthethirdgenGerationautomotivesteelsuppliedby CentralIronandSteelResearchInstitute(CISRI)ThechemicalcompositionoftheteststeelsisgiveninTable1Allsteelsweresuppliedintheform offullGhardcoldsheetandwereshearedintospecimenswiththediGmensionsof220mmtimes120mmtimes110490088mm

Table1 Chemicalcompositionoftheteststeels  mass

C Si Mn P S Cr Fe

01049008096 01049008023 4104900850 010490080091 010490080021 01049008046 Balance

  AnnealingandhotGdippingtrialswereperformedinaCAGG2010hotGdipsimulatormanufacturedbyCISRIFig10490081showstheschematicdiagramofthecontinuousannealingandgalvanizingprocessforthesteelsinhotGdip galvanizing simulatorAllsamples wereheatGtreatedbyheatingto675ataheatingrateof12sandsoakingfor180sAftersoakingthesampleswerecooleddownattherateof15 stodippingtemperaturewhichis480foreachsamGpleAllsamplesweredippedinbathfor3sthencooledinairtoroomtemperatureThezincbathcontained010490082massdissolvedAlandwassaturatedwithironSample1wasannealedunderconditionsofaN2G5H2atmospherewithdewpointof-30andsample2wasannealedunderconditionsofaN2G3H2atmospherewithdewpointof0  ToobservethesteelcoatinginterfacethetopcoG

Fig10490081 SchematicofcontinuousannealingandgalvanizingprocessforsteelsinhotGdipgalvanizingsimulator

ating layer was removed by fuming nitric acid(HNO3)and10 H2SO4FumingHNO3and10H2SO4allowremovingonlyZn(η)GmixcrystalbutdoesnotattackFe2Al5andFeGZnphase  Scanningelectronmicroscopy (SEM)analysiswasperformedusinganFEIQuantaFEG650toobGservethesurfaceoxidemorphologiesafterannealingandinterfaceFe2Al5ofallsamples    XGrayphotoelectron microscopy (XPS)wasperformedtoidentifytheoxidesonthesurfacesoftheannealedsteelsamplesXPSanalysiswasperGformedusingaPHIG5300ESCAXPSwithanAlKαXGraysource(148610490086eV)Thespotsizeusedwas100μmandthetakeoffanglewas45degThebindingenergyvaluesobtainedusingtheXPSwereaccuratewithinplusmn010490084eV

2 Results210490081 Surfaceoxidemorphologiesoftheannealedsteels  Fig10490082showsmorphologiesofsurfaceoxidesonthesteelsamplesafterannealingindifferentatmosG

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490082 Morphologiesofsurfaceoxidesonthesteelsamplesafterannealingunderdifferentconditions

0601     JournalofIronandSteelResearchInternational              Vol104900821 

phereAsshowninFig10490082(a)afterannealingatdewpointof-30 inN2G5H2atmospheretheunGcoatedsamplesurfaceiscoveredbylotsofnoduleGlikeoxidesbuttherearestillmostbaresubstrateHoweverthesurfaceofsample2annealedatdewpointof0 in N2G3 H2 atmosphereiscoveredwithalayerofvitreousfilmGlikeoxide  InordertoclarifythechemicalelementsofthesurfaceoxidesandbindingstatewithoxygenaddiGtionalXPSanalysiswasperformedInXPSanalysisonlythecharacteristicpeaksofMnCrandOweredetectedFig10490083showstheMnandCrXPSnarrowspectraofsamples1and2obtainedfromthesurfaceoxidesXPSspectraofMn(Fig10490083(a))ofsample1

showthatoxidizedMnispresentinformoftwodifferGentcomponentsOnecomponenthasthe Mn2p32peakat64010490088eVandthesecondpeakisat64210490082eVcorrespondingtoMninMnOandMnO2respectively  Maximumintensity(Fig10490083(b))oftheCr2p32peakofsample1isat57610490085eVindicatingthepresGenceofCr2O3XPSspectraofMn (Fig10490083(c))ofsample2showthatoxidized MnisalsopresentinformoftwodifferentcomponentsOnecomponenthastheMn2p32peakat64110490085eVandthesecondpeakisat64310490084eVcorrespondingtoMnin MnOandMnO2respectivelyMaximumintensity(Fig10490083(d))oftheCr2p32peakofsample2isat57610490085eVindicatingthepresenceofCr2O3

(a)Mn2pofsample1  (b)Cr2pofsample1  (c)Mn2pofsample2  (d)Cr2pofsample2Fig10490083 XPSspectraofthesurfaceoxidesonthesamplesafterannealingunderdifferentannealingconditions

210490082 Appearancesofthegalvanizingpanels  Fig10490084showstheappearanceofthesamplepanG

elsgalvanizedinZnbathafterannealingunderdifGferentannealingconditionswhichrevealsthatbare

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490084 AppearanceofthesamplepanelsgalvanizedinZnbathafterannealingunderdifferentannealingconditions

1601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

spotsanduncoatedareasoccurredinallsamplesbutthebarespotsanduncoatedareasareobviouslylessinsample1annealedatdewpointof-30inN2G5H2atmospherethansample2whichwasanGnealedatdewpointof0inN2G3H2atmosphere

210490083 Morphologiesofinhibitionlayer    The morphologiesofinhibitionlayerdeterGminedbySEMareshowninFig10490085forsamplesanG

nealedindifferentannealingconditionsItcanbeseenthattheinhibitionlayerofsample1annealedatdewpointof -30 in N2G5H2 atmosphereiscompactbutnothomogenouswhereastheinhibiGtionlayerformedinsample2annealedatdewpointof0inN2G3H2atmospherehasanonGcompactmorphology withsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsinsample2deGvelopeddeficiently

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490085 Morphologiesofinhibitionlayerofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

210490084 MorphologiesofFeGZnphase  TheFeGZnphasesonthegalvanizedpanelswere

exposedbystrippingthezincoverlayusing10H2SO4AsshowninFig10490086allhotGdipcoatingplate

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490086 MorphologiesofFeGZnphasesofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

specimenshaveinterfacegenerationofζphase

3 Discussion  FornoduleGlikeoxidesurfaceofsample1anGnealedatdewpointof-30inN2G5H2atmosGpheretherearelotsofoxidenodulesandbaresubG

stratebuttheoxidedensitydistributionisnotuniGformInsomeregionsoxidenodulesgathertogethGertoformoxideaggregationandthesizeofoxidenodulesrangesfrom100to200nmWithregardtovitreousfilmGlikeoxidesurfaceofsample2annealedatdewpointof0 inN2G3H2atmospherethe

2601     JournalofIronandSteelResearchInternational              Vol104900821 

oxidelayerappearstobecontinuousandvitreousItisthedifferenceofoxygenpotentialthatleadstodifGferentsurfacemorphologies[9-11]  Thesurfaceoxidetypesofsamples1and2byXPSanalysisarethesameandonly MnOMnO2

andCr2O3 weredetectedandnocomplexoxideexGistsonthesurface  Fig10490084showstheappearanceofthesamplepanGelsgalvanizedinbathSample1onlyshowspinholeGsizedbarespotsandisobviouslybetterreactivelywettedthansample2whichrevealslargerareasofbarespotsanduncoatedareasThesecoatingdefectsoccurduetotheappearanceofnonGwettableexternalMnOxlayer[12]MnOx onthesteelsurfacecouldbeinGsitureducedbythebathdissolvedAlButifMncontentinthesteelishighenoughandtheformedMnOxareingreatnumberthereductionofMnOx

willbedifficultandcannotbedeoxidizedcompleteGly[1113]SurfacemorphologieswerefoundtostrongGlyaffectsteelgalvanizability[14]WhengalvanizingsteelsitisverylikelythatthesurfaceoxidescanbeliftedoffthroughtheFedissolutionfromthesubGstrateandnoduleGlikeoxidesshouldbeliftedoffmorereadilythanvitreousfilmGlikeoxides[14]BellGhouse[6]everindicatedthatreactivewettingoccurredbytwo methodswhengalvanizinghigh AlGlow SiTRIPsteelsreductionofMnObythedissolvedAlintheZn(AlFe)bathandbyZnbridgingoftheoxGideparticlesThemechanism wasdependentonthesurfacestructurepriortogalvanizingIftheoxidecoversthesurfaceofsteelthebridgingeffectwillnothappen[6]VitreousfilmGlikeoxidecanhamperthediffusionofzincandaluminumwhichisnecessaryforthemtoreactwithmetalliciron[15]andresultsinbarespot  OnthebasisoftheabovedescriptionthereacGtivewettingisstronglylinkedtothemorphologiesofsurfaceoxidesandnoduleGlikeoxidesurfacecanbemoreadvantageoustogalvanizingthanvitreousfilmGlikeoxidesurface  TwokindsofinhibitionlayergrainswereobGservedAsshowninFig10490085(a)someregionsarefineandothersarecoarseAsshowninFig10490082(a)inadditiontooxideparticlesthereis mostbaresubstrateThebaresubstratecancreateacleansteelsurfacefornucleationofFeGAlphaseandtheFeGAlnucleatesinagreatnumberleadingtotheformaGtionoffineFeGAlinhibitionlayergrainThenoduleGlikeoxidecanbethermodynamicallyreducedbythebathAlbecauseofaveryshortgalvanizingtimeof3sTherewasalimittothesizeofoxidesthatcouldbe

completelyreducedIntheprocessofhotdipgalvaniGzingbigoxideparticlesexistedinthesteelsurfaceandtheFeGAlgrainscouldonlynucleateoncleanspotsbetweenbigoxidesThustheformedFeGAlgrainswerescatteredandsparseInadditionbeGcausetheamountofnucleationsiteswasloweredforperunitareathedissolvedAlwassufficientforthegrowthofFeGAlgrainsintobiggerones[13]  TheinhibitionlayerformedinFig10490085(b)hasanonGcompactmorphologywithsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsweredevelopeddeficientlyVitreousfilmGlikeoxidescouldhamperthediffusionofFeandAltoreactwitheachothertoforminhibitionlayerandthusinfluencethereactivewetting  AsseenfromFig10490086allsamplepanelshaveinGterfacegenerationofζphaseInadditiontothealuGminothermicreductionofmanganeseoxidesthatledtothedecreaseofAlcontentinzincbathandcausedtheformationofζ phase[616]Blumenauetal1049008[17]

explainedthegrowthofFeGZnphasewithanalterGnativemechanismAstheFeGZnphaseisformedduetoAldepletionatthesteelGzincinterfaceareactionhastooccurconsumingtheAlpresentatthisposiGtionThehighaffinityofMnandAlcanleadtotheformationofMnGAlphaseInthisworkBlumenauetalassumedthatAldidnotreduceanymanganeseoxidesandnoaluminothermicreductionoccurredbutMnwasdissolvedoutofthesteelsurfaceintothezincbathandaMnGAlcompoundwasformedviathereGactionofMnZn+6AlZnrarrMnAl6uarr[17-19]  BecauseofthehighcontentofMninthethirdgenerationautomotivesteelwhetherthetheoryproposedbyBlumenauetaltookeffectornotinthisexperimentalsoneedstobefurtherconfirmed

4 Conclusion  MorphologiesofsurfaceoxidescangreatlyinGfluencethegalvanizabilityofthethirdgenerationauGtomotivesteelNoduleGlikeoxidesurfaceshowbetGter wettabilityandinhibitionlayerthan vitreousfilmGlikeoxidesurfaceGalvanizedpanelsofnoduleGlikeoxidesurfacesteelsonlyshowpinholeGsizedbarespotswhilepanelsgalvanizedfrom vitreousfilmGlikeoxidesurfacesteelsreveallargerareasofbarespotsanduncoatedareasInhibitionlayergrainsobGservedingalvanizedpanelsofnoduleGlikeoxidessurGfacesteelsarecompactandcomposedoftwokindsofinhibitionlayergrainssomeregionsarefineandothersarecoarsebuttheinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurG

3601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

facesteelshaveanonGcompact morphology withsomeparticularlyfineequiaxedcrystalswhicharedevelopeddeficiently

References

[1] W1049008QCaoCWangC1049008YWangJShiM1049008QWangHDongY1049008QWengSciChinaTechSci55(2012)1814G1822

[2] HDongW1049008QCaoJShiC1049008YWangM1049008QWangY1049008QWengIronandSteel46(2011)No104900861G11

[3] IOlefjordWLeijonUJelvestamApplSurfaceSci6(1980)241G255

[4] H1049008JGrabkeVLeroyHViefhausISIJInt35(1995)95G113

[5] PDrilletZZermoutDBouleauJMataigneSClaessensRevMetall101(2004)831G837

[6] E1049008MBellhouseJ1049008RMcDermidMaterSciEngA491(2008)39G46

[7] JMakiJMahieuB1049008CDeCoomanSClaessensMaterSciTechnol19(2003)125G131

[8] LBordignonJCrahayinGalvatechprime01BrusselsBelgium2001pp573G580

[9]  MNordenMBlumenauTWuttkeK1049008JPetersApplSurfSci271(2013)19G31

[10] MBlumenauABarnoushIThomasHHofmannHVehoffSurfCoatTechnol206(2011)542G552

[11] SAlibeigiRKavithaR1049008JMeguerianJ1049008RMcDermidActaMater59(2011)3537G3549

[12] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol206(2011)559G567

[13] YLiSJiangXYuanBChenQZhangSurfInterfaceAnal44(2012)472G477

[14] NGaoD1049008Y1049008HLiuN1049008YTangR1049008BParkM1049008SKiminGalvatechprime11AssociazioneItalianadiMetallurgiaGenoGvaItaly2011pp123G130

[15] X1049008VEyndeJ1049008PServaisMLamberigtsinGalvatechprime2004AISTChicagoUSApp361G372

[16] E1049008MBellhouseA1049008I1049008MMertensJ1049008RMcDermidMaterSciEngA463(2007)147G156

[17] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol205(2011)3319G3327

[18] RSaglAJarosikDStifterGAngeliCorrosSci70(2013)268G275

[19] RKavithaJ1049008RMcDermidSurfCoatTechnol212(2012)152G158

4601     JournalofIronandSteelResearchInternational              Vol104900821 

Page 3: Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

phereAsshowninFig10490082(a)afterannealingatdewpointof-30 inN2G5H2atmospheretheunGcoatedsamplesurfaceiscoveredbylotsofnoduleGlikeoxidesbuttherearestillmostbaresubstrateHoweverthesurfaceofsample2annealedatdewpointof0 in N2G3 H2 atmosphereiscoveredwithalayerofvitreousfilmGlikeoxide  InordertoclarifythechemicalelementsofthesurfaceoxidesandbindingstatewithoxygenaddiGtionalXPSanalysiswasperformedInXPSanalysisonlythecharacteristicpeaksofMnCrandOweredetectedFig10490083showstheMnandCrXPSnarrowspectraofsamples1and2obtainedfromthesurfaceoxidesXPSspectraofMn(Fig10490083(a))ofsample1

showthatoxidizedMnispresentinformoftwodifferGentcomponentsOnecomponenthasthe Mn2p32peakat64010490088eVandthesecondpeakisat64210490082eVcorrespondingtoMninMnOandMnO2respectively  Maximumintensity(Fig10490083(b))oftheCr2p32peakofsample1isat57610490085eVindicatingthepresGenceofCr2O3XPSspectraofMn (Fig10490083(c))ofsample2showthatoxidized MnisalsopresentinformoftwodifferentcomponentsOnecomponenthastheMn2p32peakat64110490085eVandthesecondpeakisat64310490084eVcorrespondingtoMnin MnOandMnO2respectivelyMaximumintensity(Fig10490083(d))oftheCr2p32peakofsample2isat57610490085eVindicatingthepresenceofCr2O3

(a)Mn2pofsample1  (b)Cr2pofsample1  (c)Mn2pofsample2  (d)Cr2pofsample2Fig10490083 XPSspectraofthesurfaceoxidesonthesamplesafterannealingunderdifferentannealingconditions

210490082 Appearancesofthegalvanizingpanels  Fig10490084showstheappearanceofthesamplepanG

elsgalvanizedinZnbathafterannealingunderdifGferentannealingconditionswhichrevealsthatbare

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490084 AppearanceofthesamplepanelsgalvanizedinZnbathafterannealingunderdifferentannealingconditions

1601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

spotsanduncoatedareasoccurredinallsamplesbutthebarespotsanduncoatedareasareobviouslylessinsample1annealedatdewpointof-30inN2G5H2atmospherethansample2whichwasanGnealedatdewpointof0inN2G3H2atmosphere

210490083 Morphologiesofinhibitionlayer    The morphologiesofinhibitionlayerdeterGminedbySEMareshowninFig10490085forsamplesanG

nealedindifferentannealingconditionsItcanbeseenthattheinhibitionlayerofsample1annealedatdewpointof -30 in N2G5H2 atmosphereiscompactbutnothomogenouswhereastheinhibiGtionlayerformedinsample2annealedatdewpointof0inN2G3H2atmospherehasanonGcompactmorphology withsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsinsample2deGvelopeddeficiently

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490085 Morphologiesofinhibitionlayerofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

210490084 MorphologiesofFeGZnphase  TheFeGZnphasesonthegalvanizedpanelswere

exposedbystrippingthezincoverlayusing10H2SO4AsshowninFig10490086allhotGdipcoatingplate

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490086 MorphologiesofFeGZnphasesofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

specimenshaveinterfacegenerationofζphase

3 Discussion  FornoduleGlikeoxidesurfaceofsample1anGnealedatdewpointof-30inN2G5H2atmosGpheretherearelotsofoxidenodulesandbaresubG

stratebuttheoxidedensitydistributionisnotuniGformInsomeregionsoxidenodulesgathertogethGertoformoxideaggregationandthesizeofoxidenodulesrangesfrom100to200nmWithregardtovitreousfilmGlikeoxidesurfaceofsample2annealedatdewpointof0 inN2G3H2atmospherethe

2601     JournalofIronandSteelResearchInternational              Vol104900821 

oxidelayerappearstobecontinuousandvitreousItisthedifferenceofoxygenpotentialthatleadstodifGferentsurfacemorphologies[9-11]  Thesurfaceoxidetypesofsamples1and2byXPSanalysisarethesameandonly MnOMnO2

andCr2O3 weredetectedandnocomplexoxideexGistsonthesurface  Fig10490084showstheappearanceofthesamplepanGelsgalvanizedinbathSample1onlyshowspinholeGsizedbarespotsandisobviouslybetterreactivelywettedthansample2whichrevealslargerareasofbarespotsanduncoatedareasThesecoatingdefectsoccurduetotheappearanceofnonGwettableexternalMnOxlayer[12]MnOx onthesteelsurfacecouldbeinGsitureducedbythebathdissolvedAlButifMncontentinthesteelishighenoughandtheformedMnOxareingreatnumberthereductionofMnOx

willbedifficultandcannotbedeoxidizedcompleteGly[1113]SurfacemorphologieswerefoundtostrongGlyaffectsteelgalvanizability[14]WhengalvanizingsteelsitisverylikelythatthesurfaceoxidescanbeliftedoffthroughtheFedissolutionfromthesubGstrateandnoduleGlikeoxidesshouldbeliftedoffmorereadilythanvitreousfilmGlikeoxides[14]BellGhouse[6]everindicatedthatreactivewettingoccurredbytwo methodswhengalvanizinghigh AlGlow SiTRIPsteelsreductionofMnObythedissolvedAlintheZn(AlFe)bathandbyZnbridgingoftheoxGideparticlesThemechanism wasdependentonthesurfacestructurepriortogalvanizingIftheoxidecoversthesurfaceofsteelthebridgingeffectwillnothappen[6]VitreousfilmGlikeoxidecanhamperthediffusionofzincandaluminumwhichisnecessaryforthemtoreactwithmetalliciron[15]andresultsinbarespot  OnthebasisoftheabovedescriptionthereacGtivewettingisstronglylinkedtothemorphologiesofsurfaceoxidesandnoduleGlikeoxidesurfacecanbemoreadvantageoustogalvanizingthanvitreousfilmGlikeoxidesurface  TwokindsofinhibitionlayergrainswereobGservedAsshowninFig10490085(a)someregionsarefineandothersarecoarseAsshowninFig10490082(a)inadditiontooxideparticlesthereis mostbaresubstrateThebaresubstratecancreateacleansteelsurfacefornucleationofFeGAlphaseandtheFeGAlnucleatesinagreatnumberleadingtotheformaGtionoffineFeGAlinhibitionlayergrainThenoduleGlikeoxidecanbethermodynamicallyreducedbythebathAlbecauseofaveryshortgalvanizingtimeof3sTherewasalimittothesizeofoxidesthatcouldbe

completelyreducedIntheprocessofhotdipgalvaniGzingbigoxideparticlesexistedinthesteelsurfaceandtheFeGAlgrainscouldonlynucleateoncleanspotsbetweenbigoxidesThustheformedFeGAlgrainswerescatteredandsparseInadditionbeGcausetheamountofnucleationsiteswasloweredforperunitareathedissolvedAlwassufficientforthegrowthofFeGAlgrainsintobiggerones[13]  TheinhibitionlayerformedinFig10490085(b)hasanonGcompactmorphologywithsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsweredevelopeddeficientlyVitreousfilmGlikeoxidescouldhamperthediffusionofFeandAltoreactwitheachothertoforminhibitionlayerandthusinfluencethereactivewetting  AsseenfromFig10490086allsamplepanelshaveinGterfacegenerationofζphaseInadditiontothealuGminothermicreductionofmanganeseoxidesthatledtothedecreaseofAlcontentinzincbathandcausedtheformationofζ phase[616]Blumenauetal1049008[17]

explainedthegrowthofFeGZnphasewithanalterGnativemechanismAstheFeGZnphaseisformedduetoAldepletionatthesteelGzincinterfaceareactionhastooccurconsumingtheAlpresentatthisposiGtionThehighaffinityofMnandAlcanleadtotheformationofMnGAlphaseInthisworkBlumenauetalassumedthatAldidnotreduceanymanganeseoxidesandnoaluminothermicreductionoccurredbutMnwasdissolvedoutofthesteelsurfaceintothezincbathandaMnGAlcompoundwasformedviathereGactionofMnZn+6AlZnrarrMnAl6uarr[17-19]  BecauseofthehighcontentofMninthethirdgenerationautomotivesteelwhetherthetheoryproposedbyBlumenauetaltookeffectornotinthisexperimentalsoneedstobefurtherconfirmed

4 Conclusion  MorphologiesofsurfaceoxidescangreatlyinGfluencethegalvanizabilityofthethirdgenerationauGtomotivesteelNoduleGlikeoxidesurfaceshowbetGter wettabilityandinhibitionlayerthan vitreousfilmGlikeoxidesurfaceGalvanizedpanelsofnoduleGlikeoxidesurfacesteelsonlyshowpinholeGsizedbarespotswhilepanelsgalvanizedfrom vitreousfilmGlikeoxidesurfacesteelsreveallargerareasofbarespotsanduncoatedareasInhibitionlayergrainsobGservedingalvanizedpanelsofnoduleGlikeoxidessurGfacesteelsarecompactandcomposedoftwokindsofinhibitionlayergrainssomeregionsarefineandothersarecoarsebuttheinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurG

3601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

facesteelshaveanonGcompact morphology withsomeparticularlyfineequiaxedcrystalswhicharedevelopeddeficiently

References

[1] W1049008QCaoCWangC1049008YWangJShiM1049008QWangHDongY1049008QWengSciChinaTechSci55(2012)1814G1822

[2] HDongW1049008QCaoJShiC1049008YWangM1049008QWangY1049008QWengIronandSteel46(2011)No104900861G11

[3] IOlefjordWLeijonUJelvestamApplSurfaceSci6(1980)241G255

[4] H1049008JGrabkeVLeroyHViefhausISIJInt35(1995)95G113

[5] PDrilletZZermoutDBouleauJMataigneSClaessensRevMetall101(2004)831G837

[6] E1049008MBellhouseJ1049008RMcDermidMaterSciEngA491(2008)39G46

[7] JMakiJMahieuB1049008CDeCoomanSClaessensMaterSciTechnol19(2003)125G131

[8] LBordignonJCrahayinGalvatechprime01BrusselsBelgium2001pp573G580

[9]  MNordenMBlumenauTWuttkeK1049008JPetersApplSurfSci271(2013)19G31

[10] MBlumenauABarnoushIThomasHHofmannHVehoffSurfCoatTechnol206(2011)542G552

[11] SAlibeigiRKavithaR1049008JMeguerianJ1049008RMcDermidActaMater59(2011)3537G3549

[12] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol206(2011)559G567

[13] YLiSJiangXYuanBChenQZhangSurfInterfaceAnal44(2012)472G477

[14] NGaoD1049008Y1049008HLiuN1049008YTangR1049008BParkM1049008SKiminGalvatechprime11AssociazioneItalianadiMetallurgiaGenoGvaItaly2011pp123G130

[15] X1049008VEyndeJ1049008PServaisMLamberigtsinGalvatechprime2004AISTChicagoUSApp361G372

[16] E1049008MBellhouseA1049008I1049008MMertensJ1049008RMcDermidMaterSciEngA463(2007)147G156

[17] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol205(2011)3319G3327

[18] RSaglAJarosikDStifterGAngeliCorrosSci70(2013)268G275

[19] RKavithaJ1049008RMcDermidSurfCoatTechnol212(2012)152G158

4601     JournalofIronandSteelResearchInternational              Vol104900821 

Page 4: Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

spotsanduncoatedareasoccurredinallsamplesbutthebarespotsanduncoatedareasareobviouslylessinsample1annealedatdewpointof-30inN2G5H2atmospherethansample2whichwasanGnealedatdewpointof0inN2G3H2atmosphere

210490083 Morphologiesofinhibitionlayer    The morphologiesofinhibitionlayerdeterGminedbySEMareshowninFig10490085forsamplesanG

nealedindifferentannealingconditionsItcanbeseenthattheinhibitionlayerofsample1annealedatdewpointof -30 in N2G5H2 atmosphereiscompactbutnothomogenouswhereastheinhibiGtionlayerformedinsample2annealedatdewpointof0inN2G3H2atmospherehasanonGcompactmorphology withsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsinsample2deGvelopeddeficiently

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490085 Morphologiesofinhibitionlayerofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

210490084 MorphologiesofFeGZnphase  TheFeGZnphasesonthegalvanizedpanelswere

exposedbystrippingthezincoverlayusing10H2SO4AsshowninFig10490086allhotGdipcoatingplate

(a)Dewpointof-30N2G5H2atmosphere  (b)Dewpointof0N2G3H2atmosphereFig10490086 MorphologiesofFeGZnphasesofthesamplesgalvanizedafterannealingunderdifferentannealingconditions

specimenshaveinterfacegenerationofζphase

3 Discussion  FornoduleGlikeoxidesurfaceofsample1anGnealedatdewpointof-30inN2G5H2atmosGpheretherearelotsofoxidenodulesandbaresubG

stratebuttheoxidedensitydistributionisnotuniGformInsomeregionsoxidenodulesgathertogethGertoformoxideaggregationandthesizeofoxidenodulesrangesfrom100to200nmWithregardtovitreousfilmGlikeoxidesurfaceofsample2annealedatdewpointof0 inN2G3H2atmospherethe

2601     JournalofIronandSteelResearchInternational              Vol104900821 

oxidelayerappearstobecontinuousandvitreousItisthedifferenceofoxygenpotentialthatleadstodifGferentsurfacemorphologies[9-11]  Thesurfaceoxidetypesofsamples1and2byXPSanalysisarethesameandonly MnOMnO2

andCr2O3 weredetectedandnocomplexoxideexGistsonthesurface  Fig10490084showstheappearanceofthesamplepanGelsgalvanizedinbathSample1onlyshowspinholeGsizedbarespotsandisobviouslybetterreactivelywettedthansample2whichrevealslargerareasofbarespotsanduncoatedareasThesecoatingdefectsoccurduetotheappearanceofnonGwettableexternalMnOxlayer[12]MnOx onthesteelsurfacecouldbeinGsitureducedbythebathdissolvedAlButifMncontentinthesteelishighenoughandtheformedMnOxareingreatnumberthereductionofMnOx

willbedifficultandcannotbedeoxidizedcompleteGly[1113]SurfacemorphologieswerefoundtostrongGlyaffectsteelgalvanizability[14]WhengalvanizingsteelsitisverylikelythatthesurfaceoxidescanbeliftedoffthroughtheFedissolutionfromthesubGstrateandnoduleGlikeoxidesshouldbeliftedoffmorereadilythanvitreousfilmGlikeoxides[14]BellGhouse[6]everindicatedthatreactivewettingoccurredbytwo methodswhengalvanizinghigh AlGlow SiTRIPsteelsreductionofMnObythedissolvedAlintheZn(AlFe)bathandbyZnbridgingoftheoxGideparticlesThemechanism wasdependentonthesurfacestructurepriortogalvanizingIftheoxidecoversthesurfaceofsteelthebridgingeffectwillnothappen[6]VitreousfilmGlikeoxidecanhamperthediffusionofzincandaluminumwhichisnecessaryforthemtoreactwithmetalliciron[15]andresultsinbarespot  OnthebasisoftheabovedescriptionthereacGtivewettingisstronglylinkedtothemorphologiesofsurfaceoxidesandnoduleGlikeoxidesurfacecanbemoreadvantageoustogalvanizingthanvitreousfilmGlikeoxidesurface  TwokindsofinhibitionlayergrainswereobGservedAsshowninFig10490085(a)someregionsarefineandothersarecoarseAsshowninFig10490082(a)inadditiontooxideparticlesthereis mostbaresubstrateThebaresubstratecancreateacleansteelsurfacefornucleationofFeGAlphaseandtheFeGAlnucleatesinagreatnumberleadingtotheformaGtionoffineFeGAlinhibitionlayergrainThenoduleGlikeoxidecanbethermodynamicallyreducedbythebathAlbecauseofaveryshortgalvanizingtimeof3sTherewasalimittothesizeofoxidesthatcouldbe

completelyreducedIntheprocessofhotdipgalvaniGzingbigoxideparticlesexistedinthesteelsurfaceandtheFeGAlgrainscouldonlynucleateoncleanspotsbetweenbigoxidesThustheformedFeGAlgrainswerescatteredandsparseInadditionbeGcausetheamountofnucleationsiteswasloweredforperunitareathedissolvedAlwassufficientforthegrowthofFeGAlgrainsintobiggerones[13]  TheinhibitionlayerformedinFig10490085(b)hasanonGcompactmorphologywithsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsweredevelopeddeficientlyVitreousfilmGlikeoxidescouldhamperthediffusionofFeandAltoreactwitheachothertoforminhibitionlayerandthusinfluencethereactivewetting  AsseenfromFig10490086allsamplepanelshaveinGterfacegenerationofζphaseInadditiontothealuGminothermicreductionofmanganeseoxidesthatledtothedecreaseofAlcontentinzincbathandcausedtheformationofζ phase[616]Blumenauetal1049008[17]

explainedthegrowthofFeGZnphasewithanalterGnativemechanismAstheFeGZnphaseisformedduetoAldepletionatthesteelGzincinterfaceareactionhastooccurconsumingtheAlpresentatthisposiGtionThehighaffinityofMnandAlcanleadtotheformationofMnGAlphaseInthisworkBlumenauetalassumedthatAldidnotreduceanymanganeseoxidesandnoaluminothermicreductionoccurredbutMnwasdissolvedoutofthesteelsurfaceintothezincbathandaMnGAlcompoundwasformedviathereGactionofMnZn+6AlZnrarrMnAl6uarr[17-19]  BecauseofthehighcontentofMninthethirdgenerationautomotivesteelwhetherthetheoryproposedbyBlumenauetaltookeffectornotinthisexperimentalsoneedstobefurtherconfirmed

4 Conclusion  MorphologiesofsurfaceoxidescangreatlyinGfluencethegalvanizabilityofthethirdgenerationauGtomotivesteelNoduleGlikeoxidesurfaceshowbetGter wettabilityandinhibitionlayerthan vitreousfilmGlikeoxidesurfaceGalvanizedpanelsofnoduleGlikeoxidesurfacesteelsonlyshowpinholeGsizedbarespotswhilepanelsgalvanizedfrom vitreousfilmGlikeoxidesurfacesteelsreveallargerareasofbarespotsanduncoatedareasInhibitionlayergrainsobGservedingalvanizedpanelsofnoduleGlikeoxidessurGfacesteelsarecompactandcomposedoftwokindsofinhibitionlayergrainssomeregionsarefineandothersarecoarsebuttheinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurG

3601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

facesteelshaveanonGcompact morphology withsomeparticularlyfineequiaxedcrystalswhicharedevelopeddeficiently

References

[1] W1049008QCaoCWangC1049008YWangJShiM1049008QWangHDongY1049008QWengSciChinaTechSci55(2012)1814G1822

[2] HDongW1049008QCaoJShiC1049008YWangM1049008QWangY1049008QWengIronandSteel46(2011)No104900861G11

[3] IOlefjordWLeijonUJelvestamApplSurfaceSci6(1980)241G255

[4] H1049008JGrabkeVLeroyHViefhausISIJInt35(1995)95G113

[5] PDrilletZZermoutDBouleauJMataigneSClaessensRevMetall101(2004)831G837

[6] E1049008MBellhouseJ1049008RMcDermidMaterSciEngA491(2008)39G46

[7] JMakiJMahieuB1049008CDeCoomanSClaessensMaterSciTechnol19(2003)125G131

[8] LBordignonJCrahayinGalvatechprime01BrusselsBelgium2001pp573G580

[9]  MNordenMBlumenauTWuttkeK1049008JPetersApplSurfSci271(2013)19G31

[10] MBlumenauABarnoushIThomasHHofmannHVehoffSurfCoatTechnol206(2011)542G552

[11] SAlibeigiRKavithaR1049008JMeguerianJ1049008RMcDermidActaMater59(2011)3537G3549

[12] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol206(2011)559G567

[13] YLiSJiangXYuanBChenQZhangSurfInterfaceAnal44(2012)472G477

[14] NGaoD1049008Y1049008HLiuN1049008YTangR1049008BParkM1049008SKiminGalvatechprime11AssociazioneItalianadiMetallurgiaGenoGvaItaly2011pp123G130

[15] X1049008VEyndeJ1049008PServaisMLamberigtsinGalvatechprime2004AISTChicagoUSApp361G372

[16] E1049008MBellhouseA1049008I1049008MMertensJ1049008RMcDermidMaterSciEngA463(2007)147G156

[17] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol205(2011)3319G3327

[18] RSaglAJarosikDStifterGAngeliCorrosSci70(2013)268G275

[19] RKavithaJ1049008RMcDermidSurfCoatTechnol212(2012)152G158

4601     JournalofIronandSteelResearchInternational              Vol104900821 

Page 5: Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

oxidelayerappearstobecontinuousandvitreousItisthedifferenceofoxygenpotentialthatleadstodifGferentsurfacemorphologies[9-11]  Thesurfaceoxidetypesofsamples1and2byXPSanalysisarethesameandonly MnOMnO2

andCr2O3 weredetectedandnocomplexoxideexGistsonthesurface  Fig10490084showstheappearanceofthesamplepanGelsgalvanizedinbathSample1onlyshowspinholeGsizedbarespotsandisobviouslybetterreactivelywettedthansample2whichrevealslargerareasofbarespotsanduncoatedareasThesecoatingdefectsoccurduetotheappearanceofnonGwettableexternalMnOxlayer[12]MnOx onthesteelsurfacecouldbeinGsitureducedbythebathdissolvedAlButifMncontentinthesteelishighenoughandtheformedMnOxareingreatnumberthereductionofMnOx

willbedifficultandcannotbedeoxidizedcompleteGly[1113]SurfacemorphologieswerefoundtostrongGlyaffectsteelgalvanizability[14]WhengalvanizingsteelsitisverylikelythatthesurfaceoxidescanbeliftedoffthroughtheFedissolutionfromthesubGstrateandnoduleGlikeoxidesshouldbeliftedoffmorereadilythanvitreousfilmGlikeoxides[14]BellGhouse[6]everindicatedthatreactivewettingoccurredbytwo methodswhengalvanizinghigh AlGlow SiTRIPsteelsreductionofMnObythedissolvedAlintheZn(AlFe)bathandbyZnbridgingoftheoxGideparticlesThemechanism wasdependentonthesurfacestructurepriortogalvanizingIftheoxidecoversthesurfaceofsteelthebridgingeffectwillnothappen[6]VitreousfilmGlikeoxidecanhamperthediffusionofzincandaluminumwhichisnecessaryforthemtoreactwithmetalliciron[15]andresultsinbarespot  OnthebasisoftheabovedescriptionthereacGtivewettingisstronglylinkedtothemorphologiesofsurfaceoxidesandnoduleGlikeoxidesurfacecanbemoreadvantageoustogalvanizingthanvitreousfilmGlikeoxidesurface  TwokindsofinhibitionlayergrainswereobGservedAsshowninFig10490085(a)someregionsarefineandothersarecoarseAsshowninFig10490082(a)inadditiontooxideparticlesthereis mostbaresubstrateThebaresubstratecancreateacleansteelsurfacefornucleationofFeGAlphaseandtheFeGAlnucleatesinagreatnumberleadingtotheformaGtionoffineFeGAlinhibitionlayergrainThenoduleGlikeoxidecanbethermodynamicallyreducedbythebathAlbecauseofaveryshortgalvanizingtimeof3sTherewasalimittothesizeofoxidesthatcouldbe

completelyreducedIntheprocessofhotdipgalvaniGzingbigoxideparticlesexistedinthesteelsurfaceandtheFeGAlgrainscouldonlynucleateoncleanspotsbetweenbigoxidesThustheformedFeGAlgrainswerescatteredandsparseInadditionbeGcausetheamountofnucleationsiteswasloweredforperunitareathedissolvedAlwassufficientforthegrowthofFeGAlgrainsintobiggerones[13]  TheinhibitionlayerformedinFig10490085(b)hasanonGcompactmorphologywithsomeparticularlyfineequiaxedcrystalsItisobviousthatthegrainsweredevelopeddeficientlyVitreousfilmGlikeoxidescouldhamperthediffusionofFeandAltoreactwitheachothertoforminhibitionlayerandthusinfluencethereactivewetting  AsseenfromFig10490086allsamplepanelshaveinGterfacegenerationofζphaseInadditiontothealuGminothermicreductionofmanganeseoxidesthatledtothedecreaseofAlcontentinzincbathandcausedtheformationofζ phase[616]Blumenauetal1049008[17]

explainedthegrowthofFeGZnphasewithanalterGnativemechanismAstheFeGZnphaseisformedduetoAldepletionatthesteelGzincinterfaceareactionhastooccurconsumingtheAlpresentatthisposiGtionThehighaffinityofMnandAlcanleadtotheformationofMnGAlphaseInthisworkBlumenauetalassumedthatAldidnotreduceanymanganeseoxidesandnoaluminothermicreductionoccurredbutMnwasdissolvedoutofthesteelsurfaceintothezincbathandaMnGAlcompoundwasformedviathereGactionofMnZn+6AlZnrarrMnAl6uarr[17-19]  BecauseofthehighcontentofMninthethirdgenerationautomotivesteelwhetherthetheoryproposedbyBlumenauetaltookeffectornotinthisexperimentalsoneedstobefurtherconfirmed

4 Conclusion  MorphologiesofsurfaceoxidescangreatlyinGfluencethegalvanizabilityofthethirdgenerationauGtomotivesteelNoduleGlikeoxidesurfaceshowbetGter wettabilityandinhibitionlayerthan vitreousfilmGlikeoxidesurfaceGalvanizedpanelsofnoduleGlikeoxidesurfacesteelsonlyshowpinholeGsizedbarespotswhilepanelsgalvanizedfrom vitreousfilmGlikeoxidesurfacesteelsreveallargerareasofbarespotsanduncoatedareasInhibitionlayergrainsobGservedingalvanizedpanelsofnoduleGlikeoxidessurGfacesteelsarecompactandcomposedoftwokindsofinhibitionlayergrainssomeregionsarefineandothersarecoarsebuttheinhibitionlayergrainsofpanelsgalvanizedfromvitreousfilmGlikeoxidesurG

3601Issue11    InfluenceofOxideMorphologiesonGalvanizabilityofThirdGenerationAutomotiveSteel 

facesteelshaveanonGcompact morphology withsomeparticularlyfineequiaxedcrystalswhicharedevelopeddeficiently

References

[1] W1049008QCaoCWangC1049008YWangJShiM1049008QWangHDongY1049008QWengSciChinaTechSci55(2012)1814G1822

[2] HDongW1049008QCaoJShiC1049008YWangM1049008QWangY1049008QWengIronandSteel46(2011)No104900861G11

[3] IOlefjordWLeijonUJelvestamApplSurfaceSci6(1980)241G255

[4] H1049008JGrabkeVLeroyHViefhausISIJInt35(1995)95G113

[5] PDrilletZZermoutDBouleauJMataigneSClaessensRevMetall101(2004)831G837

[6] E1049008MBellhouseJ1049008RMcDermidMaterSciEngA491(2008)39G46

[7] JMakiJMahieuB1049008CDeCoomanSClaessensMaterSciTechnol19(2003)125G131

[8] LBordignonJCrahayinGalvatechprime01BrusselsBelgium2001pp573G580

[9]  MNordenMBlumenauTWuttkeK1049008JPetersApplSurfSci271(2013)19G31

[10] MBlumenauABarnoushIThomasHHofmannHVehoffSurfCoatTechnol206(2011)542G552

[11] SAlibeigiRKavithaR1049008JMeguerianJ1049008RMcDermidActaMater59(2011)3537G3549

[12] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol206(2011)559G567

[13] YLiSJiangXYuanBChenQZhangSurfInterfaceAnal44(2012)472G477

[14] NGaoD1049008Y1049008HLiuN1049008YTangR1049008BParkM1049008SKiminGalvatechprime11AssociazioneItalianadiMetallurgiaGenoGvaItaly2011pp123G130

[15] X1049008VEyndeJ1049008PServaisMLamberigtsinGalvatechprime2004AISTChicagoUSApp361G372

[16] E1049008MBellhouseA1049008I1049008MMertensJ1049008RMcDermidMaterSciEngA463(2007)147G156

[17] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol205(2011)3319G3327

[18] RSaglAJarosikDStifterGAngeliCorrosSci70(2013)268G275

[19] RKavithaJ1049008RMcDermidSurfCoatTechnol212(2012)152G158

4601     JournalofIronandSteelResearchInternational              Vol104900821 

Page 6: Influence of Oxide Morphologies on Galvanizability of Third Generation Automotive Steel

facesteelshaveanonGcompact morphology withsomeparticularlyfineequiaxedcrystalswhicharedevelopeddeficiently

References

[1] W1049008QCaoCWangC1049008YWangJShiM1049008QWangHDongY1049008QWengSciChinaTechSci55(2012)1814G1822

[2] HDongW1049008QCaoJShiC1049008YWangM1049008QWangY1049008QWengIronandSteel46(2011)No104900861G11

[3] IOlefjordWLeijonUJelvestamApplSurfaceSci6(1980)241G255

[4] H1049008JGrabkeVLeroyHViefhausISIJInt35(1995)95G113

[5] PDrilletZZermoutDBouleauJMataigneSClaessensRevMetall101(2004)831G837

[6] E1049008MBellhouseJ1049008RMcDermidMaterSciEngA491(2008)39G46

[7] JMakiJMahieuB1049008CDeCoomanSClaessensMaterSciTechnol19(2003)125G131

[8] LBordignonJCrahayinGalvatechprime01BrusselsBelgium2001pp573G580

[9]  MNordenMBlumenauTWuttkeK1049008JPetersApplSurfSci271(2013)19G31

[10] MBlumenauABarnoushIThomasHHofmannHVehoffSurfCoatTechnol206(2011)542G552

[11] SAlibeigiRKavithaR1049008JMeguerianJ1049008RMcDermidActaMater59(2011)3537G3549

[12] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol206(2011)559G567

[13] YLiSJiangXYuanBChenQZhangSurfInterfaceAnal44(2012)472G477

[14] NGaoD1049008Y1049008HLiuN1049008YTangR1049008BParkM1049008SKiminGalvatechprime11AssociazioneItalianadiMetallurgiaGenoGvaItaly2011pp123G130

[15] X1049008VEyndeJ1049008PServaisMLamberigtsinGalvatechprime2004AISTChicagoUSApp361G372

[16] E1049008MBellhouseA1049008I1049008MMertensJ1049008RMcDermidMaterSciEngA463(2007)147G156

[17] MBlumenauMNordenFFriedelKPetersSurfCoatTechnol205(2011)3319G3327

[18] RSaglAJarosikDStifterGAngeliCorrosSci70(2013)268G275

[19] RKavithaJ1049008RMcDermidSurfCoatTechnol212(2012)152G158

4601     JournalofIronandSteelResearchInternational              Vol104900821