24
Biological Journal of the Linnean Society , 2005, 84 , 593–616. With 5 figures © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 593–616 593 Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2005? 2005 843 593616 Original Article SELECTION IN THE HOUSE MOUSE HYBRID ZONE N. RAUFASTE Et al. *Corresponding author. E-mail: [email protected] †Present address: INRA CBGP, Campus de Baillarguet, 34988 Montferrier sur Lez, France The genus Mus as a model for evolutionary studies Edited by J. Britton-Davidian and J. B. Searle Inferences of selection and migration in the Danish house mouse hybrid zone NATHALIE RAUFASTE 1 , ANNIE ORTH 1 , KHALID BELKHIR 1 , DAVID SENET 1 , CAROLE SMADJA 2 , STUART J. E. BAIRD 1† , FRANÇOIS BONHOMME 1 , BARBARA DOD 1 and PIERRE BOURSOT 1 * 1 Laboratoire Génome Populations Interactions Adaptation (UMR 5171 IFREMER-CNRS-UMII), and 2 Institut des Sciences de l’Evolution (UMR 5554 CNRS-UMII), Université Montpellier II, France Received 30 October 2003; accepted for publication 7 October 2004 We analysed the patterns of allele frequency change for ten diagnostic autosomal allozyme loci in the hybrid zone between the house mouse subspecies Mus musculus domesticus and M. m. musculus in central Jutland. After deter- mining the general orientation of the clines of allele frequencies, we analysed the cline shapes along the direction of maximum gradient. Eight of the ten clines are best described by steep central steps with coincident positions and an average width of 8.9 km (support limits 7.6–12.4) flanked by tails of introgression, indicating the existence of a bar- rier to gene flow and only weak selection on the loci studied. We derived estimates of migration from linkage dise- quilibrium in the centre of the zone, and by applying isolation by distance methods to microsatellite data from some of these populations. These give concordant estimates of s = 0.5–0.8 km generation . The barrier to gene flow is of the order of 20 km (support limits 14–28), and could be explained by selection of a few per cent at 43–120 under- dominant loci that reduces the mean fitness in the central populations to 0.45. Some of the clines appear symmet- rical, whereas others are strongly asymmetrical, and two loci appear to have escaped the central barrier to gene flow, reflecting the differential action of selection on different parts of the genome. Asymmetry is always in the direction of more introgression into musculus , indicating either a general progression of domesticus into the musculus terri- tory, possibly mediated by differential behaviour, or past movement of the hybrid zone in the opposite direction, impeded by potential geographical barriers to migration in domesticus territory. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 593–616. ADDITIONAL KEYWORDS: gene flow – genetic barrier – hybridization – Mus musculus domesticus Mus musculus musculus – speciation. 1 2 / INTRODUCTION Hybrid zones have been referred to as ‘windows on the evolutionary process’ (Harrison, 1990) because they allow us to study the interplay between migra- tion and selection on the evolution of genetic differen- tiation and adaptation. When parapatric taxa meet and hybridize, selection against unfit hybrids can counteract the homogenizing effect of migration and lead to the establishment of frequency clines of diag- nostic characters at the boundary between their dis- tribution areas. A detailed population genetics theory has been developed to model the expected patterns of allele frequency changes in such situations (e.g. for reviews see Barton & Hewitt, 1985; Barton & Gale, 1993), showing that they can constitute barriers to gene flow between the taxa, of increasing intensity with the number of loci involved in hybrid unfitness, and with the spread of these loci in the genome.

Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

Biological Journal of the Linnean Society

, 2005,

84

, 593–616. With 5 figures

© 2005 The Linnean Society of London,

Biological Journal of the Linnean Society,

2005,

84

, 593–616

593

Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2005? 2005843593616Original Article

SELECTION IN THE HOUSE MOUSE HYBRID ZONEN. RAUFASTE

Et al.

*Corresponding author. E-mail: [email protected]†Present address: INRA CBGP, Campus de Baillarguet, 34988 Montferrier sur Lez, France

The genus Mus as a model for evolutionary studies

Edited by J. Britton-Davidian and J. B. Searle

Inferences of selection and migration in the Danish house mouse hybrid zone

NATHALIE RAUFASTE

1

, ANNIE ORTH

1

, KHALID BELKHIR

1

, DAVID SENET

1

, CAROLE SMADJA

2

, STUART J. E. BAIRD

1†

, FRANÇOIS BONHOMME

1

, BARBARA DOD

1

and PIERRE BOURSOT

1

*

1

Laboratoire Génome Populations Interactions Adaptation (UMR 5171 IFREMER-CNRS-UMII), and

2

Institut des Sciences de l’Evolution (UMR 5554 CNRS-UMII), Université Montpellier II, France

Received 30 October 2003; accepted for publication 7 October 2004

We analysed the patterns of allele frequency change for ten diagnostic autosomal allozyme loci in the hybrid zonebetween the house mouse subspecies

Mus musculus domesticus

and

M. m. musculus

in central Jutland. After deter-mining the general orientation of the clines of allele frequencies, we analysed the cline shapes along the direction ofmaximum gradient. Eight of the ten clines are best described by steep central steps with coincident positions and anaverage width of 8.9 km (support limits 7.6–12.4) flanked by tails of introgression, indicating the existence of a bar-rier to gene flow and only weak selection on the loci studied. We derived estimates of migration from linkage dise-quilibrium in the centre of the zone, and by applying isolation by distance methods to microsatellite data from someof these populations. These give concordant estimates of

s

=

0.5–0.8 km generation

. The barrier to gene flow is ofthe order of 20 km (support limits 14–28), and could be explained by selection of a few per cent at 43–120 under-dominant loci that reduces the mean fitness in the central populations to 0.45. Some of the clines appear symmet-rical, whereas others are strongly asymmetrical, and two loci appear to have escaped the central barrier to gene flow,reflecting the differential action of selection on different parts of the genome. Asymmetry is always in the directionof more introgression into

musculus

, indicating either a general progression of

domesticus

into the

musculus

terri-tory, possibly mediated by differential behaviour, or past movement of the hybrid zone in the opposite direction,impeded by potential geographical barriers to migration in

domesticus

territory. © 2005 The Linnean Society ofLondon,

Biological Journal of the Linnean Society

, 2005,

84

, 593–616.

ADDITIONAL KEYWORDS:

gene flow – genetic barrier – hybridization –

Mus musculus domesticus

Mus

musculus musculus

– speciation.

1 2/

INTRODUCTION

Hybrid zones have been referred to as ‘windows onthe evolutionary process’ (Harrison, 1990) becausethey allow us to study the interplay between migra-tion and selection on the evolution of genetic differen-tiation and adaptation. When parapatric taxa meet

and hybridize, selection against unfit hybrids cancounteract the homogenizing effect of migration andlead to the establishment of frequency clines of diag-nostic characters at the boundary between their dis-tribution areas. A detailed population genetics theoryhas been developed to model the expected patterns ofallele frequency changes in such situations (e.g. forreviews see Barton & Hewitt, 1985; Barton & Gale,1993), showing that they can constitute barriers togene flow between the taxa, of increasing intensitywith the number of loci involved in hybrid unfitness,and with the spread of these loci in the genome.

Page 2: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

594

N. RAUFASTE

ET AL

.

© 2005 The Linnean Society of London,

Biological Journal of the Linnean Society,

2005,

84

, 593–616

Briefly, this is because migration brings parental gen-otypes to the centre of the hybrid zone where neutralloci are thus in linkage disequilibrium with loci underselection in hybrids, which impedes free introgressionof these neutral loci and causes an abrupt change oftheir allele frequency in the centre. However, theseloci can eventually extricate themselves from thisnegative genetic background by recombination, andform long tails of introgression into the foreign terri-tory. The resulting clines (described by the shapes ofthe central step and of the tails of introgression) arerelatively independent of the type of selection againsthybrids (which is usually unknown), and can be usedto quantify the intensity of the selection maintainingthe zone and of the resulting barrier to gene flow.Their estimation can also provide some informationabout the number of loci involved in the selection ofhybrids, an important characteristic of the mecha-nisms leading to incompatibilities between differenti-ating genomes.

Since the pioneering work of Hunt & Selander(1973), several authors have studied the genetics ofthe hybrid zone between the two European subspeciesof the house mouse,

Mus musculus domesticus

and

M. m. musculus

, that are thought to have come intosecondary contact in Europe after a period of indepen-dent geographical expansion from the Middle East,with

M. m. domesticus

colonizing the Mediterraneanbasin and Western Europe while

M. m. musculus

wasexpanding across central Europe (e.g. see Boursot

et al

., 1993, for a review). In previous studies, clinewidths were roughly quantified by visually inspectingthe variations of synthetic morphological or genetichybrid indexes: 90% of the genetic transition occursover 20 km in Denmark (Hunt & Selander, 1973), 75%over 20 km in southern Germany (Sage, Whitney &Wilson, 1986b), 80% over 36 km in Bulgaria (Vanler-berghe

et al

., 1988), and 60% of genetic and morpho-logical variation in 20–40 km in East Holstein (Prager

et al.

, 1993). The first attempt to estimate cline widthsinvolved the application of a simple sigmoid model onthe south German transect (Tucker

et al

., 1992). Theyfound narrower cline widths for the sex chromosomemarkers (Y chromosome, 4 km; X chromosome mark-ers from 4 to 10 km) compared with autosomal alloz-ymes (from 6.4 to 21.2 km). A similar contrastbetween the sex chromosomes and autosomal loci wasalso found in Denmark and Bulgaria (Vanlerberghe

et al

., 1986; Dod

et al

., 1993). However, none of thesestudies had enough samples both in the centre and inthe tails of introgression for a detailed analysis of thecline shape to be realistic. In addition, sampling wasoften carried out in a linear fashion in an arbitrarydirection across the transect, allowing comparisonsbetween markers, but not the calculation of clineparameters along the line of maximum slope. Further-

more, none of these studies included estimations ofmigration, nor of linkage disequilibrium that could becombined with cline widths to estimate the intensityof selection against hybrid mice. Here we analyse alarge dataset on the Danish hybrid zone characterizedfor ten diagnostic allozyme loci, and derive indepen-dent estimates of migration using microsatellite loci.

MATERIAL AND METHODS

M

ICE

Mice were live trapped inside buildings using multi-capture wire traps, during several field trips from1984 to 2000. The location of the sampling sites in theJutland peninsula is indicated on Figure 1 and the listof localities with their Universal Transverse Mercator(UTM) coordinates are given in Appendix 1.

P

ROTEIN

ELECTROPHORESIS

Mice were killed and dissected in the field, and liver,kidney, heart, plasma and blood cells were kept in liq-uid nitrogen for further preparations. Protein extrac-tions, separation by starch gel electrophoresis (oracrylamide gels in the case of Amylase) and detectionof enzyme activity in the gels followed standard pro-tocols, such as described in Pasteur

et al

. (1987). Theloci were chosen for their ability to distinguishbetween the two subspecies in previous studies onhouse mice in the Jutland peninsula and on a broadergeographical scale (Hunt & Selander, 1973; Bonho-mme

et al

., 1984; Britton-Davidian, 1990; Din

et al

.,1996). The alleles were identified by comparison withstandards obtained from mice of known genotypes,and each locality was characterized by the frequencyof

M. m. musculus

alleles.

O

RIENTATION

OF

THE

CLINES

The general orientation of the maximum gradient ofallele frequency across the hybrid zone was deter-mined by fitting the allele frequency data to a simplesigmoid model, where the logit transform of the allelefrequencies is a linear function of the two-dimen-sional (2D) geographical coordinates. The model wasfitted by maximum likelihood, assuming a binomialerror on the estimations of allele frequencies, usingthe computer package GLIM4 (the Numerical Algo-rithm Group). This orientation procedure determinedthe direction of maximum gradient of allele fre-quency, assuming the centre of the hybrid zone is astraight line, and that the frequency change is sig-moid. The coordinate of each locality was then calcu-lated by projection on this direction of maximumgradient.

Page 3: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE

595

© 2005 The Linnean Society of London,

Biological Journal of the Linnean Society,

2005,

84

, 593–616

F

ITTING

CLINE

SHAPE

The

musculus

allele frequencies for each locus in thedifferent localities along the 1D transect were fitted tovarious models of cline shapes by maximum likelihoodestimation, using the computer package Analyse(by N. Barton & S. Baird, http://helios.bto.ed.ac.uk/evolgen/Mac/Analyse/).

Sample sizes were corrected according to:

(1)

(adapted from Szymura & Barton, 1986, 1991), where

N

is the number of individuals sampled in the locality.

F

IS

is the deficit of heterozygotes (set to zero if not pos-itive) and is used to correct for the non-independencebetween sampling of alleles when there is inbreeding.

F

ST

represents the fluctuations of allele frequenciesbetween loci that are not accounted for by differencesin their cline shapes. It represents the residual varia-tion around the regression of allele frequencies atindividual loci in each locality against the average ofall loci, and was estimated using the ‘concordance’procedure in the Analyse package. The above correc-tion is designed for a single locus. When data for sev-

NeN

N Fst Fis=

+ +2

2 1*

eral loci were pooled, the effective sample size wastaken as the sum of effective sample sizes for the dif-ferent loci.

The Analyse package is then used to compare thelikelihood of the allele frequency data under three dif-ferent models of cline shape: a sigmoid cline, andclines in three parts, with a central sigmoid part andtwo exponential tails of introgression, either identicalon both sides or different. The first model has twoparameters,

w

, the width of the cline (inverse of themaximum slope), and

c

, the geographical position ofthe centre. The second model has two additionalparameters (four in total) describing the shape of theexponential tails, and the last model has two suchparameters for each tail (six parameters in total). Asthe models are nested, a likelihood ratio test can beapplied to choose the model that best explains the datawith a minimum of parameters, by assuming thattwice the difference of log-likelihood between two mod-els follows a chi-squared distribution with the numberof degrees of freedom equal to the difference in thenumber of parameters between the two models.

The Analyse program uses a Metropolis randomexploration algorithm to find the maximum likelihood

Figure 1.

Location of the sampling sites are shown by open triangles on the map, and the axes give their UTM coordinates.Inset: the location of the study area in the Jutland Peninsula. The grey line running across the map is the position of thecentre of the hybrid zone that ends in the east at the head of the Vejle Fjord. The rivers are drawn on this map, and someare highlighted by thicker lines (see text).

6120

6140

6160

6180

6200

6220

475 495 515 535 555 575

10 km

N

Page 4: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

596

N. RAUFASTE

ET AL

.

© 2005 The Linnean Society of London,

Biological Journal of the Linnean Society,

2005,

84

, 593–616

estimate of the parameters, so it was run many timeson each dataset, with different starting conditions anddifferent settings of the parameters controlling theexploration algorithm, in order to explore the param-eter space as thoroughly as possible. Two log-likelihood support limits of parameter estimates weredetermined by inspecting the results of 10 000–50 000explorations of the parameter space with the algo-rithm. The likelihood profiles (Hilborn & Mangel,1997) for position and width were explored using the‘crossection’ option of Analyse, as described in Phil-lips, Baird & Moritz (2004): the parameter of interest(

c

or

w

) is set to a fixed value, and the other parame-ters are searched until the maximum likelihood of thedata is found for this value of

c

(

w

). The procedure isrepeated for a range of values of

c

(

w

) until the rangeof relevant values is covered, and the likelihood profilecan thus be generated for the parameter of interest.

E

STIMATING

SELECTION

PARAMETERS

The parameters of the fitted cline shapes can be usedto infer some population parameters of interest, usingthe existing theory of tension zones, as detailed in anumber of papers (Barton & Hewitt, 1985; Szymura &Barton, 1986, 1991; Barton & Gale, 1993; Kruuk

et al

.,1999; Barton & Shpak, 2000). We will summarize herethe part of this complex theory that was used.

As we will see, a cline shape in three parts, with acentral sigmoid part and two exponential tails, bestdescribes most loci studied. This is the shape expectedfor a locus under weak selection (creating the expo-nential tails of introgression) submitted to the influ-ence of several loci under stronger selection, creatingthe central barrier to gene flow, and the central step inthe clines. Although some of the theory summarizedbelow is derived for neutral loci, the hypothesis ofweak selection on the studied loci needs to be intro-duced to derive equilibrium cline shapes (the onlyequilibrium for neutral loci would be even frequency,e.g. Szymura & Barton, 1986, 1991).

The central sigmoid step can be described by twoparameters,

c

, the position of the centre, and

w

, thewidth of the cline (inverse of the maximum slope). Thefollowing relation relates the total selection acting onthe locus to the width of the cline:

(2)

where

s

2

is the migration parameter (variance of dis-tance from parent to offspring). This is a nuisanceparameter, but it is possible to estimate it by compar-ing the clines for different loci and their linkage dise-quilibria. It is expected to be proportional to thelinkage disequilibrium and the rate of recombinationbetween the loci, and to the gradients of allele fre-

sw

* = 8 2

2

s

quencies for these loci. Standardized linkage disequi-libria (linkage disequilibrium standardized by themaximum possible value given allele frequencies)between pairs of loci were estimated by maximumlikelihood with the program Analyse, in localities fromthe centre of the hybrid zone, where linkage disequi-librium is expected to be maximum, and where thegradient of allele frequencies is estimated as theinverse of cline width. The migration parameter wasestimated for each locality and each pair of loci. Theestimates obtained are then averaged over pairs of lociand localities to obtain a single estimate of the migra-tion parameter. Because the statistical properties ofsuch an average are not known, we also used the vari-ance of the individual hybrid index to estimate theaverage linkage disequilibrium between loci (Barton& Gale, 1993),

D

—.The equations of the exponential tails of introgres-

sion allow the inference of other important parame-ters. The equation of the left tail of the cline is:

(3)

and that of the right tail

(4)

It can be seen that parameters

q

represent thesquare of the ratio between the expected rate of decayin the tails without a barrier and the actual rate ofdecay. They can thus be used to estimate the ratiobetween the selection on the locus under study itselfand the total selection experienced by this locus,including the influence of other loci:

(5)

The program Analyse does not give estimates of the

a

parameters but of parameters

B

/

w

, the ratio of thebarrier to gene flow to the width of the clines. The rela-tionship between these parameters is:

(6)

and similarly for

B

1

.By making the hypothesis that selection on the loci

studied is weak, that the number of loci under selec-tion is not too small (1/

n

<<

1) and that selection actsagainst heterozygotes, one can derive approximateestimates of the number of loci under selection creat-ing the barrier and the intensity of the selection oneach locus using the two following relationships (e.g.Barton & Shpak, 2000):

(7)

p xx cw

( ) = -( )ÊË

ˆ¯a q0 0

2exp ,

p xx cw

( ) = - - -( )ÊË

ˆ¯1

21 1a qexp .

q = sslocus

*.

Bw

00

0 1

021= - -

qa aa

. ,

sB

Bw u

= ÊË

ˆ¯

8 2

22s

ln andD

Page 5: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 597

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

(8)

where Du is the height of the central step of allele fre-quency, and is estimated as the difference in the fre-quencies of the two exponential tails taken at thecentre (x = c). We thus have Du = 1 - a0 - a1, whichbecomes:

(9)

Note that in the literature, Du is sometimes omitted,supposing that selection is strong and that it is close to1 (Szymura & Barton, 1986, 1991).There remains onenuisance parameter in the equations above, which isr̄, the average recombination rate between the neutral(or quasi-neutral in that case) locus and the loci underselection. Several methods have been suggested toestimate r̄ (Barton & Hewitt, 1985; Barton & Bengts-son, 1986). Here we take the conservative value of 0.5that gives the upper limit of n, the number of lociunder selection. In the framework of this underdomi-nance model, the average fitness of the central popu-lations can be estimated (taking the fitness of theparental populations arbitrarily at 1):

(10)

MICROSATELLITE TYPING

Genomic DNA was extracted from the spleen usingstandard proteinase K/phenol-chloroform methods.Polymorphism was studied at six microsatellite locithat are described in Table 1. Five of them are com-mon with the previous study of Dallas et al. (1995).The loci were amplified by PCR. One of the amplifica-tion primers was fluorescently labelled (Cy5) andallele sizes were measured after migration in a dena-turing acrylamide gel on an automated sequencer

nr

BB

w u

=ÊË

ˆ¯2s ln

D

Du wB B

B Bw

B B=

+ +

2

2

0 0 1 1

0 0 1 1 0 0 1 1

q q

q q q q.

Wns

H = -ÊË

ˆ¯exp

2.

(Pharmacia). Allele sizes for all loci were measuredrelative to the corresponding allele of the Balb/cmouse laboratory strain, which was arbitrarily attrib-uted size 50. We intentionally selected loci with 3–5-bprepeats (except D17Mit41, 2 bp, Table 1), becauseallele size determination is more reliable than for 2-bprepeats.

ESTIMATION OF MIGRATION FROM MICROSATELLITE ALLELE FREQUENCIES

We estimated the migration parameter s under isola-tion by distance models, using three different methodsapplied to the microsatellite data. The first methodcalculates the regression between FST /(1 - FST) andthe logarithm of geographical distance between popu-lations, r (Rousset, 1997). It applies to pairs of popu-lations in a 2D habitat, and the slope of the regressiongives an estimate of 1/4pDs2, where D is the local pop-ulation density, and s2 is the dispersion parameter. Wechose FST rather than RST (Slatkin, 1995) because it isthought to be more conservative when sample sizesare small, and only a few loci are used (Gaggiotti et al.,1999), but also because of its small variance and of theuncertainties about the mutation model underlyingthe justification of RST. The second method calculatesthe regression of statistic over the logarithm of geo-graphical distance, r (Rousset, 2000b), the slope ofwhich also provides an estimate of 1/4pDs2. Here,however, pairs of individuals rather than of popula-tions are compared, and statistic is given by (Qw - Qr)/(1 - Qw), where Qr is the probability of identity bystate of two alleles separated by a distance r, and Qw isthe probability of identity by state of the two allelesfrom the same individual. The third method used herecalculates the regression of a spatial autocorrelationstatistic, Moran’s I, over the logarithm of geographicaldistance r (Hardy & Vekemans, 1999). It also appliesto pairs of individuals, and the slope of the regressioncan be used as an estimate of (1 - FIT)/2pDs2(1 + FIT).Computer software GENETIX (http://www.univ-montp2.fr/~genetix/genetix/genetix.htm) was used to

)ar

)ar

Table 1. Description of the microsatellite loci studied

LocusName of locus in Dallas et al. (1995)

Balb/c allele in Dallas et al. (1995)

Motif size (bp)

No. ofalleles Chromosome

Position fromcentromere (cM)

Cypla2 34 4 4 11 9 3.1Ckmm 105 1 5 7 7 4.5Ktr2 126 4 4 5 15 58.7Gfap 150 4 3 16 11 62D15Mit16 D15Mit16 3 4 11 15 61.7D17Mit41 – – 2 10 17 53

Page 6: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

598 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

calculate FST and convert data files between differentformats, while GENEPOP (ver. 3.3, Raymond & Rous-set, 1995) allowed the calculation of . A programwas written to calculate Moran’s I, according to theformula in Hardy & Vekemans (1999).

RESULTS

ALLOZYME ANALYSES

A total of 170 localities, listed in Appendix 1 with theirgeographical coordinates, were studied here and theirlocation is indicated in Figure 1. Most yielded fivemice or fewer (see Appendix 1 and the distribution ofsample sizes in Table 2). The results of the geneticanalysis at the ten enzymatic autosomal loci (Amy,Es1, Es10, Es2, Gpd, Idh, Mpi, Np, Pgm and Sod) aregiven in Appendix 2. A total of 1233 mice were studied,but only 996–1187 were successfully typed, dependingon the locus.

Samples from the same locality but different collec-tion years were treated separately. An independentstudy (to be published elsewhere) failed to find anyevidence that this hybrid zone has moved since it wassampled in the late 1960s by Hunt & Selander (1973)and our sampling period which extended from 1984 to2000. We therefore considered here that the zone wasstable enough for us to analyse all sampling yearstogether, in order to increase the quality of the sam-pling along the transect.

ORIENTATION OF THE TRANSECT

When fitting a sigmoid cline to the data in two dimen-sions, the centre of the hybrid zone was found to runwest-north-west to east-south-east, at a 7∞ angle clock-wise from the west–east direction (as drawn on the mapof Fig. 1). We will see below that most loci do not fit thesimple sigmoid cline model used here, but rather morecomplex models with a central step of allele frequency.

)ar

We were thus concerned that the use of this simplemodel could lead to an erroneous determination of thedirection of the clines. Using the more complex models,we tested several orientations with angles from 0 to 20∞and found in all cases that the 7∞ orientation gave thebest likelihood (data not shown). The coordinates of thelocalities along the transect were thus calculated byprojecting them onto an axis perpendicular to this cen-tral line. However, as can be seen on the map, the centreof the hybrid zone reaches at its eastern end the headof a deep fjord (the Vejle Fjord). For localities furthereast of this point our standard procedure would cer-tainly underestimate their distance to the centre of thehybrid zone. Thus, the straight line distance betweenthe locality considered and the head of the fjord wasadded to (north of the hybrid zone centre) or subtractedfrom (south of the hybrid zone centre) the transect coor-dinate of the head of the fjord. The amended transectcoordinates are listed in Appendix 1, and are used inthe following analyses.

CLINE SHAPES

The 1D coordinates of the localities calculated asdescribed above were used to analyse the shape of thecline of allele frequency along the transect. The threemodels implemented by the computer program Anal-yse were fitted successively: sigmoid cline (two param-eters), symmetric stepped cline (four parameters) andasymmetric stepped cline (six parameters). The likeli-hood ratio test was used to compare the models andthe choice was made at the 5% significance level.Table 3 shows the type of model retained for eachlocus using this criterion. The sigmoid model (twoparameters) could not be rejected for Idh and Sod,while a stepped symmetric model (four parameters)was retained for Es1 and Mpi, but the stepped asym-metric model (six parameters) provided the best fit forthe six remaining loci. The best positions of the cen-tres for each locus and their 2 Log-Likelihood (LL)support limits are given in Table 3. We then testedwhether an acceptable common centre for all loci couldbe found. To do this, we calculated the best LL of eachlocus dataset for a range of centres spanning the con-fidence intervals of all loci, leaving all the otherparameters free to vary. We then summed the best LLsover loci for each of the centres tested, and determinedthe position that provides the best summed LL(method described in Phillips et al., 2004). This model,with a common centre at position 6191.8 (Table 3), issignificantly worse than that where the centre is freeto vary at each locus (P = 1.4 ¥ 10-12). Inspection of theindividual tests for each locus between the free andconstrained centre models identifies two clear outliers(Table 3): Idh and Sod, the two loci for which sigmoidclines were retained. We reiterated the above proce-

Table 2. The distribution of sample sizes

No. of mice No. of localities

1–5 1036–10 26

11–15 1916–20 1021–25 426–30 531–35 136–40 141–45 046–50 051–55 1

Page 7: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 599

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

Tab

le 3

.M

axim

um

lik

elih

ood

posi

tion

of

the

cen

tre

for

each

loc

us,

an

d th

e li

keli

hoo

d se

arch

of

a co

mm

on c

entr

e

Loc

us

Bes

t ce

ntr

e fo

r ea

ch l

ocu

sB

est

com

mon

cen

tre

all

loci

Bes

t co

mm

on c

entr

e 8

loci

Mod

elC

entr

e2L

L l

imit

sL

LC

entr

eL

L2D

LL

d.f.

PC

entr

eL

L2D

LL

d.f.

P

Am

y6

6189

.2(6

188.

0–61

91.3

)-8

3.55

6191

.8-8

6.75

6.39

10.

011

6191

.2-8

5.13

3.16

10.

076

Es1

461

92.0

(619

0.8–

6193

.3)

-62.

0761

91.8

-62.

150.

151

0.70

061

91.2

-62.

911.

681

0.19

5E

s10

661

91.6

(618

9.3–

6193

.2)

-70.

6261

91.8

-70.

750.

261

0.60

761

91.2

-70.

890.

541

0.46

2E

s26

6191

.1(6

190.

1–61

96.7

)-9

9.70

6191

.8-9

9.87

0.33

10.

564

6191

.2-9

9.60

0.20

10.

656

Gpd

661

91.2

(618

5.5–

6194

.8)

-85.

4361

91.8

-86.

051.

241

0.26

661

91.2

-85.

430.

001

1.00

0Id

h2

6198

.9(6

196.

1–62

01.7

)-8

2.75

6191

.8-9

4.27

23.0

51

1.6

¥ 10

-6

Mpi

461

90.4

(618

9.3–

6191

.5)

-76.

0461

91.8

-79.

076.

071

0.01

461

91.2

-77.

112.

141

0.14

3N

p6

6191

.7(6

190.

7–61

94.6

)-7

5.53

6191

.8-7

5.55

0.03

10.

862

6191

.2-7

6.03

0.99

10.

320

Pgm

661

93.8

(619

1.6–

6196

.3)

-67.

3061

91.8

-69.

243.

881

0.04

961

91.2

-69.

544.

481

0.03

4S

od2

6199

.0(6

196.

6–62

01.4

)-8

1.30

6191

.8-9

8.21

33.8

41

6.0

¥ 10

-9

All

loc

ibe

st f

or

each

loc

us

-784

.29

6191

.8-8

21.9

075

.23

91.

4 ¥

10-1

2

All

loc

i ex

cept

Idh

an

d S

odbe

st f

or

each

loc

us

-620

.24

6191

.2-6

26.6

412

.79

70.

077 dure for all loci except these two, and found an accept-

able common centre for these loci (at position 6191.2,P = 0.077, Table 3).

Using this common centre we determined the bestcline shapes for these eight loci. The data points andthe fitted cline shapes are plotted on Figure 2, and thecline parameters are given in Table 4. A variety ofshapes are observed among the clines with a centralstep. The height of this step in allele frequency varies,the highest being for Amy. Although two loci, Es1 andMpi, have relatively symmetric introgression pat-terns, all the other loci show an asymmetry that isalways in the same direction. They are characterizedby a steep central change in allele frequency thatoccurs mostly on the domesticus side, where introgres-sion past this barrier is less extensive than on themusculus side (this is particularly pronounced forEs10, Gpd and Pgm). The most pronounced asymme-try of introgression is seen at the Idh and Sod loci,whose centre is displaced almost 8 km into the mus-culus territory as compared with the common centre ofthe other loci. For these two loci, no model with a cen-tral step (around frequency 0.5) fitted the data betterthan the simpler sigmoid model (see Fig. 3).

It can also be seen in Figure 2 that there is consid-erable dispersion of the data points around the model.This is reflected in the poor precision of the parameterestimates, given in Table 4 with their two LL supportlimits. The variations between loci and the supportlimits of the parameters are particularly large for theleft side, with the left barrier parameter absurdlylarge for several loci. The parameters defining theright side of the cline are generally better estimatedand more consistent across loci, but the support limitsstill remain rather wide. When the average of theeight loci with a common centre is used (averagehybrid indices reported in Appendix 1), more reliableparameter estimates with reasonably narrow supportintervals are obtained (Table 4). The parametersdefining the right and left sides are similar to eachother, and the average cline for these eight loci isshown graphically in Figure 4. The Y chromosomedata for the same samples (data from Dod et al., 2005,this issue) are also reported in this figure, showingthat the centre of the allozyme clines corresponds tothe major and abrupt change for this chromosome.

ESTIMATING SELECTION PARAMETERS FROM CLINE SHAPES

Given the estimates of cline widths derived above forthe different loci, it is theoretically possible to esti-mate the migration parameter s using linkage dise-quilibria between loci in the centre of the hybrid zone.We estimated the standardized linkage disequilibriabetween pairs of loci in each locality for the eight loci

Page 8: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

600 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

that have coincident centres (Amy, Es1, Es2, Es10,Gpd, Mpi, Np and Pgm) using the maximum likeli-hood procedure in the Analyse package. With the esti-mated cline width for each locus given in Table 4, we

then obtained estimates of the migration parameter.All pairs of loci are unlinked on the genetic map,except Es1 and Es2, at 9 cM on chromosome 8, andEs10 and Np, at 22 cM on chromosome 14, and these

Figure 2. Variations of Mus musculus musculus allele frequencies along the transect across the hybrid zone, for eightautosomal loci. Shaded circles represent the real data, and the area of the circles is proportional to the effective numberof alleles sampled (after correction for FIS and FST, see text). The filled circles represent the best fit with a common centrefor the eight loci, the position of which is shown by the thin vertical line.

Amy Es1

Es10 Es2

Gpd

Np Pgm

Mpi

Geographical coordinate along transect (km)

fo ycneuqerFsulucsu

mselella

1.2

1

0.8

0.6

0.4

0.2

0

–0.21.2

1

0.8

0.6

0.4

0.2

0

–0.21.2

1

0.8

0.6

0.4

0.2

0

–0.21.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

6140 6160 6180 6200 6220 6240 6260

6140 6160 6180 6200 6220 6240 6260

6140 6160 6180 6200 6220 6240 6260

Page 9: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 601

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

values of recombination were used to estimate s. Theresults were then averaged over pairs of loci and local-ities. We chose localities from the centre of the hybridzone with more than ten mice in the sample (localitiesnumbers 102, 106, 120 and 142: Appendix 1). This ledto an average estimate of the migration parameter s of0.75 km generation– . We also applied the othermethod based on the variance of the hybrid index(Barton & Gale, 1993) to 145 mice from the 24 mostcentral populations. The variance of hybrid index was0.021, and the part due to heterozygosity 0.014. Theexcess variance is attributed to linkage disequilib-

1 2/

rium, and with an average cline width of 8.9 km, weget D = 0.015 and s = 0.77 and 0.63 km generation–

(whether sampling occurred before or after migration,Barton & Gale, 1993), in good agreement with the pre-vious estimate.

In order to calculate the intensity of selectionneeded to balance dispersal against selection andrecombination, cline shape has to be estimated. To dothis we used the parameters of the average cline for

1 2/

Table 4. Maximum likelihood estimates of cline parameters, and their two log-likelihood support limits, for eight loci witha common centre at position 6191.2

Locus w B0/w q0 B1/w q1

Amy 20.6 (15.2–26.4) 123.51 (2.27–inf) 0.002 (0.000–0.284) 9.67 (2.74–108.45) 0.037 (0.001–0.157)Es1 11.0 (2.2–25.2) 0.67 (0.03–5.57) 0.172 (0.010–0.999)Es10 6.4 (4.9–11.7) 5.15 (1.16–332.67) 0.085 (0.004–0.457) 3.95 (1.81–7.54) 0.016 (0.008–0.055)Es2 3.8 (1.3–9.2) 14.35 (1.91–123.26) 0.004 (0.000–0.058) 6.50 (1.66–23.25) 0.003 (0.000–0.019)Gpd 6.3 (3.4–13.0) 2.59 (0.92–27.71) 0.029 (0.002–0.138) 1.09 (0.68–3.05) 0.032 (0.009–0.135)Mpi 6.2 (2.2–18.9) 2.16 (0.35–9.01) 0.041 (0.004–0.453)Np 5.9 (3.8–44.6) 0.91 (0.15–inf) 0.045 (0.000–1.000) 2.39 (0.39–7.05) 0.009 (0.002–0.715)Pgm 6.8 (4.0–9.1) 146.49 (9.98–inf) 0.016 (0.001–0.098) 2.19 (1.91–5.04) 0.035 (0.010–0.061)Eight loci 8.9 (7.7–12.4) 2.25 (1.09–3.76) 0.072 (0.043–0.163) 2.22 (1.31–3.05) 0.033 (0.023–0.063)

Figure 3. Allele frequency variations along the transectfor two autosomal loci that do not fit the general clineposition and shape of the eight loci in Fig. 2. Symbols areas in Fig. 2.

Idh

Sod

0

Geographical coordinate along transect (km)

fo ycneuqerFsulucsu

mselella

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

Figure 4. Allele frequency variations along the transect,for the average of eight autosomal loci (Amy, Es1, Es2,Es10, Gpd, Mpi, Np and Pgm), and the Y chromosome (datafrom Dod et al., 2005, this issue). Symbols are as in Fig. 2.

Eight allozymes

Y chromosome

Geographical coordinate along transect (km)

mus

culu

s al

lele

sfo ycneuqerF

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

6140 6160 6180 6200 6220 6240 6260

Page 10: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

602 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

the eight coincident loci. We have seen above that,individually, most of the clines are asymmetrical, butthat this asymmetry is tempered when the averageintrogression over the eight loci is considered. Usingeither the right or the left parameters of this cline fitgives consistent estimates of selection parameters.The barrier to gene flow on both sides is of the order ofB ~ 20 km (2LL support limits 12–33 km on the leftside and 14–28 on the right side), and the height of thecentral step in allele frequency equals 0.45. The totalselection acting on the loci studied is estimated ass* = 0.040–0.059 (eqn 2, with s = 0.63–0.77, seeabove). The selection acting on each of the loci causingthe genetic barrier is estimated as s = 0.021–0.030(eqn 7). The number of loci under selection creatingthe central barrier is estimated to be n ~ 52–78 byassuming that the average recombination between theloci studied and the selected loci is r = 0.5 (eqn 8). Thisis thus an overestimate of the number of loci. Theaverage fitness of hybrid central populations is esti-mated to be WH = 0.45 (eqn 10). Finally, the selectionacting on the loci under study is estimated usingeqn (5) to be on average of the order of slocus = 0.003–0.004, or 0.001–0.002 depending on whether the left orright cline parameters, respectively, are considered.These low values are in agreement with the hypothe-sis that was made of weak selection on these loci inorder to apply the approximations needed for theabove parameter estimations.

ESTIMATING MIGRATION FROM MICROSATELLITE DATA

In order to estimate migration independently of thecline analyses, we typed some of the populations at sixmicrosatellite loci and applied various methods of esti-mation of migration under isolation by distance. Weselected the two sampling years with the largest sam-ples (1992 and 1998) and analysed the results for eachyear separately. Here we are interested in the part ofthe genetic differentiation between populations andindividuals that results from migration and driftalone, so we want to remove the effect of selection inthe hybrid zone. Ideally, this could be done by analys-ing the residual variation of allele frequencies aroundthe cline fits for polymorphic, yet diagnostic, markers.However, most microsatellites tested did not meetthese criteria. We thus chose to study allele frequencyvariation among groups of populations more or lessaligned in a direction perpendicular to that of the cli-nal gradient of the hybrid zone, by restricting the com-parisons to pairs of populations whose average indexof hybridization for the allozymes differed by less than10% (Appendix 1).

The 1992 sample consisted of 185 individuals from14 different localities. For 1998 we used 436 mice from64 localities. Only 113 mice could be typed for locus

D17Mit14 in the 1992 sample (381 in the 1998 sam-ple), but from 171 to 184 were typed at the five otherloci (from 421 to 436 in 1998). The number of differentalleles found at each locus is indicated in Table 1. Thegenotypes of these 621 mice at the six loci are given inAppendix 3. They include some 1992 data alreadyreported in Dallas et al. (1995). We retyped a fractionof the mice from the earlier study to establish the cor-respondence of allele sizes between the two studies.

For the isolation by distance methods, we not onlyrestricted the comparisons to pairs of populations withsimilar hybridization indexes, as argued above, butalso to pairs not too far from each other, because it isrecommended that pairs be generally separated by nomore than 10s (Rousset, 2000b), and in no case bymore than 20s (Rousset, 2000a). We chose a cut-off at15 km. By using the FST method on pairs of popula-tions selected in this way, we derived an estimate ofDs2 of 3.7 individuals on the 1992 dataset, and of 2.7individuals for 1998. This method relies on estimatesof population frequencies, and in the regression, datapoints are not weighted according to sample sizes, sothese values must be considered with caution. The and Moran I methods do not have this drawback,because they are based on comparisons between indi-viduals, but they appear to be less adapted to the hab-itat structure of mice, which is fragmented ratherthan continuous. They gave consistent estimates ofDs2, but showed differences between 1992 (Ds2 = 1.4and 1.7 for the two methods, respectively) and 1998(Ds2 = 3.7 and 3.9). The 1998 estimate is presumablymore reliable because many more localities were sam-pled, so that the range of pairwise distances betweenindividuals is covered much better.

In order to derive estimates of s, we must nowattempt to estimate the density of mice, which we cando by using our trapping data. In 1998, the year withmost intense trapping, we underwent a random pros-pecting of farms, and found that 25% of them had mice.The average number of mice trapped per farm withmice was 7.2 (with a large variance, see Table 2).Because we intensively trapped in all cases, andstopped the effort only after several unsuccessful trap-ping nights, we believe this is a reasonable estimate ofthe mouse population present. It necessarily providesa lower limit of the number of mice existing at the timeof trapping, but it includes at least two generations (wecounted both adults and young), and so probably over-estimates population densities per generation. Thedensity of farms in the prospected areas was accu-rately determined by counting them on a map, leadingto an average of 3.1 farms km-2. This gives an esti-mated density D of 5.8 mice km-2. The average Ds2

estimated using the three different isolation bydistance methods ranged from 1.4 to 3.9, which givess = 0.51–0.82 km generation– . If our density esti-

)ar

1 2/

Page 11: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 603

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

mates are really lower limits these estimates of s areupper limits, but they are compatible with the esti-mates derived from the cline analyses. With the lowestvalue, s = 0.51 km generation– , we estimate thatthe barrier would be created by a larger number(n = 120) of loci under weaker selection (s = 0.013) thanwhat is found when estimating migration from linkagedisequilibrium. The highest value of s = 0.82 givesn = 46 loci with s = 0.035. The results of the twoapproaches are comparable, given the numeroussources of uncertainty associated with these estimates.

DISCUSSION

For eight of the ten allozyme loci studied, the changesin allele frequencies can be best described by steepcentral steps of allele frequency that are coincidentand flanked by smooth tails of introgression on eitherside. This indicates the presence of a barrier to geneflow in the centre of the zone. We assumed that thisbarrier is caused by selection against hybrids, creatinga tension zone, and applied the existing theory to esti-mate the selection and migration parameters shapingthis hybrid zone.

As quantifying migration is essential to infer selec-tion, we also estimated migration independently fromthe cline analysis, using microsatellites and compar-ing populations of similar positions in the overall gra-dient of the hybrid zone. The results we obtained usingthe different approaches are in good agreement (s =0.5–0.8 km generation– ). There are few relevantdata in the literature with which to compare this esti-mate. Many capture–recapture experiments give dis-cordant results (Lidicker & Patton, 1987), and oftensuch studies concern small study areas and wouldmiss long-distance migrants (Baker, 1981; see Pocock,Hauffe & Searle, 2005, this issue). Myers (1974) wit-nessed colonization events between grids separated by92 m. According to Berry & Jakobson (1974) 25% ofthe mice on an island mate within 50–100 m fromtheir birthplace. Carlsen (1993) captured mice infarms and surrounding fields and reports movementsof up to 130 m. A few studies were able to detect longerdistance migrants. Walkowa, Adamczyk &Chelkowska (1989) trapped 6.5% of the mice living inan enclosure in surrounding fields, up to 300 m away.Cassaing & Croset (1985) recaptured most micewithin 50–480 m in outdoor populations. Auffray et al.(1990a) report on mice that had covered distances ofup to 700 m, and detected immigration from popula-tions up to 820 m apart. Berry (1968) describes morethan 30 mice moving 500 m and 14 moving 1500 m.Migrations over 1000 m are also reported by otherauthors (Pearson, 1963; Tomich, 1970). Although mostmice probably reproduce close to their birthplace, theycan apparently easily reach regions several hundreds

1 2/

1 2/

of metres away. In addition, humans can passivelytransport them over much longer distances. InFigure 5 it can be seen that substantial linkage dis-equilibrium is sometimes found rather far from thecentre of the hybrid zone, and it could be due to suchlong-distance migrations. However, we found nomouse heterozygous at all loci in our dataset, and thusno F1 mice that could result from such long-distancemigrations. Potential first-generation backcrosses,heterozygous at half of their loci, were rare: only onewas found on the domesticus side of the zone (among151 mice from localities with a coordinate lower than6182 and with data available at eight loci or more). Sixsuch mice were found on the musculus side (among359 mice from localities with a coordinate above 6200),but only from the localities closest to the central stepof the hybrid zone (coordinates from 6200–6205).

The average barrier to gene flow appears relativelymoderate (20 km) compared with migration (0.5–0.8 km generation– ), but varies considerablybetween loci in our estimates, as well as the level ofintrogression and degree of asymmetry. Two of the lociwe studied (Idh and Sod) did not show the typical cen-tral step, but rather wide clines with extensive intro-gression into musculus, which could be an indicationthat they have escaped the central barrier. The delayto introgression of neutral alleles across such a barrieris expected to be of the order of 500–1600 generations(B2/s2; Barton & Hewitt, 1985, and referencestherein). There are presumably two reproduction peri-ods per year, one indoors in autumn that we observedduring our trapping campaigns and a second one inspring, mostly in the fields. This would, however, rep-resent only one generation a year in terms of migra-tion. According to what is believed about the patternsof expansion of these subspecies (reviewed in Boursot

1 2/

Figure 5. Average standardized linkage disequilibrium(R) between the eight loci of Fig. 2 in localities along thetransect. Only localities with eight mice or more wereselected. Crosses indicate the position of the centre of thehybrid zone.

Coordinate along transect (km)

R

0.25

0.2

0.15

0.1

0.05

06140 6160 6180 6200 6220 6240 6260

Page 12: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

604 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

et al., 1993), being at the most northern end of thehybrid zone the transect in Jutland should be young-est. The few available archaeological records point toan earliest occurrence of house mice in north-westernEurope around 2000 years BP (Auffray, Vanlerberghe& Britton-Davidian, 1990b; Auffray & Britton-Davidian, 1992; Cucchi, Vigne & Auffray, 2005, thisissue). Unless the hybrid zone in Jutland is muchyounger than this, which cannot be formally excluded,there would have been time for neutral genes toescape the barrier. Our results also imply that the bar-rier created by this hybrid zone would be very weakagainst selectively favourable alleles [T = log(B2ps/2s2)/2s only about 100 years for a selective advantages of 1%]. It will be interesting to determine whethersuch selective introgression has occurred. Because theloci we studied were not chosen at random, but fortheir diagnosticity in this part of the hybrid zone, theyare not suited to address this issue.

With a number of approximations, our analyses pro-vide a rather low estimate of fitness for the centralpopulations (WH = 0.45). Indirect evidence of the lowerfitness of hybrid populations comes from theirobserved higher load of intestinal parasites (Sageet al., 1986a; Moulia et al., 1991) and the confirmationof the probable genetic origin of such differences(Moulia et al., 1993). More direct evidence comes fromthe observation of a slightly reduced testis size in cen-tral populations, as well as very high sterility rates ofmales and substantial reduction of female fertility inF1 crosses between Danish strains of the two subspe-cies (Britton-Davidian et al., 2005, this issue). How-ever, it has also been shown that the natural andartificial hybrids display a better general bilateralsymmetry of skull morphology, which was taken asevidence of heterosis on this character (Alibert et al.,1994, 1997; Auffray et al., 1996).

This relatively narrow hybrid zone is expected to becreated by a moderate number of loci, and if their num-ber was low enough, they could be searched by scan-ning the genome. The range of values of n that wederived (46–120) might appear to be rather high forthis to be feasible. However, it is based on the assump-tion of selection against heterozygotes, neglectingpotentially strong epistasis between loci. Further-more, in deriving our estimates of the number of lociunder selection, we used the parameters of the averagecline for eight loci. Averaging over loci whose clines dif-fer in width and symmetry (although asymmetry isalways in the same direction) probably tends to over-estimate the width, and thus the number of loci underselection (as does the approximation of r = 0.5 betweenthe studied and selected loci). The very limited intro-gression of Y and X chromosome markers in severaltransects (Tucker et al., 1992; Dod et al., 1993, 2005(this issue); Prager, Boursot & Sage, 1997) clearly

points to the possibility that at least some loci areunder strong enough selection to be detected using thisapproach. With progress in the knowledge of the mousegenome (Waterston et al., 2002), and the discovery ofnumerous nucleotide variations between the genomesof the house mouse subspecies (Wade et al., 2002), itshould be possible to identify the regions of the genomemost involved in selection in this hybrid zone (see Pay-seur & Nachman, 2005, this issue). Given the difficul-ties in fitting cline models to these data however, itmay prove difficult to identify the loci under selection.

An intriguing aspect of our cline shape analyses isthat the central step hardly overlaps frequency 0.5,but rather occurs almost entirely below this value, onthe domesticus side (particularly for Es10, Es2, Gpdand Pgm, Fig. 2). We wondered whether this couldresult from the presence of geographical barriers tomigration. The steep edged river valley just south ofthe inferred centre that is highlighted on the map(Fig. 1) could act as such. So could the large area ofheathland that occupies the area between the east-and westward-flowing rivers. There were only a fewscattered farms in this area and in spite of intensivetrapping efforts we were unable to find mice there,which is reflected by the absence of samples in thisarea (Fig. 1). These geographical accidents could com-bine to restrict gene flow in most of the region slightlysouth of the inferred centre, creating an abruptchange in allele frequencies. Depending on the fre-quencies reached south and north of this geographicalbarrier, these steps could either be confounded into asingle step by the inference method, producing a sym-metrical cline (Amy, Es1, Mpi and perhaps Np), or thegeographical rather than the genetic step could becaptured by the method, leading to asymmetric clineswith a step on the domesticus side (Es10, Gpd, Pgm).This would imply that the hybrid zone might be mov-ing south towards the geographical barrier. Loci nottoo tightly linked to selected loci would be laggingbehind the selection front, leaving long traces on themusculus side. Loci more tightly linked to selected lociwould tend to follow the front, and leave less trace. Asthe latter loci will reach higher musculus frequenciesnorth of the geographical barrier, they should tend toshow more introgression into domesticus, a counterin-tuitive conclusion because they are submitted tostronger selection. As the Idh and Sod loci appear tohave escaped the barrier to gene flow, the centre oftheir cline could represent the position of the originalcontact between the subspecies, about 8 km north ofthe present centre. If these loci are not subject toselection, the width of their clines depends only on thetime t elapsed since the initial contact between thesubspecies (w = 2.51s÷t). With an average width of54 km for these two loci, migration between 0.5 and0.8 km generation– , and considering one migration1 2/

Page 13: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 605

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

episode a year (see above), we find that the initial con-tact would have occurred between 700 and 1800 yearsago, which is compatible with the archaeological data.This would represent an imperceptible movementduring the period that has elapsed since the Hunt &Selander (1973) study. However, the Y chromosomedata appear difficult to reconcile with this scenario.Because it appears to be the locus under strongestselection in this transect, its cline should have beenthe first to be trapped in the presumed density trough,which does not seem to be the case. Barriers to migra-tion such as the one we suspect here could occur else-where in Jutland. The complex interaction betweensuch barriers, genetic drift between the barriers andselection could uncouple the dynamics of epistaticallyinteracting loci, producing staggered clines, explain-ing the differences we see between loci. In such a sit-uation it is not necessary that the major transition ofallele frequency of neutral loci occur at 50%. ThreeRobertsonian (Rb) chromosomal fusions segregate inthe domesticus populations just south of the centre inthe transect we studied, and Fel-Clair et al. (1996)found that their frequencies decreased in a series ofstaggered clines before they could reach the centre ofthe hybrid zone. Experimental crosses have suggesteda complex negative interaction between the cen-tromeres of the two subspecies (Lenormand et al.,1997), and a centromeric marker on a chromosome notinvolved in a Rb fusion seemed, on the basis of thelimited sample available, to show no introgressioninto domesticus (Fel-Clair et al., 1998). It could thusbe that asymmetrical centromeric interactionscontribute to impede introgression into domesticus inthis transect, in addition to potential geographicalbarriers.

However, greater introgression into musculus forseveral diagnostic loci was noted in the broader studyof the Jutland hybrid zone by Hunt & Selander (1973),but also in other geographical regions, despite lessintense sampling (Bulgaria, Vanlerberghe et al., 1988;Bavaria, Tucker et al., 1992; East Holstein, Prageret al., 1993). This apparently general pattern calls fora general explanation. Fisher (1937) predicted that inthe wave of advance of advantageous alleles, the lead-ing edge should be longer than the trailing edge. Theasymmetry observed in the mouse hybrid zone couldthus witness a general movement of the zone in adirection opposite to that predicted above, and reflectan overall advantage of domesticus over musculus.Asymmetric behavioural selection would best accountfor such a situation. There is laboratory evidence thatmice have the capacity to discriminate urine odours oftheir own subspecies from those of the other (Smadja& Ganem, 2002; Ganem et al., 2005, this issue). Odourpreference tests performed on wild-derived mice fromthe tails of the Danish hybrid zone have revealed a

clear assortative choice in M. m. musculus, but nopreference in domesticus (Smadja, Catalan & Ganem,2004). The consequences of this behavioural differenceon gene flow are not straightforward, but one couldthink that it should prevent introgression into muscu-lus, rather than promote it. However, other behav-ioural asymmetries, such as a greater aggressivenessof domesticus males, could act in the opposite direc-tion. It has also been suggested that the choosiness ofthe musculus females could result from reinforcementin the hybrid zone (Smadja et al., 2004), in which casethis behaviour could be a consequence of the asymme-try of introgression, rather than its cause.

A comparison with patterns observed in other partsof this hybrid zone would be very informative, as itwould allow attribution of the confirmed patterns todeterministic forces, and the others to local historical,geographical or stochastic accidents.

ACKNOWLEDGEMENTS

Tonnes Nielsen provided invaluable support to thefieldwork. Patrick Makoundou performed most micro-satellite analyses. Many thanks to Guila Ganem forsharing some samples, and to the Danish farmers fortheir kind co-operation.

REFERENCES

Alibert P, Fel-Clair F, Manolakou K, Britton-Davidian J,Auffray J-C. 1997. Developmental stability, fitness, andtrait size in laboratory hybrids between European subspe-cies of the house mouse. Evolution 51: 1284–1295.

Alibert P, Renaud S, Dod B, Bonhomme F, Auffray J-C.1994. Fluctuating asymmetry in the Mus musculus hybridzone: a heterotic effect in disrupted co-adapted genomes.Proceedings of the Royal Society of London B 258: 53–59.

Auffray J-C, Alibert P, Latieule C, Dod B. 1996. Relativewarp analysis of skull shape across the hybrid zone of thehouse mouse (Mus musculus) in Denmark. Journal of Zool-ogy 240: 441–455.

Auffray J-C, Belkhir K, Cassaing J, Britton-Davidian J,Croset H. 1990a. Outdoor occurrence in Robertsonian andstandard populations of the house mouse. Vie et Milieu 40:111–118.

Auffray J-C, Britton-Davidian J. 1992. When did the housemouse colonize Europe? Biological Journal of the LinneanSociety 45: 187–190.

Auffray J-C, Vanlerberghe F, Britton-Davidian J. 1990b.House mouse progression in Eurasia: a palaeontological andarchaeozoological approach. Biological Journal of the Lin-nean Society 41: 13–25.

Baker AEM. 1981. Gene flow in house mice: behavior in a pop-ulation cage. Behavioural Ecology and Sociobiology 8: 83–90.

Barton N, Bengtsson BO. 1986. The barrier to geneticexchange between hybridising populations. Heredity 56:357–376.

Page 14: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

606 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

Barton NH, Gale KS. 1993. Genetic analysis of hybrid zones.In: Harrison RG, ed. Hybrid zones and the evolutionary pro-cess. Oxford: Oxford University Press, 13–45.

Barton NH, Hewitt GM. 1985. Analysis of hybrid zones.Annual Review of Ecology and Systematics 16: 113–148.

Barton NH, Shpak M. 2000. The effect of epistasis on thestructure of hybrid zones. Genetical Research 75: 179–198.

Berry RJ. 1968. Ecology of an island population of housemouse. Journal of Animal Ecology 37: 445–470.

Berry RJ, Jakobson ME. 1974. Vagility in an island popu-lation of house mouse. Journal of Zoology 173: 341–354.

Bonhomme F, Catalan J, Britton-Davidian J, ChapmanVM, Moriwaki K, Nevo E, Thaler L. 1984. Biochemicaldiversity and evolution in the genus Mus. BiochemicalGenetics 22: 275–303.

Boursot P, Auffray J-C, Britton-Davidian J, BonhommeF. 1993. The evolution of house mice. Annual Review of Ecol-ogy and Systematics 24: 119–152.

Britton-Davidian J. 1990. Genic differentiation in M. m.domesticus populations from Europe, the Middle East andNorth Africa: geographic patterns and colonization events.Biological Journal of the Linnean Society 41: 27–45.

Britton-Davidian J, Fel-Clair F, Lopez J, Alibert P, Bour-sot P. 2005. Postzygotic isolation between the two Europeansubspecies of the house mouse: estimates from fertility pat-terns in wild and laboratory-bred hybrids. Biological Journalof the Linnean Society 84: 379–393.

Carlsen M. 1993. Migrations of Mus musculus musculus inDanish Farmland. Zeitschrift für Säugetierkunde 58: 172–180.

Cassaing J, Croset H. 1985. Organisation spatiale, compéti-tion et dynamique des populations sauvages de souris (Musspretus Lataste et Mus musculus domesticus Rutty) duMidi de la France. Zeitschrift für Säugetierkunde 50: 271–284.

Cucchi T, Vigne J-D, Auffray J-C. 2005. First occurrence ofthe house mouse (Mus musculus domesticus Schwarz &Schwarz, 1943) in the Western Mediterranean: a zooarchae-ological revision of sub-fossil house mouse occurrences. Bio-logical Journal of the Linnean Society 84: 429–445.

Dallas JF, Dod B, Boursot P, Prager E, Bonhomme F.1995. Population genetic structure and gene flow in Danishhouse mice. Molecular Ecology 4: 311–320.

Din W, Anand R, Boursot P, Darviche D, Jouvin-MarcheE, Dod B, Orth A, Talwar GP, Cazenave P-A, Bonho-mme F. 1996. Origin and radiation of the house mouse:clues from nuclear genes. Journal of Evolutionary Biology 9:519–539.

Dod B, Jermiin LS, Boursot P, Chapman VM, Nielsen JT,Bonhomme F. 1993. Counterselection on sex chromosomesin the Mus musculus European hybrid zone. Journal of Evo-lutionary Biology 6: 529–546.

Dod B, Smadja C, Karn RC, Boursot P. 2005. Testing forselection on the androgen-binding protein in the Danishmouse hybrid zone. Biological Journal of the Linnean Society84: 447–459.

Fel-Clair F, Catalan J, Lenormand T, Britton-DavidianJ. 1998. Centromeric incompatibilities in the hybrid zone

between house mouse subspecies from Denmark: evidencefrom patterns of NOR activity. Evolution 52: 592–603.

Fel-Clair F, Lenormand T, Catalan J, Grobert J, Orth A,Boursot P, Viroux M-C, Britton-Davidian J. 1996.Genomic incompatibilities in the hybrid zone between housemice in Denmark: evidence from steep and non-coincidentchromosomal clines for Robertsonian fusions. GeneticalResearch 67: 123–134.

Fisher RA. 1937. The wave of advance of advantageous genes.Annals of Eugenics 7: 355–369.

Gaggiotti OE, Lange O, Rassmann K, Gliddon C. 1999. Acomparison of two indirect methods for estimating averagelevels of gene flow using microsatellite data. Molecular Ecol-ogy 8: 1513–1520.

Ganem G, Ginane C, Ostrowski M-F, Orth A. 2005. Assess-ment of mate preference in the house mouse with referenceto investigations on assortative mating. Biological Journal ofthe Linnean Society 84: 461–471.

Hardy OJ, Vekemans X. 1999. Isolation by distance in a con-tinuous population: reconciliation between spatial autocor-relation analysis and population genetics models. Heredity83: 145–154.

Harrison RG. 1990. Hybrid zones: windows on evolutionaryprocesses. In: Futuyma D, Antonovics J, eds. Oxford surveysin evolutionary biology vol. 7. Oxford: Oxford UniversityPress, 70–128.

Hilborn R, Mangel M. 1997. The ecological detective: confront-ing models with data. Princeton: Princeton University Press.

Hunt WG, Selander RK. 1973. Biochemical genetics ofhybridisation in European house mice. Heredity 31: 11–33.

Kruuk LE, Baird SJ, Gale KS, Barton NH. 1999. A com-parison of multilocus clines maintained by environmentaladaptation or by selection against hybrids. Genetics 153:1959–1971.

Lenormand T, Fel-Clair F, Manolakou K, Alibert P,Britton-Davidian J. 1997. Chromosomal transmissionbias in laboratory hybrids between wild strains of the twoEuropean subspecies of mice. Genetics 147: 1279–1287.

Lidicker WZ Jr, Patton JL. 1987. Patterns of dispersal andgenetic structure in populations of small rodents. In:Chepko-Sade BD, Haplin ZT, eds. Mammalian dispersal pat-terns. Chicago: University of Chicago Press, 144–161.

Moulia C, Aussel J-P, Bonhomme F, Boursot P, NielsenJT, Renaud F. 1991. Wormy mice in a hybrid zone: agenetic control of susceptibility to parasite infection. Journalof Evolutionary Biology 4: 679–687.

Moulia C, Le Brun N, Dallas J, Orth A, Renaud F. 1993.Experimental evidence of genetic determinism in high sus-ceptibility to intestinal pinworms infection in mice: a hybridzone model. Parasitology 106: 387–393.

Myers JH. 1974. Genetic and social-structure of feral housemouse populations on Grizzly-Island, California. Ecology 55:747–759.

Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J. 1987. Manuel de génétique par electrophorèsedes protéines. Paris: Lavoisier.

Payseur BA, Nachman MW. 2005. The genomics of specia-tion: investigating the molecular correlates of X chromosome

Page 15: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 607

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

introgression across the hybrid zone between Mus domesti-cus and Mus musculus. Biological Journal of the LinneanSociety 84: 523–534.

Pearson OP. 1963. History of 2 local outbreaks of feral housemice. Ecology 44: 540–549.

Phillips BL, Baird SJE, Moritz C. 2004. When vicars meet:a narrow contact zone between morphologically cryptic phy-logeographic lineages of the rainforest skink, Carlia rubrigu-laris. Evolution 58: 1536–1548.

Pocock MJO, Hauffe HC, Searle JB. 2005. Dispersal inhouse mice. Biological Journal of the Linnean Society 84:565–583.

Prager EM, Boursot P, Sage RD. 1997. New assays for Ychromosome and p53 pseudogene clines among East Hol-stein house mice. Mammalian Genome 8: 279–281.

Prager EM, Sage RD, Gyllensten U, Thomas WK, HübnerR, Jones CS, Noble L, Searle JB, Wilson AC. 1993. Mito-chondrial DNA sequence diversity and the colonization ofScandinavia by house mice from East Holstein. BiologicalJournal of the Linnean Society 50: 85–122.

Raymond M, Rousset F. 1995. Genepop (Version 1.2) – Pop-ulation genetics software for exact tests and ecumenicism.Journal of Heredity 86: 248–249.

Rousset F. 1997. Genetic differentiation and estimation ofgene flow from F-statistics under isolation by distance.Genetics 145: 1219–1228.

Rousset F. 2000a. Genetic approaches to the estimation ofdispersal rates. In: Clobert J, Danchin E, Dhondt AA,Nichols JD, eds. Dispersal. Oxford: Oxford University Press,18–28.

Rousset F. 2000b. Genetic differentiation between individu-als. Journal of Evolutionary Biology 13: 58–62.

Sage RD, Heyneman D, Lim K-C, Wilson AC. 1986a.Wormy mice in a hybrid zone. Nature 324: 60–63.

Sage RD, Whitney JB III, Wilson AC. 1986b. Genetic anal-ysis of a hybrid zone between domesticus and musculus mice(Mus musculus complex): hemoglobin polymorphisms. In:Potter M, Nadeau JH, Cancro MP, eds. The wild mouse inimmunology. Berlin: Springer-Verlag, 75–85.

Slatkin M. 1995. A measure of population subdivision basedon microsatellite allele frequencies. Genetics 139: 457–462.

Smadja C, Catalan J, Ganem G. 2004. Strong prematingdivergence in a unimodal hybrid zone between two subspe-cies of the house mouse. Journal of Evolutionary Biology 17:165–176.

Smadja C, Ganem G. 2002. Subspecies recognition in thehouse mouse: a study of two populations from the border of ahybrid zone. Behavioral Ecology 13: 312–320.

Szymura JM, Barton NH. 1986. Genetic analysis of a hybridzone between the fire-bellied toads, Bombina bombina and B.

variegata, near Cracow in Southern Poland. Evolution 40:1141–1159.

Szymura JM, Barton NH. 1991. The genetic structure of thehybrid zone between the fire-bellied toads Bombina bombinaand B. variegata: comparisons between transects andbetween loci. Evolution 45: 237–261.

Tomich PQ. 1970. Movement patterns of field rodents inHawaii. Pacific Science 24: 195–234.

Tucker PK, Sage RD, Warner J, Wilson AC, Eicher EM.1992. Abrupt cline for sex chromosomes in a hybrid zonebetween two species of mice. Evolution 46: 1146–1163.

Vanlerberghe F, Boursot P, Catalan J, Gerasimov S,Bonhomme F, Botev BA, Thaler L. 1988. Analyse géné-tique de la zone d’hybridation entre les deux sous-espèces desouris Mus musculus domesticus et Mus musculus musculusen Bulgarie. Genome 30: 427–437.

Vanlerberghe F, Dod B, Boursot P, Bellis M, BonhommeF. 1986. Absence of Y-chromosome introgression across thehybrid zone between Mus musculus domesticus and Musmusculus musculus. Genetical Research 48: 191–197.

Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mul-likin JC, Lander ES, Lindblad-Toh K, Daly MJ. 2002.The mosaic structure of variation in the laboratory mousegenome. Nature 420: 574–578.

Walkowa W, Adamczyk K, Chelkowska H. 1989. Charac-teristics of migrants in a free-living population of the housemouse. Acta Theriologica 34: 305–313.

Waterston RH, Lindblad-Toh K, Birney E, Rogers J,Abril JF, Agarwal P, Agarwala R, Ainscough R, Alex-andersson M, An P, Antonarakis SE, Attwood J,Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Bir-ren B, Bloom T, Bork P, Botcherby M, Bray N, BrentMR, Brown DG, Brown SD, Bult C, Burton J, Butler J,Campbell RD, Carninci P, Cawley S, Chiaromonte F,Chinwalla AT, Church DM, Clamp M, Clee C, CollinsFS, Cook LL, Copley RR, Coulson A, Couronne O, CuffJ, Curwen V, Cutts T, Daly M, David R, Davies J, Dele-haunty KD, Deri J, Dermitzakis ET, Dewey C, DickensNJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, EddySR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsen-feld A, Fewell GA, Flicek P, Foley K, Frankel WN, Ful-ton LA, Fulton RS, Furey TS, Gage D, Gibbs RA,Glusman G, Gnerre S, Goldman N, Goodstadt L, Graf-ham D, Graves TA, Green ED, Gregory S, Guigo R,Guyer M, Hardison RC, Haussler D, Hayashizaki Y,Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F,Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB,Johnson LS, Jones M, Jones TA, Joy A, Kamal M,Karlsson EK et al. 2002. Initial sequencing and compara-tive analysis of the mouse genome. Nature 420: 520–562.

Page 16: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

608 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

APPENDIX 1

List of the 170 localities studied, with their number, name, year of collection, longitude, latitude (in UTM coordinates),coordinate on the transect (see text), number of mice studied and average hybrid index (% musculus alleles) for the eightloci with coinciding cline centres (Amy, Es1, Es10, Es2, Gpd, Mpi, Np and Pgm).

Locality no. Locality name Year Longitude Latitude Transect coordinate N HI eight loci

186 Ringtved 2000 522.1 6125.5 6143.5 1 0.000113 Simmersted 1985 525.0 6128.5 6146.8 2 0.031114 Simmersted 1990 525.0 6128.5 6146.8 14 0.005115 Simmersted A 1990 525.0 6128.5 6146.8 4 0.000181 Kastvra 2000 521.4 6129.1 6146.9 2 0.000182 Kastvra A 2000 522.2 6129.2 6147.2 14 0.006187 Sillerup 2000 535.7 6128.4 6147.3 7 0.057189 Slusen 2000 538.2 6133.7 6152.3 1 0.00092 Oedis 1984 524.4 6140.5 6158.6 13 0.11588 Maltbaek Mark 1992 505.1 6144.8 6160.5 4 0.12993 Oedis F 1985 526.3 6142.3 6160.7 2 0.12587 Maltbaek 1992 504.1 6145.3 6160.9 10 0.113184 Lauritzminde 2000 541.4 6144.1 6162.0 17 0.000175 Binderup 2000 535.1 6143.3 6162.2 3 0.000188 Skartved 2000 534.2 6145.9 6164.8 2 0.042190 Soender Stenderup 2000 538.7 6146.5 6164.9 1 0.000174 Baeklund 2000 516.2 6149.3 6166.4 33 0.047179 Gelballe 2000 522.6 6149.3 6167.1 5 0.000154 Vranderup 1998 524.8 6149.8 6167.9 3 0.18833 Gesten 1998 511.2 6154.7 6171.1 2 0.281133 Trelde 1998 549.1 6162.3 6172.9 1 0.143140 Vejlby 1998 545.4 6163.0 6176.2 2 0.14310 Baekke 1998 509.7 6160.6 6176.8 12 0.213151 Viuf 1998 531.7 6158.9 6177.7 9 0.136153 Vorbasse sk 1992 507.1 6162.2 6178.1 1 0.063101 Rands A 1998 543.7 6164.2 6178.4 1 0.000152 Vorbasse 1992 503.5 6163.2 6178.6 23 0.251100 Rands 1998 543.4 6164.8 6178.9 4 0.234124 Starup 1998 487.1 6166.8 6180.2 1 0.18824 Egtved 1 1990 519.5 6163.3 6180.7 1 0.1887 Ammistbol 1990 525.6 6165.5 6183.6 4 0.250128 Toerskind 1984 519.9 6166.9 6184.3 18 0.104129 Toerskind 1985 519.9 6166.9 6184.3 21 0.099130 Toerskind 1991 519.9 6166.9 6184.3 4 0.2038 Ammistbol A 1992 527.3 6166.5 6184.8 1 0.250137 Tufkaer Mark 1998 531.6 6166.1 6184.9 1 0.21494 Oedsted 1990 523.9 6167.3 6185.1 2 0.15695 Oedsted 1991 523.9 6167.3 6185.1 1 0.43896 Oedsted 1992 523.9 6167.3 6185.1 14 0.20114 Bindeballe 1992 517.6 6168.3 6185.4 5 0.225117 Skoldbjerg 1992 505.9 6171.9 6187.5 12 0.19852 Hojen Kirke 1998 531.0 6168.9 6187.6 13 0.17872 Jerlev V 1992 527.5 6170.2 6188.5 8 0.09071 Jerlev A 1998 528.0 6170.3 6188.6 5 0.118118 Smakaer 1998 520.4 6171.2 6188.6 2 0.344134 Troellund 1992 502.5 6173.8 6189.0 14 0.257102 Ravning 1992 521.9 6171.6 6189.1 10 0.405125 Store Lihme 1987 519.7 6172.3 6189.6 9 0.37599 Plougslund A 1992 505.9 6174.0 6189.7 12 0.28698 Plougslund 1992 506.0 6174.1 6189.7 17 0.26370 Jerlev 1998 528.0 6171.7 6190.0 1 0.643

Page 17: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 609

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

73 Kaerbolling 1987 525.4 6172.7 6190.7 1 0.571145 Vilstrup 1992 529.4 6172.3 6190.8 3 0.27120 Bredsten 1985 523.2 6173.1 6190.8 5 0.51621 Bredsten 1987 523.2 6173.1 6190.8 2 0.46726 Englesholm Mark 1998 521.1 6173.6 6191.0 1 0.56313 Balle A 1987 523.7 6174.1 6191.9 1 0.43844 Grene Kirke 1998 504.4 6176.5 6191.9 6 0.33011 Balle 1992 522.8 6174.7 6192.3 17 0.60412 Balle 1998 522.8 6174.7 6192.3 2 0.643120 Soedover 1985 521.6 6175.0 6192.5 10 0.500121 Soedover 1992 521.6 6175.0 6192.5 1 0.50080 Lildfrost 1998 525.9 6174.8 6192.9 2 0.56315 Braendgaarde 1998 512.2 6176.7 6193.1 4 0.67245 Grinsted 1998 497.9 6178.9 6193.5 1 0.875142 Vester Hornstrup 1998 526.2 6175.9 6194.0 39 0.473138 Uhre 1998 531.6 6175.6 6194.4 2 0.625143 Vester Hornstrup A 1998 526.8 6176.2 6194.4 1 0.50031 Gammelby 1992 520.8 6177.4 6194.8 3 0.58332 Gammelby 1998 520.8 6177.4 6194.8 1 0.68825 Elkaer 1998 504.8 6179.5 6195.0 1 0.813106 Rugballe 1992 527.8 6176.8 6195.1 14 0.527107 Rugballe A 1992 527.7 6177.0 6195.3 1 0.68822 Brunbjerg 1998 502.8 6180.1 6195.3 1 0.68861 Hovertoft 1998 532.5 6176.5 6195.4 3 0.750108 Rugballe B 1991 528.0 6177.1 6195.4 3 0.708109 Rugballe B 1992 528.0 6177.1 6195.4 3 0.604110 Rugballe B 1998 528.0 6177.1 6195.4 3 0.58360 Hover Kirke A 1998 531.0 6176.7 6195.4 1 0.62581 Lille Hoegsholt 1998 531.0 6176.8 6195.4 1 0.87559 Hover Kirke 1998 529.9 6177.1 6195.6 2 0.68897 Oelgod 1998 478.9 6184.0 6196.3 1 0.313135 Trollerup 1992 522.7 6178.7 6196.3 3 0.458136 Trollerup 1998 522.7 6178.7 6196.3 2 0.71982 Lindeballe 1992 512.3 6180.3 6196.7 10 0.61367 Jelling bis 1987 526.1 6178.8 6196.9 3 0.87583 Lindeballe A 1992 513.0 6180.7 6197.1 1 0.43874 Kiddelund 1998 522.9 6179.5 6197.2 3 0.80489 Moelvang 1990 522.9 6179.6 6197.3 2 0.50090 Moelvang 1992 522.9 6179.6 6197.3 1 0.75066 Jelling 1990 526.5 6179.3 6197.3 3 0.81650 Hoerup 1990 530.2 6179.5 6198.0 8 0.67251 Hoerup 1991 530.2 6179.5 6198.0 25 0.71148 Hoegelund 1998 509.8 6182.1 6198.1 14 0.66847 Hjortlund 1998 504.2 6182.8 6198.2 10 0.63930 Gadbjerg 1987 520.5 6181.2 6198.6 1 0.66791 Norskov 1992 515.3 6182.1 6198.8 2 0.65678 Langelund S 1998 508.3 6183.2 6199.0 13 0.561131 Tofthoj 1987 521.2 6181.7 6199.1 1 0.500119 Smidstrup 1992 516.9 6182.4 6199.3 5 0.68829 Filskov A 1992 500.1 6184.5 6199.3 1 0.81316 Brandbjerg 1985 529.3 6181.2 6199.6 4 0.81717 Brandbjerg 1991 529.3 6181.2 6199.6 28 0.85318 Brandbjerg 1992 529.3 6181.2 6199.6 1 0.68863 Hygum 1990 527.4 6181.4 6199.6 1 0.813

Locality no. Locality name Year Longitude Latitude Transect coordinate N HI eight loci

APPENDIX 1 Continued

Page 18: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

610 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

64 Hygum A 1998 526.0 6181.6 6199.6 2 0.90628 Filskov 1992 499.2 6185.1 6199.8 2 0.78119 Bredal 1998 538.0 6179.3 6199.9 5 0.68877 Langelund F 1998 504.3 6184.8 6200.2 7 0.73665 Hygum B 1998 527.7 6182.6 6200.8 17 0.857146 Vindelev M 1985 530.3 6182.6 6201.1 8 0.729147 Vindelev M 1987 530.3 6182.6 6201.1 1 0.857148 Vindelev M 1991 530.3 6182.6 6201.1 2 0.688149 Vindelev S 1991 530.1 6182.7 6201.2 16 0.740150 Vindelev S 1992 530.1 6182.7 6201.2 17 0.658111 Sandvad 1990 528.0 6183.5 6201.7 7 0.795112 Sandvad 1991 528.0 6183.5 6201.7 1 0.62584 Lindved 1990 536.1 6183.0 6202.4 4 0.828103 Riis A 1998 520.1 6185.5 6202.8 4 0.68836 Givskud Z 1987 522.0 6185.4 6202.9 6 0.86537 Givskud Z 1991 522.0 6185.4 6202.9 15 0.74638 Givskud Z 1998 522.0 6185.4 6202.9 26 0.80135 Givskud E 1991 522.0 6186.0 6203.5 5 0.8382 Aadel A 1991 528.7 6185.4 6203.7 1 0.4383 Aadel A 1998 528.7 6185.4 6203.7 4 0.71262 Hvejsel 1998 526.5 6185.7 6203.8 4 0.8139 Baastrup 1987 540.5 6182.6 6204.0 20 0.76934 Give Mark 1992 514.4 6187.5 6204.0 6 0.875116 Skaerhoved 1998 517.2 6187.4 6204.3 1 0.7501 Aadel 1990 529.0 6186.0 6204.4 3 0.813122 Soendersthoved 1998 510.5 6188.3 6204.4 4 0.810104 Riis 1998 519.9 6187.4 6204.6 4 0.813144 Vibjerg 1998 517.7 6188.1 6205.1 1 0.87546 Hedegaard 1998 510.8 6189.2 6205.3 1 0.8754 Aalsted Moelle 1991 529.2 6187.2 6205.6 4 0.7976 Aalsted Moelle 1998 529.2 6187.2 6205.6 9 0.762105 Riis Mark 1998 521.3 6188.4 6205.8 13 0.77785 Loesning 1984 544.5 6184.5 6208.1 15 0.78286 Loesning 1985 544.5 6184.5 6208.1 14 0.853127 Toerring Mark 1998 532.8 6192.2 6211.0 6 0.814126 Thyregod 1998 520.4 6195.0 6212.2 2 0.62553 Honum 1998 539.7 6193.5 6213.4 54 0.81376 Klovborg 1998 532.6 6198.2 6216.9 1 0.85727 Estrupholm 1998 518.4 6203.9 6220.8 2 0.938139 Underup 1998 543.0 6200.6 6221.2 30 0.869132 Traeden 1998 542.0 6202.7 6222.9 3 0.800141 Vestbirk 1998 545.5 6202.5 6223.9 28 0.797178 Gammel Hampen 2000 523.3 6207.2 6224.7 7 0.923196 Vester Gludsted 2000 518.0 6209.3 6226.2 1 0.750192 Store Noerlund 2000 514.9 6210.5 6227.0 5 0.95849 Hoejby 1992 575.4 6197.4 6240.7 11 0.95539 Gosmer F 1991 574.5 6199.1 6240.8 7 0.97341 Gosmer N 1991 574.7 6199.8 6241.3 21 0.94142 Gosmer N 1992 574.7 6199.8 6241.3 15 0.89643 Gosmer N 1998 574.7 6199.8 6241.3 16 0.871180 Gosmer N 2000 574.7 6199.8 6241.3 7 0.95740 Gosmer J 1991 575.7 6198.8 6241.6 5 0.96355 Hov 1985 576.6 6197.9 6241.9 6 0.99056 Hov 1987 576.6 6197.9 6241.9 18 0.959

Locality no. Locality name Year Longitude Latitude Transect coordinate N HI eight loci

APPENDIX 1 Continued

Page 19: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 611

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

57 Hov 1991 576.6 6197.9 6241.9 2 1.00058 Hov 1992 576.6 6197.9 6241.9 5 0.833123 Spoettrup 1998 577.5 6199.2 6243.4 14 0.931191 Spoettrup 2000 577.5 6199.2 6243.4 9 0.958177 Elleskovhuse 2000 552.3 6223.2 6245.7 28 0.94975 Klank 1985 556.8 6223.2 6247.4 10 0.925194 Tovstrup 2000 550.5 6226.0 6247.7 1 1.000197 Voel Oestermark 2000 545.5 6228.3 6248.7 2 1.000173 Abo 2000 564.5 6220.5 6248.8 10 0.965185 Ormslev 2000 566.7 6220.5 6250.1 7 0.974176 Borum Oestergaard 2000 563.9 6227.3 6254.3 4 0.957

Locality no. Locality name Year Longitude Latitude Transect coordinate N HI eight loci

APPENDIX 1 Continued

Page 20: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

612 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

AP

PE

ND

IX 2

Gen

otyp

e of

123

3 m

ice

at t

en a

lloz

yme

loci

. For

eac

h m

ouse

(mic

e se

para

ted

by s

emi c

olon

s), w

e gi

ve, s

epar

ated

by

com

mas

, th

e m

ouse

nu

mbe

r, lo

cali

tyn

um

ber

(as

in A

ppen

dix

1), a

nd

a se

ries

of

ten

dig

its,

eac

h r

epre

sen

tin

g th

e n

um

ber

of M

. m. m

usc

ulu

s al

lele

s at

on

e of

th

e te

n l

oci

(0, 1

or

2 al

lele

s,9

if n

ot t

yped

, in

ord

er f

or A

my,

Es1

, Es1

0, E

s2, G

pd, I

dh

, Mpi

, Np,

Pgm

an

d S

od).

Mou

se,lo

cali

ty,g

enot

ype;

73

50,9

2,00

9100

0000

; 73

51,9

2,00

9200

2001

; 73

52,9

2,00

9002

2010

; 73

54,9

2,00

9001

1000

; 73

55,9

2,00

9000

2000

; 73

56,9

2,00

9100

1000

; 73

57,9

2,00

9000

0000

; 73

58,9

2,00

9000

2020

; 73

59,9

2,00

9002

0000

; 73

60,9

2,00

9000

1000

; 73

61,9

2,00

9000

1010

;

7362

,92,

0090

0110

00;

7363

,92,

0090

0000

00;

7364

,85,

2291

2211

22;

7365

,85,

2290

2211

22;

7366

,85,

2191

2122

21;

7367

,85,

2292

2122

21;

7368

,85,

2292

0112

22;

7371

,128

,009

0001

000;

73

72,1

28,1

0910

1000

1;

7373

,128

,009

0010

000;

73

74,8

5,92

9022

2212

; 73

75,8

5,12

9122

2122

;

7376

,85,

1291

2212

22;

7379

,85,

1292

2222

11;

7380

,85,

2291

0012

12;

7381

,85,

2091

2112

21;

7382

,85,

2091

2112

21;

7383

,85,

2291

2222

22;

7384

,85,

2192

2222

02;

7385

,85,

9192

1212

02;

7386

,128

,009

0000

100;

73

87,1

28,0

0900

0010

0;

7388

,128

,909

0000

000;

73

89,1

28,1

0900

0000

0;

7390

,128

,009

0000

100;

739

1,12

8,10

9000

1100

; 73

92,1

28,2

0900

0020

0; 7

393,

128,

1090

0012

00;

7394

,128

,009

0000

000;

739

5,12

8,10

9000

1100

; 73

96,1

28,0

0900

0000

0; 7

397,

128,

0090

0002

00;

7398

,128

,009

0000

200;

739

9,12

8,00

9000

0000

; 74

00,1

28,0

0910

0000

0; 7

974,

129,

9100

0001

00;

7975

,129

,000

0000

200;

797

6,12

9,01

0000

0000

; 79

77,1

29,0

1000

0010

0; 7

978,

129,

0000

0001

00;

7979

,129

,100

0000

100;

798

0,12

9,21

0000

0000

; 79

81,1

29,0

0001

0010

0; 7

982,

129,

0000

0001

00;

7983

,129

,100

0029

000;

798

4,12

9,00

0000

0000

; 79

85,1

29,1

1000

0000

0; 7

986,

129,

0100

0000

00;

7987

,129

,100

0029

000;

798

8,12

9,00

0002

9100

; 79

89,1

29,0

0000

2910

0; 7

990,

129,

1000

1001

00;

7991

,129

,000

0029

100;

799

2,12

9,01

0000

0000

; 79

93,1

29,0

1001

0020

0; 7

994,

129,

0000

0290

00;

7995

,146

,222

2101

001;

799

6,14

6,22

2221

1002

; 79

97,2

0,22

9299

9221

; 79

98,2

0,21

9199

9002

;

7999

,146

,112

1999

222;

80

00,2

0,21

9199

9001

; 80

03,8

6,22

2102

2222

; 80

04,8

6,22

2222

2222

; 80

05,8

6,22

2221

2222

; 80

06,8

6,22

0222

2222

; 80

08,8

6,11

1120

2211

; 80

31,5

5,22

2222

2222

; 80

37,5

5,22

2222

2222

; 80

38,5

5,22

2222

2222

; 80

40,5

5,21

2222

2222

; 80

41,5

5,22

2222

2222

;

8042

,55,

2222

2222

22;

8071

,16,

2212

0122

11;

8072

,16,

1222

9991

22;

8073

,16,

2222

0222

22;

8074

,16,

0221

2122

20;

8075

,120

,211

0112

200;

80

76,1

20,1

2121

1120

2;

8077

,120

,022

0999

100;

80

78,1

20,0

1020

1120

2;

8079

,120

,022

0999

100;

80

80,1

20,1

1020

2200

1;

8081

,120

,122

2999

101;

8082

,120

,112

1999

100;

80

83,1

46,1

0229

9912

2;

8084

,146

,221

1002

222;

80

85,1

46,1

2212

0221

0;

8086

,146

,212

2102

200;

80

87,1

46,2

1920

2222

2;

8091

,86,

2292

2222

22;

8244

,113

,000

0000

000;

82

45,1

13,1

0000

1000

0;

8246

,75,

1222

2222

22;

8247

,75,

1222

2222

22;

8248

,75,

2222

2221

22;

8250

,75,

2222

2221

22;

8251

,75,

2222

2220

22;

8252

,75,

2222

2221

22;

8253

,75,

2222

2222

22;

8254

,75,

2222

2220

22;

8255

,75,

2222

2220

22;

8256

,75,

2222

2221

21;

8257

,86,

2091

1022

01;

8258

,86,

1122

2222

12;

8259

,86,

1222

9992

02;

8260

,86,

2122

1222

12;

8261

,86,

1222

9992

02;

8262

,86,

2222

9992

12;

8263

,86,

2222

2222

20;

8264

,86,

2222

9992

12;

8265

,20,

1021

2121

10;

8266

,20,

0010

1110

10;

8268

,93,

0000

0010

00;

8269

,93,

2000

0210

00;

8270

,120

,102

1101

222;

82

71,1

20,1

0201

2102

0;

9345

,13,

2011

1111

00;

9346

,73,

2019

2220

10;

9348

,21,

0012

2100

12;

9349

,21,

9201

2111

10;

9350

,36,

2221

2122

20;

9351

,36,

2221

2122

21;

9352

,36,

2220

2121

21;

9353

,36,

2211

2120

21;

9354

,36,

2220

2222

20;

9355

,36,

2211

2122

21;

9356

,125

,101

1111

112;

93

57,1

25,0

2199

9911

9;

9358

,125

,912

1001

001;

93

59,1

25,0

2009

9902

9;

9360

,67,

2222

2222

12;

9361

,67,

1212

2222

12;

9362

,67,

2222

2222

02;

9363

,125

,211

0900

101;

93

64,1

25,1

0201

0000

0;

9365

,125

,191

9999

009;

93

66,1

25,2

0100

0002

0;

9367

,131

,111

9102

012;

93

68,1

47,2

2922

1112

1;

9369

,125

,192

1002

022;

93

70,3

0,22

9002

2290

; 93

76,9

,222

2912

010;

93

77,9

,222

2212

091;

9378

,9,2

2229

1209

0;

9379

,9,0

2099

9902

9;

9380

,9,2

2929

2202

1;

9381

,9,2

2222

0219

2;

9382

,9,0

1222

0211

2;

9383

,9,1

2912

2222

2;

9384

,9,2

2122

0211

1;

9385

,9,0

2220

2221

1;

9386

,9,1

2211

1291

2;

9387

,9,2

2222

0201

1;

9388

,9,0

2212

2221

2;

9389

,9,0

2921

2219

2;

9390

,9,0

2222

2012

0;

9391

,9,0

2229

9911

9; 9

392,

9,02

2290

2229

; 93

93,9

,112

1222

120;

939

4,9,

1212

2022

21;

9395

,9,0

2222

2212

1; 9

400,

56,2

2222

2222

2; 9

401,

56,2

2222

2222

2; 9

402,

56,2

2222

2222

2; 9

403,

56,1

2292

2222

2; 9

404,

56,2

2292

2212

2; 9

405,

56,2

2221

2222

2; 9

406,

56,1

2222

2222

2; 9

407,

56,2

2222

2212

2;

9408

,56,

2222

2221

22;

9409

,56,

2222

2222

22;

9410

,56,

2222

2222

22;

9411

,56,

2222

2222

22;

9412

,56,

2222

2221

22;

9428

,56,

1222

2222

22;

9429

,56,

1292

2222

92;

9430

,56,

1292

2229

92;

9431

,56,

9292

2222

91;

9432

,56,

9222

1222

22;

1060

0,1,

1222

2121

12;

1060

1,1,

2221

1122

12;

1060

2,1,

0222

2012

22;

1060

3,89

,101

1112

120;

106

04,8

9,11

2022

0100

; 10

605,

50,1

2211

2200

2; 1

0606

,50,

2211

2222

02;

1060

7,50

,121

2122

101;

106

08,5

0,12

1022

2201

; 10

609,

50,2

2122

2211

2; 1

0610

,94,

0001

0002

00;

1061

1,94

,000

2000

000;

106

14,1

11,2

0122

0202

1; 1

0615

,111

,201

1212

120;

1061

6,11

1,21

1221

2121

; 106

17,1

11,1

2221

1222

1; 1

0618

,111

,221

2102

121;

106

19,1

11,1

2222

1122

1; 1

0620

,111

,202

2202

121;

106

21,7

,200

0110

200;

106

22,7

,200

0001

110;

106

23,7

,200

0111

000;

106

24,5

0,22

1211

2202

; 106

25,5

0,12

1202

2111

; 106

26,5

0,22

1202

2102

; 106

27,6

3,22

1221

2200

;

1062

8,66

,211

2202

202;

106

29,6

6,21

2201

2222

; 106

30,8

4,12

1221

2222

; 106

31,8

4,12

1022

2220

; 106

32,8

4,12

1222

1220

; 106

33,8

4,21

1222

2220

; 106

35,2

4,10

0001

0200

; 106

45,7

,200

0020

000;

106

50,6

6,99

9222

2990

; 106

76,1

14,0

0000

0000

0; 1

0677

,114

,100

0000

000;

106

78,1

14,0

0000

0000

0;

1067

9,11

4,00

0000

0000

; 10

680,

114,

9000

0000

09;

1068

1,11

4,00

0001

0009

; 10

682,

114,

0000

0000

00;

1068

3,11

4,00

0000

0000

; 10

684,

114,

0000

0000

00;

1068

6,11

4,00

0000

0000

; 10

687,

114,

0000

0100

00;

1068

8,11

4,00

0000

0000

; 10

689,

114,

0000

0000

00;

1069

0,11

5,00

0001

0000

;

1069

1,11

5,00

0001

0000

; 10

693,

115,

0000

0000

00;

1069

4,11

5,00

0000

0000

; 10

695,

114,

0000

0000

00;

1081

2,40

,222

1222

222;

10

813,

40,2

2212

1222

2;

1081

4,40

,222

2222

222;

10

815,

40,2

2222

2222

2;

1081

6,40

,122

2222

222;

10

820,

39,1

2222

2222

2;

1082

1,39

,222

2212

221;

1082

2,39

,222

2222

122;

108

23,3

9,22

2222

2222

; 108

24,3

9,22

2222

2122

; 108

25,3

9,22

2222

2222

; 108

26,3

9,22

2222

2222

; 108

27,1

49,2

2002

1222

0; 1

0828

,149

,220

1212

120;

108

29,1

49,2

1022

0122

0; 1

0830

,51,

2121

2221

01; 1

0831

,51,

2210

2222

01; 1

0832

,51,

2200

2222

11; 1

0833

,51,

2210

2222

12;

1083

4,51

,222

0222

211;

10

835,

51,2

2002

2220

1;

1083

6,51

,220

0222

222;

10

837,

51,2

2002

2221

2;

1083

9,51

,221

0222

220;

10

840,

51,2

2102

2221

0;

1084

1,51

,220

0212

220;

10

842,

51,2

2002

0221

0;

1084

4,14

9,22

1121

1220

; 10

845,

149,

2201

2112

20;

1084

6,14

9,22

0120

2221

;

1084

7,14

9,22

1121

2220

; 10

848,

149,

2111

2011

20;

1084

9,14

9,21

0021

2220

; 10

850,

149,

2210

2121

20;

1085

1,14

9,99

9001

0990

; 10

852,

130,

2000

0100

00;

1085

4,13

0,02

0000

0000

; 10

855,

108,

2020

0021

21;

1085

6,35

,222

2002

121;

10

857,

37,2

0201

1212

1;

1085

8,35

,222

2102

211;

1085

9,35

,102

2102

222;

108

61,4

1,10

2222

2222

; 10

862,

41,2

2222

2222

1; 1

0863

,41,

2222

2222

22;

1086

4,41

,222

2222

221;

108

65,4

1,22

2222

2222

; 10

866,

41,2

2222

2222

2; 1

0867

,41,

2221

2222

22;

1086

8,41

,122

2222

222;

108

69,4

1,12

2222

2222

; 10

870,

41,1

2229

9922

9; 1

0871

,41,

2222

9992

29;

1087

2,41

,122

2999

229;

108

73,4

1,12

2222

2222

; 10

874,

41,0

2212

2222

2; 1

0875

,41,

1221

2222

22;

1087

6,41

,122

1222

222;

108

77,4

1,02

2222

2222

; 10

878,

37,2

2121

2222

2; 1

0879

,41,

2221

2222

22;

1088

0,37

,220

1202

212;

108

81,3

7,22

2010

2222

; 10

882,

41,2

2222

2222

2; 1

0883

,41,

2222

2222

21;

1088

4,41

,222

2222

222;

108

87,4

,012

2211

210;

108

88,4

,022

2221

221;

108

89,1

30,2

1000

0120

0; 1

0890

,130

,000

0001

200;

108

91,3

7,22

2110

2221

; 10

892,

37,2

1121

0221

2; 1

0893

,37,

2221

2222

22;

1089

4,51

,221

1122

220;

108

95,1

08,2

2100

2222

2; 1

0896

,95,

0201

0222

00;

1089

7,35

,212

2222

222;

1089

8,35

,212

2102

211;

108

99,3

7,22

2020

2212

; 109

00,3

7,22

2110

2222

; 109

01,3

7,21

2022

1210

; 109

02,3

7,22

2022

1200

; 109

03,3

7,22

2112

2211

; 109

05,3

7,12

2020

1120

; 109

06,3

7,12

1222

2220

; 109

07,1

48,2

2120

0110

1; 1

0908

,112

,210

2001

221;

109

09,1

48,2

2211

1212

2; 1

0910

,2,0

1200

1220

1;

1091

1,14

9,21

1020

2221

; 10

912,

149,

2110

2022

21;

1091

4,14

9,22

2121

1220

; 10

916,

149,

2110

2022

20;

1091

7,14

9,01

0120

2220

; 10

919,

17,2

2212

1222

2;

1092

0,17

,222

1212

221;

10

921,

17,1

2222

2221

2;

1092

2,17

,222

2221

211;

10

923,

17,2

2222

2222

0;

1092

4,17

,222

1212

220;

1092

5,17

,222

2222

219;

109

26,1

7,21

2221

1220

; 10

927,

57,2

2222

2222

2; 1

0928

,57,

2222

2222

22;

1092

9,10

8,22

2221

1212

; 10

930,

4,22

2211

0222

; 10

931,

4,22

2211

1220

; 10

932,

17,2

2212

2122

2; 1

0933

,17,

2221

2222

10;

1093

4,51

,220

0222

211;

109

35,5

1,22

0122

2210

; 10

936,

51,2

2012

2221

1;

1093

7,51

,220

1222

220;

109

38,1

7,21

2120

2221

; 10

939,

17,2

1112

2221

1; 1

0940

,17,

2122

2122

21;

1094

1,17

,222

2221

221;

109

62,1

7,22

1212

1121

; 10

963,

17,1

2120

2122

2; 1

0964

,17,

2222

1221

22;

1096

5,17

,212

0212

221;

109

66,1

7,21

1122

2222

; 10

967,

17,2

2102

1221

0; 1

0968

,17,

2220

2112

12;

1096

9,17

,220

2211

222;

109

70,1

7,12

1220

0221

; 10

972,

17,2

1112

1122

1; 1

0973

,17,

2121

2022

11;

1097

4,17

,222

2222

220;

109

76,1

7,22

2202

2221

; 10

977,

17,2

2220

2212

2; 1

0978

,37,

2000

0000

00;

1104

9,51

,920

1122

211;

110

50,5

1,92

0112

2212

; 11

051,

51,9

2012

2220

0; 1

1052

,51,

9201

2222

11;

1105

3,51

,921

0222

201;

110

54,5

1,92

0022

2210

; 110

55,5

1,92

0022

2211

; 110

56,5

1,92

0022

2212

; 112

04,5

8,22

0102

2922

; 112

05,5

8,22

2202

2202

; 112

07,1

1,21

2000

2001

; 112

08,3

1,22

2221

1101

; 112

09,1

07,2

2100

2222

2; 1

1210

,102

,211

0001

001;

112

11,1

35,0

2110

0110

2; 1

1212

,11,

2222

0121

10;

1121

3,11

,221

1002

110;

11

214,

135,

2002

0120

01;

1121

6,15

0,22

2101

0210

; 11

217,

150,

2211

0112

02;

1122

0,13

5,22

2001

2112

; 11

221,

150,

2221

0011

00;

1122

2,15

0,10

0001

2200

; 11

224,

106,

2120

0102

02;

1122

6,10

6,22

2202

2221

; 11

227,

96,2

2000

0110

0;

1122

8,10

6,22

2001

1102

;

1122

9,10

6,21

1101

0102

; 11

243,

106,

2020

0220

02;

1124

4,82

,202

2012

002;

11

245,

82,0

0110

0202

2;

1124

6,82

,202

2022

020;

11

248,

150,

0200

0102

00;

1124

9,14

5,02

0010

0000

; 11

250,

11,2

0110

1222

2;

1125

1,10

6,22

0100

2101

; 11

252,

98,0

1000

1020

1;

1125

3,15

0,20

1000

2210

;

1125

4,98

,110

0000

102;

11

255,

98,0

1000

2000

2;

1125

6,13

4,20

1100

0200

; 11

257,

117,

2000

0000

00;

1125

8,11

7,21

0100

0000

; 11

259,

117,

0000

0002

00;

1126

0,11

7,21

0001

0100

; 11

261,

117,

0200

0100

00;

1126

3,15

0,12

2200

1210

; 11

264,

72,0

2000

0010

0;

1126

5,72

,000

0000

200;

1126

6,72

,090

0000

000;

11

267,

152,

0902

0000

01;

1126

8,98

,191

0000

202;

11

269,

134,

1900

0000

00;

1127

0,72

,090

0000

100;

11

271,

88,0

9000

0000

0;

1127

6,82

,292

2112

121;

11

277,

152,

0922

0000

01;

1128

1,15

2,09

0909

2000

; 11

282,

152,

0920

0001

01;

1128

3,15

2,09

0200

0101

;

1128

4,15

2,09

0290

0000

; 11

285,

152,

0902

0010

01;

1128

7,82

,291

1201

111;

11

288,

11,1

9202

0100

1;

1129

0,10

2,29

1001

2111

; 11

291,

72,0

9000

0010

0;

1129

2,82

,292

1002

111;

11

293,

82,2

9220

0201

2;

1129

4,82

,291

2102

022;

11

295,

98,0

1002

0100

1;

1148

0,10

6,20

2111

0222

;

1148

1,14

5,20

1112

2122

; 114

82,3

4,22

0212

2221

; 114

83,7

2,00

0000

0200

; 114

84,9

6,00

2000

1000

; 114

85,1

1,22

0100

2210

; 114

86,8

3,01

2001

1121

; 114

87,3

4,22

2222

2221

; 114

88,9

6,00

2000

2011

; 114

89,1

50,2

2012

1022

2; 1

1494

,34,

2122

2221

21; 1

1495

,8,1

0012

0000

1; 1

1496

,106

,010

1121

122;

1149

7,10

6,02

1112

2112

; 114

98,1

1,02

0201

2210

; 114

99,3

4,12

2221

2220

; 115

00,3

4,02

2222

2221

; 115

01,7

2,00

0000

1000

; 115

02,9

6,00

0000

2000

; 115

03,9

6,01

0000

0100

; 115

04,1

8,02

0222

2212

; 115

05,1

21,2

2001

0111

0; 1

1506

,90,

0220

2122

21; 1

1507

,14,

0100

0001

00; 1

1508

,106

,211

0021

122;

1150

9,10

6,01

2002

1022

; 11

510,

145,

0000

0000

00;

1151

1,34

,022

2012

222;

11

512,

96,0

0000

0101

1;

1151

3,96

,000

0001

101;

11

514,

152,

2101

0001

02;

1151

5,98

,200

0000

112;

11

516,

152,

0002

0000

01;

1151

7,15

2,00

1200

0001

; 11

518,

119,

0111

1012

11;

1151

9,96

,000

0001

021;

1152

0,87

,010

0001

001;

11

521,

96,0

0000

0200

1;

1152

3,87

,201

0000

001;

11

524,

117,

1100

0000

00;

1152

5,98

,110

1000

202;

11

526,

117,

2000

0000

02;

1152

7,11

7,10

0000

0211

; 11

528,

87,0

1000

2000

1;

1153

0,96

,000

0201

000;

11

531,

152,

0102

1001

10;

1153

2,96

,000

0001

100;

1153

3,14

,012

2001

001;

115

34,8

7,00

0000

0001

; 11

535,

14,0

1020

0100

1; 1

1536

,49,

2222

2222

22;

1153

7,49

,222

1222

222;

115

38,4

9,22

2222

2222

; 11

539,

49,2

2212

2222

2; 1

1540

,49,

2222

2221

22;

1154

1,49

,222

1222

222;

115

42,4

9,22

2222

2122

; 11

543,

49,2

2222

2222

2; 1

1544

,49,

2222

2222

22;

1154

5,49

,222

2222

122;

11

546,

49,2

2022

2222

2;

1155

9,14

,000

0201

000;

11

560,

134,

0001

1200

00;

1156

1,10

2,10

0200

0201

; 11

562,

134,

2200

0000

01;

1156

3,13

4,20

0000

1001

; 11

564,

134,

2000

0010

01;

1156

5,98

,000

0100

102;

11

566,

14,0

0002

0100

0;

1156

7,11

7,12

0010

0201

;

1156

8,10

2,11

0111

2201

; 11

569,

102,

1010

0221

00;

1157

0,10

2,21

1000

2202

; 11

571,

102,

2020

0111

02;

1157

2,10

2,22

1111

1001

; 11

573,

102,

2020

1112

00;

1157

4,13

4,20

0020

0100

; 11

575,

134,

2200

0010

00;

1157

6,13

4,22

0000

1000

; 11

577,

134,

2100

0010

00;

1157

8,13

4,01

0020

0000

;

1157

9,13

4,21

0000

1000

; 11

580,

134,

2000

0222

00;

1158

1,15

0,22

2021

1221

; 11

582,

150,

2201

2212

21;

1158

3,15

0,22

2022

0221

; 11

584,

150,

2220

2112

21;

1158

5,99

,000

0000

102;

11

586,

99,1

1001

0010

1;

1158

7,99

,200

2101

100;

11

588,

152,

0202

0000

10;

1158

9,72

,000

1000

002;

1159

0,15

2,02

0010

0001

; 11

591,

99,1

0000

0020

2; 1

1593

,99,

2102

0121

01;

1159

4,99

,200

0112

101;

115

95,9

8,20

1020

0101

; 11

596,

98,2

1002

0000

0; 1

1597

,98,

2000

0010

21;

1159

8,98

,200

0010

012;

115

99,9

8,21

0001

0112

; 11

600,

98,2

1011

1010

2; 1

1601

,91,

2222

0012

22;

1160

2,28

,222

2122

212;

1160

3,91

,221

0001

110;

116

04,1

50,2

2122

1022

1; 1

1605

,28,

2212

2000

22; 1

1606

,150

,221

1110

220;

116

07,8

7,10

0000

0101

; 116

08,2

9,22

2022

2122

; 116

09,8

8,00

0000

0000

; 116

10,8

7,01

0010

0101

; 116

11,8

7,00

0010

0001

; 116

12,1

02,0

1020

1100

1; 1

1613

,98,

2010

0102

21; 1

1614

,99,

2100

0020

00;

1161

5,98

,200

0000

111;

11

616,

99,2

0000

1010

1;

1161

7,99

,010

0010

102;

11

618,

99,2

0001

0210

2;

1161

9,15

2,01

0220

0001

; 11

620,

152,

0202

2000

00;

1162

1,15

2,01

0200

1001

; 11

622,

152,

0202

0020

01;

1162

3,98

,200

0101

000;

11

624,

152,

0002

1011

01;

1162

5,11

9,21

1210

2222

;

1162

6,11

9,22

1221

2221

; 11

627,

119,

2110

1012

00;

1162

8,11

9,22

1021

2202

; 11

629,

96,0

0000

0101

1;

1163

0,11

,212

2112

002;

11

631,

11,2

1112

0222

2;

1163

2,99

,200

0012

201;

11

633,

88,2

1000

0210

0;

1163

4,99

,010

0002

100;

11

635,

11,2

2222

1221

0;

1163

6,87

,200

0000

100;

1163

7,11

7,12

0010

0101

; 116

38,9

6,11

1010

1110

; 116

39,1

1,01

1111

1121

; 116

40,1

1,11

1100

1212

; 116

41,1

1,21

1010

2220

; 116

42,9

6,20

0000

2000

; 116

43,3

1,21

2011

1221

; 116

44,3

1,02

0001

2100

; 116

45,8

2,22

0021

2022

; 116

46,8

2,22

1001

2022

; 116

47,1

50,2

2221

1212

0; 1

1648

,11,

2120

1010

10;

1164

9,15

0,22

0021

1222

; 11

650,

11,2

1202

0100

1;

1165

1,10

6,21

0122

1122

; 11

652,

106,

2220

2112

22;

1165

3,10

9,21

1100

1210

; 11

654,

58,2

2222

2222

2;

1165

5,11

,212

0201

000;

11

656,

58,2

2220

0222

2;

1165

7,11

7,20

0002

0001

; 11

659,

117,

0012

0000

00;

1166

0,10

9,20

0202

2221

;

Page 21: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 613

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

1166

1,42

,222

1202

222;

116

62,4

2,02

2102

2222

; 11

667,

106,

0211

0211

00;

1166

8,42

,222

2222

222;

116

69,4

2,22

2219

2222

; 11

670,

42,0

2211

2222

2; 1

1671

,42,

2222

2222

21;

1167

2,42

,022

2222

221;

116

73,4

2,22

2222

2222

; 11

674,

42,0

2222

2222

2; 1

1677

,42,

0222

2222

22;

1167

8,58

,222

2022

221;

1168

1,42

,022

2022

222;

11

682,

88,0

0002

0000

0;

1168

3,42

,222

2022

222;

11

685,

134,

2100

2210

00;

1168

6,15

2,01

0200

0101

; 11

687,

152,

0102

0000

00;

1168

9,15

2,01

0100

0101

; 11

692,

153,

0100

0100

00;

1169

4,10

9,21

1100

2122

; 11

695,

11,1

2020

1221

0;

1169

6,15

2,01

0200

0101

;

1169

7,42

,222

2222

222;

116

98,4

2,22

2122

2222

; 11

699,

42,2

2222

2212

2; 1

1700

,87,

0000

0010

00;

1170

2,15

2,02

0200

0101

; 11

703,

87,0

0000

0110

0; 1

1710

,150

,121

1212

220;

161

88,1

2,20

2022

1912

; 16

189,

12,0

2222

1290

0; 1

6190

,136

,122

2212

101;

161

91,6

,222

2222

120;

161

92,6

,202

2222

911;

1619

3,53

,222

0222

901;

161

94,5

3,22

2022

2922

; 16

195,

53,2

2202

2292

2; 1

6196

,53,

2220

2229

21;

1619

7,53

,222

9999

929;

161

98,5

3,22

2022

2920

; 16

199,

53,2

9202

2290

1; 1

6200

,53,

2220

2229

22;

1620

1,53

,292

0222

902;

162

02,6

,222

2292

912;

162

03,5

3,22

2022

2921

; 16

204,

53,2

2202

2292

2;

1620

5,53

,292

0222

902;

162

06,5

3,22

0022

2221

; 16

207,

136,

2220

2111

12;

1620

8,53

,220

0221

021;

162

09,5

3,29

2122

2911

; 16

210,

53,2

2202

2222

1; 1

6211

,53,

2221

2229

21;

1621

2,53

,290

0222

902;

162

13,5

3,22

0022

2902

; 16

214,

53,2

2102

2290

2; 1

6215

,53,

2220

2222

21;

1621

6,53

,292

0222

902;

1621

7,53

,222

0222

922;

162

18,5

3,22

2022

2922

; 16

219,

53,2

2202

2292

1; 1

6220

,53,

2220

2229

21;

1622

1,53

,222

0222

121;

162

22,5

3,22

2022

2922

; 16

223,

53,2

2202

2292

1; 1

6224

,53,

2220

2229

22;

1622

5,76

,222

2222

901;

162

26,5

3,22

2022

2121

; 16

227,

53,2

2202

2212

1; 1

6228

,6,2

1211

1092

2;

1622

9,53

,222

0222

920;

162

30,4

8,22

2029

2920

; 16

231,

48,1

2202

2192

0; 1

6232

,48,

1229

2219

20;

1623

3,48

,999

9221

990;

162

34,7

8,20

2209

1900

; 16

235,

77,2

2221

1292

0; 1

6236

,78,

1029

9999

29;

1623

7,25

,220

2112

222;

162

38,7

8,22

2002

1001

; 16

239,

48,9

1001

2100

1; 1

6240

,22,

2020

2121

20;

1624

1,48

,220

0220

220;

162

42,4

8,11

2112

2000

; 162

43,4

8,12

2121

2120

; 162

44,1

22,2

1222

1299

0; 1

6245

,48,

2210

1111

22; 1

6251

,122

,102

1212

290;

162

52,1

22,2

2221

0221

0; 1

6253

,47,

2120

0122

11; 1

6254

,44,

1110

0021

20; 1

6255

,44,

0901

0001

00; 1

6256

,44,

0101

0001

00; 1

6257

,44,

2100

0102

00;

1625

8,47

,221

2212

111;

162

59,7

8,12

1202

2021

; 16

260,

47,2

2211

9212

1; 1

6261

,47,

2100

2110

22;

1626

2,47

,910

1110

022;

162

63,7

7,22

0011

2202

; 16

264,

78,2

1211

2112

2; 1

6265

,122

,112

2102

122;

162

66,5

3,22

2022

2222

; 16

267,

19,2

2112

0112

2; 1

6268

,19,

2222

0012

22;

1627

0,53

,222

0222

121;

1627

1,6,

1212

2220

12;

1627

2,47

,101

0021

111;

162

73,1

9,21

1200

2122

; 16

274,

103,

0221

2020

21;

1627

5,19

,210

0212

222;

162

76,1

05,9

2920

0200

2; 1

6277

,78,

2221

1910

01;

1627

8,78

,012

2011

122;

162

79,7

8,22

2000

0121

; 16

280,

78,2

1200

2102

2; 1

6281

,78,

1220

1201

22;

1628

2,78

,111

0120

022;

1628

3,78

,122

0121

020;

162

84,5

3,22

2022

2221

; 162

85,5

3,22

2022

2022

; 162

86,5

3,22

2022

2122

; 162

87,5

3,22

2022

2121

; 162

88,5

3,22

2022

2222

; 162

89,5

3,22

2022

2121

; 162

90,5

3,22

2022

2220

; 162

91,5

3,22

2922

2020

; 162

92,5

3,22

2222

2120

; 162

93,1

05,0

2220

2221

0; 1

6294

,105

,222

2211

119;

1629

5,10

5,22

2212

2010

; 162

96,1

16,2

2102

1212

2; 1

6297

,47,

2022

1222

12; 1

6298

,47,

2021

2212

09; 1

6299

,47,

1222

1022

12; 1

6300

,62,

1212

2120

21; 1

6301

,62,

2212

2121

22; 1

6302

,19,

1202

1011

00; 1

6303

,3,2

1221

2211

1; 1

6304

,44,

1202

0011

10; 1

6305

,141

,221

2222

110;

163

06,3

8,02

2221

2220

;

1630

7,6,

2112

1221

19;

1630

8,53

,222

2122

122;

163

09,4

5,22

2022

2221

; 16

311,

38,0

1222

0112

2; 1

6312

,53,

2220

2222

21;

1631

3,53

,122

0222

022;

163

14,5

3,22

2022

2021

; 16

315,

44,0

2020

0010

0; 1

6316

,38,

2212

2222

20;

1631

7,14

1,12

2222

2222

; 16

318,

53,2

2222

2202

2; 1

6319

,141

,220

2222

102;

1632

0,14

1,22

2222

2102

; 16

321,

141,

2202

2221

22;

1632

2,14

1,22

1222

2112

; 16

323,

141,

2202

2221

11;

1632

4,38

,022

2202

121;

16

325,

103,

0121

0220

20;

1632

6,10

3,02

2202

2021

; 16

327,

110,

1220

2121

00;

1632

8,53

,222

0222

221;

16

329,

53,2

2202

2212

1;

1633

0,53

,222

0222

222;

1633

1,53

,222

0222

121;

16

332,

53,2

2202

2222

1;

1633

4,13

9,22

2221

2112

; 16

335,

139,

2222

2222

22;

1633

6,11

0,12

2211

2101

; 16

337,

141,

2202

2221

21;

1633

8,14

1,22

0222

2212

; 16

339,

71,0

0002

1000

0;

1634

0,71

,100

0101

000;

16

342,

71,1

0000

1001

0;

1634

3,52

,000

0000

101;

1634

4,78

,222

1112

020;

163

45,7

7,22

2111

2220

; 16

346,

77,2

2012

1222

2; 1

6347

,77,

2201

1122

20;

1634

8,77

,221

0010

220;

163

49,5

2,00

1122

2001

; 16

350,

48,2

1222

0222

1; 1

6351

,59,

1222

2111

12;

1635

2,48

,212

0111

112;

163

53,4

8,12

1120

2110

; 16

354,

48,1

2110

1202

9; 1

6355

,48,

1112

2222

12;

1635

6,13

9,22

1020

9220

; 16

357,

139,

2222

2221

11;

1635

8,13

9,22

1222

2121

; 16

359,

132,

1122

2212

12;

1636

0,71

,000

0110

010;

16

361,

139,

1222

2222

22;

1636

2,13

9,21

2121

2022

; 16

363,

59,1

1012

1122

2;

1636

4,14

2,10

0101

0200

; 16

365,

142,

2011

0111

00;

1636

6,15

,211

1229

201;

1636

7,13

9,22

2222

9220

; 16

368,

139,

2222

2291

12;

1636

9,13

9,22

2222

9121

; 16

370,

139,

2222

2291

01;

1637

1,14

2,10

2100

9101

; 16

372,

142,

2000

1192

01;

1637

3,14

2,20

0011

9101

; 16

374,

132,

2292

2199

92;

1637

5,14

2,10

1211

9201

; 16

376,

105,

1211

2012

21;

1637

7,10

5,21

2210

1122

;

1637

8,80

,101

2121

100;

16

379,

142,

1012

2112

00;

1638

0,3,

2211

1201

12;

1638

1,38

,212

1202

121;

16

382,

38,2

2122

0222

2;

1638

3,10

4,22

2120

2121

; 16

384,

105,

2222

1121

21;

1638

5,77

,220

1012

221;

16

386,

46,2

2211

1222

2;

1638

7,13

9,90

9220

2992

; 16

388,

154,

0011

0211

00;

1638

9,15

4,00

0102

1101

; 16

390,

142,

2011

0012

01;

1639

1,14

4,22

1121

2220

; 16

392,

26,2

0101

2212

0;

1639

3,14

2,20

1292

2102

; 16

394,

142,

2121

9111

00;

1639

5,10

5,22

0221

2111

; 16

396,

105,

1221

2022

10;

1639

7,13

9,22

2220

2922

; 16

398,

15,1

2122

2020

0;

1639

9,15

4,00

0100

0100

;

1640

0,14

2,11

2211

2211

; 16

401,

142,

1220

0111

01;

1640

2,6,

9991

2129

91;

1640

3,47

,222

2022

202;

16

404,

60,2

1201

0202

2;

1640

5,14

2,10

1122

0202

; 16

406,

80,2

1122

1012

0;

1640

7,14

2,20

0200

2100

; 16

408,

104,

2222

1212

21;

1640

9,14

2,10

1222

1201

; 16

410,

142,

2001

1021

02;

1641

1,14

2,20

9110

2202

; 16

412,

103,

2222

2121

22;

1641

3,14

2,10

2122

1201

; 16

414,

151,

0010

1001

02;

1641

5,15

1,00

1000

0000

; 16

416,

142,

2022

1012

00;

1641

7,10

5,21

0022

2222

; 16

418,

104,

2102

1222

20;

1641

9,13

8,02

0222

1010

; 16

420,

105,

2202

2022

21;

1642

1,12

3,22

2222

2222

;

1642

2,10

,002

0101

000;

16

423,

126,

2111

1211

20;

1642

4,64

,222

2222

212;

16

425,

126,

1121

1212

11;

1642

6,10

,001

0001

200;

16

427,

105,

1222

9022

21;

1642

8,12

3,12

0222

2222

; 16

429,

123,

2202

2222

22;

1643

0,12

3,22

2222

2222

; 16

431,

123,

2222

2222

22;

1643

2,12

3,22

2222

2222

;

1643

3,12

3,22

2222

2222

; 16

434,

123,

9222

2221

12;

1643

5,12

3,92

2212

2222

; 16

436,

123,

9212

2222

12;

1643

7,12

3,92

2222

2212

; 16

438,

123,

9920

2122

21;

1643

9,27

,222

2222

202;

16

440,

105,

2222

1221

21;

1644

1,10

4,21

1212

2122

; 16

442,

81,2

2122

2212

2;

1644

3,11

0,02

2010

2000

;

1644

4,10

,010

1101

100;

16

445,

10,0

0012

0120

0;

1644

6,13

7,01

9020

0000

; 16

447,

143,

9901

1021

10;

1644

8,65

,212

2202

221;

16

449,

38,1

2212

1202

2;

1645

0,38

,929

2222

992;

16

451,

142,

2191

2112

01;

1645

2,14

2,11

9211

1201

; 16

453,

38,2

2922

2220

2;

1645

4,38

,211

1121

212;

1645

5,38

,919

1222

992;

16

456,

142,

1012

1022

01;

1645

7,97

,020

0011

201;

16

458,

142,

1001

1010

00;

1645

9,65

,221

2192

211;

16

461,

139,

2221

2221

10;

1646

2,11

8,21

2002

0010

; 16

463,

65,2

1212

1222

1;

1646

4,65

,212

2212

212;

16

465,

65,2

2221

0220

0;

1646

6,65

,212

2202

220;

1646

7,13

2,22

1021

2122

; 16

468,

124,

0200

1000

00;

1646

9,27

,222

2212

222;

16

470,

62,2

2122

0222

0;

1647

1,62

,120

2111

220;

16

472,

101,

9990

0009

90;

1647

3,15

1,01

0000

0002

; 16

474,

151,

0000

0001

01;

1647

6,10

,010

1101

101;

16

478,

65,2

2212

1222

1;

1647

9,14

0,01

0299

9100

;

1648

0,10

0,00

0200

1000

; 16

481,

100,

0100

0021

00;

1648

2,10

0,01

0200

1100

; 16

483,

100,

0100

0011

00;

1648

4,10

,000

0091

100;

16

485,

65,1

1221

9222

2;

1648

6,65

,202

2192

022;

16

487,

61,1

1222

9201

2;

1648

8,65

,222

2292

220;

16

489,

127,

9911

2920

19;

1649

0,13

3,00

0209

9000

;

1649

1,10

,000

0199

000;

164

92,1

0,00

0029

9200

; 164

93,1

0,00

0010

0100

; 164

94,1

0,00

0010

0200

; 164

95,1

0,00

0000

0000

; 164

96,1

0,01

0000

1200

; 164

97,7

4,22

1110

1220

; 164

98,1

18,1

0011

0101

1; 1

6499

,74,

2221

2022

22; 1

6500

,74,

2021

2091

22; 1

6502

,140

,000

0000

000;

165

03,3

3,01

0020

2000

;

1650

4,33

,010

0201

000;

16

506,

151,

0000

1001

00;

1650

7,15

1,00

0000

1200

; 16

508,

151,

0000

1091

00;

1650

9,15

1,00

0020

9100

; 16

510,

151,

0000

1011

01;

1651

1,13

8,12

2222

1110

; 16

512,

61,1

1022

1222

2;

1651

3,61

,102

2212

220;

16

514,

139,

2222

2221

20;

1651

5,13

9,22

2222

2011

;

1651

6,13

9,22

2222

2220

; 16

517,

139,

2222

2222

11;

1651

8,13

9,22

2922

2221

; 16

519,

139,

2222

2221

21;

1652

0,13

9,22

2121

2211

; 16

521,

139,

2221

2120

22;

1652

2,13

9,21

2122

2120

; 16

523,

139,

2222

2222

22;

1652

4,13

9,22

2221

2110

; 16

525,

139,

2122

2122

12;

1652

6,13

9,22

2099

9029

;

1652

7,13

9,20

2099

9029

; 16

528,

139,

2129

9991

19;

1652

9,14

1,22

2222

2112

; 16

530,

139,

2222

2221

12;

1653

1,14

1,22

1299

9119

; 16

532,

141,

2102

9991

19;

1653

3,14

1,22

0222

2202

; 16

534,

141,

2212

2221

12;

1653

5,14

1,22

0222

2221

; 16

536,

141,

2202

9991

19;

1653

7,14

1,22

0299

9219

;

1653

8,14

1,22

0222

2222

; 16

539,

141,

9202

2221

10;

1654

0,14

1,22

2222

2212

; 16

541,

141,

9212

2221

11;

1654

2,14

1,22

0299

9109

; 16

543,

141,

2212

2221

10;

1654

4,14

1,12

1222

2200

; 16

545,

141,

2212

2222

12;

1654

6,14

1,22

1222

2222

; 16

547,

141,

2202

2221

11;

1654

8,14

1,22

0222

2212

;

1654

9,52

,000

0999

009;

165

50,7

1,00

0099

9009

; 165

51,5

2,00

0099

9119

; 165

52,5

2,00

0099

9019

; 165

53,5

2,01

0099

9009

; 165

54,5

2,00

0099

9019

; 165

55,5

2,01

0099

9019

; 165

56,5

2,00

0099

9209

; 165

57,5

2,01

0099

9009

; 165

58,1

27,2

2211

2222

2; 1

6559

,127

,212

2202

121;

165

60,1

27,2

2199

9922

9;

1656

1,12

7,12

0222

2121

; 16

562,

127,

2222

0122

22;

1656

3,14

2,21

1001

1200

; 16

564,

142,

2021

1102

01;

1656

5,14

2,21

1000

2200

; 16

566,

142,

2101

0021

01;

1656

7,14

2,20

0200

2100

; 16

568,

142,

2002

0221

00;

1656

9,14

2,20

1220

2210

; 16

570,

142,

2002

0020

00;

1657

1,14

2,20

0299

9119

;

1657

2,12

3,22

2299

9129

; 165

73,1

23,2

2229

9922

9; 1

6574

,43,

2221

9992

09; 1

6575

,43,

2222

9992

29; 1

6576

,43,

2221

9992

29; 1

6577

,43,

2222

9992

29; 1

6578

,43,

2221

9992

29; 1

6579

,43,

2222

9992

29; 1

6580

,43,

2221

9992

29; 1

6581

,43,

2929

9992

29; 1

6582

,43,

2929

9992

29; 1

6583

,52,

0929

9991

19;

1658

4,70

,192

1201

111;

165

85,5

2,09

2999

9209

; 16

586,

52,0

9099

9911

9; 1

6587

,43,

1929

9992

29;

1658

8,43

,292

9999

229;

165

89,4

3,22

0999

9229

; 16

590,

43,1

2009

9992

9; 1

6591

,43,

1202

9999

29;

1659

2,43

,220

1999

929;

165

93,4

3,22

0222

2922

; 16

594,

38,1

2029

9992

9; 1

6595

,38,

2212

2022

12;

1659

6,38

,220

2222

222;

165

97,3

8,20

2211

1212

; 16

598,

38,2

2022

2192

2; 1

6599

,38,

2202

2229

10;

1660

0,38

,220

2999

929;

166

01,3

8,92

0222

2922

; 16

602,

38,2

2022

2292

2; 1

6603

,38,

0202

1129

20;

1660

4,38

,120

2999

929;

166

05,3

8,22

0222

2922

; 16

606,

38,2

2022

2292

0; 1

6607

,38,

2202

2029

21;

1660

8,38

,020

2999

929;

166

09,1

42,1

0219

9990

9; 1

6610

,142

,202

1002

901;

166

11,1

42,0

1119

9990

9; 1

6612

,142

,211

1020

901;

166

13,1

42,2

9120

0200

1; 1

6614

,142

,190

9999

019;

166

15,1

5,19

0122

2210

; 166

16,1

5,29

2222

0212

; 166

17,3

,091

2222

221;

166

18,3

,992

9999

219;

166

19,6

,211

1221

121;

1662

0,6,

2229

9990

19;

1662

4,32

,022

2112

119;

166

25,6

4,12

2210

2220

; 16

626,

65,2

1222

2221

9; 1

6627

,65,

2212

1121

10;

1662

8,65

,202

2212

120;

166

29,6

5,22

2211

2212

; 16

630,

65,2

2122

0221

2; 1

6631

,65,

2222

1121

21;

1663

2,65

,212

9909

210;

166

33,1

42,9

9999

0999

2; 1

6884

,192

,202

2922

222;

1688

5,17

3,22

2192

9222

; 16

886,

174,

0000

9090

00;

1688

7,17

8,92

9292

2992

; 16

888,

184,

0009

9900

00;

1688

9,18

5,22

9192

2992

; 16

890,

185,

2222

9222

22;

1689

1,17

6,22

2292

2222

; 16

892,

174,

0000

9091

00;

1689

3,17

4,00

0099

9000

; 16

894,

174,

0090

9099

90;

1689

5,19

1,22

2292

2122

;

1689

6,18

7,00

0090

9000

; 16

897,

187,

0002

9090

00;

1689

8,19

1,22

2199

2222

; 16

899,

191,

2221

9922

02;

1690

0,17

5,00

0999

0900

; 16

901,

184,

0009

9900

00;

1690

2,19

2,92

9292

2992

; 16

903,

174,

0000

9090

00;

1690

4,17

4,00

0090

9000

; 16

905,

182,

0009

9900

00;

1690

8,17

3,02

2999

9229

;

1690

9,19

1,22

2999

2222

; 16

910,

187,

2009

9990

09;

1691

1,18

7,00

0999

9009

; 16

912,

191,

2229

9922

29;

1691

3,18

7,00

0999

9009

; 16

914,

189,

0009

9990

09;

1691

5,17

7,22

9999

9999

; 16

916,

177,

2229

9922

09;

1691

7,18

7,00

0999

9009

; 16

918,

184,

0009

9900

00;

1691

9,18

4,00

0999

0000

;

1692

0,18

0,22

2999

9229

; 16

921,

180,

2299

9999

99;

1692

2,19

1,22

2999

2222

; 16

923,

184,

0009

9900

00;

1692

4,18

4,00

9999

0090

; 16

925,

184,

0099

9900

90;

1692

6,18

0,22

9999

9999

; 16

927,

180,

2299

9999

99;

1692

8,17

7,22

2999

9229

; 16

929,

177,

2229

9922

22;

1693

0,17

7,22

2999

9229

;

1693

1,17

7,22

2999

2229

; 16

933,

184,

0009

9900

00;

1693

4,18

5,22

9999

9999

; 16

935,

177,

2229

9922

29;

1693

6,17

7,22

2999

2222

; 16

937,

174,

0009

9920

09;

1693

8,18

0,22

9999

9999

; 16

939,

191,

2229

9922

22;

1694

1,17

3,22

2999

2922

; 16

943,

192,

2229

9922

29;

1694

6,18

4,00

0999

0000

;

1694

9,18

4,00

0999

0000

; 16

950,

179,

0009

9900

09;

1695

2,18

4,00

0999

0090

; 16

953,

178,

2229

9922

29;

1695

4,19

0,00

0999

0000

; 16

955,

188,

1009

9900

00;

1695

6,17

9,00

0999

9000

; 16

958,

177,

2229

9922

22;

1695

9,18

2,00

0999

0000

; 16

960,

177,

2229

9922

29;

1696

1,17

7,22

2999

2222

;

1696

2,19

7,92

9999

9999

; 16

963,

177,

2229

9922

29;

1696

4,18

5,92

9999

9999

; 16

965,

185,

9299

9999

99;

1696

6,17

7,22

2999

9929

; 16

967,

177,

2229

9922

22;

1696

8,18

0,22

2999

2222

; 16

969,

191,

2229

9922

29;

1697

0,18

2,00

0999

0000

; 16

971,

182,

0009

9900

00;

1697

2,18

2,00

0999

0000

;

1697

3,18

2,00

0999

0000

; 16

974,

182,

1009

9900

00;

1697

5,18

1,00

0999

0000

; 16

977,

184,

0009

9900

00;

1697

8,18

2,00

0999

0000

; 16

979,

182,

0009

9900

00;

1698

0,18

2,00

0999

0000

; 16

981,

182,

0009

9900

00;

1698

2,17

7,22

2999

2122

; 16

983,

194,

9299

9999

99;

1698

4,17

5,00

0999

0000

;

1698

5,18

4,00

0999

0000

; 16

986,

184,

0009

9900

00;

1698

7,18

4,00

0999

0000

; 16

988,

179,

0009

9990

09;

1698

9,17

4,02

0999

9009

; 16

990,

174,

0009

9990

09;

1699

1,17

4,00

0999

9009

; 16

993,

174,

0009

9990

09;

1699

4,17

4,00

0999

9000

; 16

995,

174,

0009

9921

09;

1699

6,17

9,90

9999

9999

;

1699

7,17

4,90

9999

9999

; 16

998,

174,

9099

9999

99;

1699

9,18

2,00

0999

0000

; 17

001,

177,

9299

9999

99;

1700

2,17

7,22

2999

2222

; 17

003,

177,

2229

9922

29;

1700

4,17

7,92

9999

9999

; 17

005,

177,

2229

9922

29;

1700

6,17

7,22

2999

9929

; 17

007,

178,

2229

9922

21;

1700

8,17

8,22

1999

2129

;

1700

9,17

6,22

2999

9222

; 17

010,

173,

2229

9922

22;

1701

1,19

7,22

2999

2229

; 17

012,

185,

2299

9999

99;

1701

3,17

3,22

2999

2229

; 17

014,

185,

2299

9999

99;

1701

5,17

3,22

2999

9222

; 17

016,

173,

2229

9922

22;

1701

7,17

3,22

2999

2222

; 17

019,

182,

0009

0000

00;

1702

0,18

2,00

0000

0000

;

1702

1,17

4,90

0090

9000

; 17

022,

174,

9000

9090

00;

1702

6,17

4,90

0090

9000

; 17

027,

174,

9009

9999

09;

1702

8,17

4,00

0090

9000

; 17

029,

174,

0000

9090

00;

1703

0,17

4,20

0090

9000

; 17

031,

176,

9222

9292

22;

1703

2,17

4,20

0090

9000

; 17

033,

174,

0000

9090

00;

1703

4,17

4,00

0090

9000

;

1703

5,17

4,00

0090

9000

; 17

036,

174,

2000

9090

00;

1703

7,17

7,02

2292

9222

; 17

038,

177,

0222

9292

22;

1703

9,17

7,02

2292

9222

; 17

040,

177,

2222

9292

22;

1704

1,17

7,02

2292

9222

; 17

042,

177,

0222

9292

22;

1704

3,17

7,02

2292

9222

; 17

044,

186,

0000

9000

00;

1704

5,18

7,90

9000

9990

;

1704

9,18

8,00

0999

0000

; 17

050,

173,

9222

2299

22;

1705

1,17

4,90

0000

9900

; 17

052,

174,

9000

0099

00;

1705

3,17

4,90

0000

9900

; 17

054,

174,

2000

0090

00;

1705

5,17

4,90

0000

9900

; 17

056,

174,

9000

0099

00;

1705

7,17

8,22

1229

2220

; 17

058,

196,

2221

2299

02;

1705

9,19

2,99

2999

9229

;

1706

0,19

2,92

2222

9920

; 17

061,

175,

0009

9900

00;

1706

2,18

0,92

2092

9922

; 17

063,

191,

2222

2222

22;

1706

4,17

8,92

9291

2992

; 17

065,

178,

2201

9022

22;

1706

6,17

3,22

2199

2222

; 17

067,

179,

0000

9090

00;

1706

8,18

1,00

0999

0000

; 17

069,

184,

0009

9900

00;

1707

0,18

4,00

0999

0000

;

1707

5,17

6,02

2999

2229

;

Page 22: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

614 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

AP

PE

ND

IX 3

Th

e ge

not

ypes

of t

he

621

mic

e te

sted

for

six

mic

rosa

tell

ite

loci

. For

eac

h m

ouse

(mic

e se

para

ted

by s

emic

olon

s) w

e gi

ve s

ucc

essi

vely

(sep

arat

ed b

y co

m-

mas

): m

ouse

nu

mbe

r, lo

cali

ty n

um

ber

(as

in A

ppen

dix

1), s

ampl

ing

year

, an

d th

e ge

not

ypes

at

the

six

mic

rosa

tell

ite

loci

in t

he

orde

r li

sted

in t

he

firs

tre

cord

(an

d re

pres

ente

d fo

r ea

ch lo

cus

by t

he

con

cate

nat

ion

of

the

size

s of

th

e tw

o al

lele

s, w

ith

th

ree

digi

ts f

or e

ach

all

ele,

e.g

. 050

058

mea

nin

g a

het

-er

ozyg

ote

for

alle

les

of s

izes

50

and

58).

Un

dete

rmin

ed g

enot

ypes

are

cod

ed 0

0000

0

mou

sen

o.,L

ocn

o.,y

ear,

Ktr

2,G

fap,

D15

Mit

16,C

kmm

,Cyp

la2,

D17

Mit

41;

1166

1,42

,199

2,03

8038

,071

077,

0620

66,0

6506

5,06

6066

,000

000;

11

662,

42,1

992,

0380

38,0

7107

1,05

4070

,075

075,

0500

66,0

0000

0;

1166

8,42

,199

2,03

8038

,071

071,

0620

66,0

6006

5,05

0050

,000

000;

1166

9,42

,199

2,03

8038

,071

071,

0540

66,0

6006

5,06

6066

,000

000;

11

670,

42,1

992,

0380

38,0

7107

1,05

4066

,060

065,

0660

74,0

0000

0;

1167

1,42

,199

2,03

8038

,071

071,

0660

66,0

6506

5,05

0058

,046

046;

11

672,

42,1

992,

0380

38,0

7707

7,05

8066

,065

075,

0660

66,0

0000

0;

1167

3,42

,199

2,03

8038

,071

077,

0620

70,0

7507

5,05

0074

,000

000;

11

674,

42,1

992,

0380

38,0

7107

7,06

6066

,065

075,

0660

70,0

0000

0;

1167

7,42

,199

2,03

8038

,071

071,

0660

66,0

6006

5,05

0066

,000

000;

11

681,

42,1

992,

0380

38,0

7107

1,05

4078

,065

065,

0540

66,0

0000

0;

1168

3,42

,199

2,03

8038

,071

077,

0540

66,0

7507

5,05

0066

,000

000;

11

697,

42,1

992,

0380

38,0

7107

7,05

4054

,075

075,

0620

66,0

0000

0;

1169

8,42

,199

2,03

8038

,071

071,

0580

66,0

6506

5,05

0066

,000

000;

11

699,

42,1

992,

0380

38,0

7107

7,06

6066

,065

065,

0660

70,0

4604

6;

1170

7,42

,199

2,03

8038

,071

071,

0620

66,0

6006

5,05

0066

,000

000;

11

536,

49,1

992,

0380

38,0

7107

7,06

2062

,060

065,

0500

54,0

0000

0;

1153

7,49

,199

2,03

8038

,068

071,

0580

62,0

6506

5,05

4066

,000

000;

11

538,

49,1

992,

0380

38,0

7107

1,05

8070

,065

075,

0540

54,0

0000

0;

1153

9,49

,199

2,03

8038

,068

071,

0540

58,0

6507

0,05

0058

,046

046;

11

540,

49,1

992,

0380

38,0

7107

7,07

0070

,065

070,

0540

54,0

0000

0;

1154

1,49

,199

2,03

8038

,068

077,

0580

62,0

6507

0,05

8058

,000

000;

11

542,

49,1

992,

0380

38,0

7107

1,05

4078

,065

070,

0540

62,0

0000

0;

1154

3,49

,199

2,03

8038

,071

077,

0660

66,0

6506

5,05

0062

,000

000;

11

544,

49,1

992,

0380

46,0

7107

1,05

8062

,065

065,

0540

66,0

0000

0;

1154

5,49

,199

2,03

8038

,071

077,

0700

70,0

7507

5,05

0058

,000

000;

11

546,

49,1

992,

0380

38,0

6807

1,05

8070

,065

065,

0540

54,0

0000

0;

1127

8,69

,199

2,04

6046

,071

071,

0580

58,0

5506

5,04

2054

,050

050;

11

490,

69,1

992,

0460

46,0

4407

1,05

8058

,055

055,

0420

54,0

5005

0;

1149

1,69

,199

2,04

6046

,044

071,

0580

58,0

5505

5,04

2054

,000

000;

11

492,

69,1

992,

0420

46,0

4404

4,05

8058

,055

055,

0540

54,0

5005

0;

1149

3,69

,199

2,04

6046

,044

044,

0580

58,0

5505

5,04

2042

,048

050;

11

547,

69,1

992,

0460

50,0

7107

1,05

8058

,055

055,

0700

70,0

4805

0;

1154

8,69

,199

2,04

6050

,044

044,

0580

58,0

5505

5,04

2054

,050

050;

11

551,

69,1

992,

0460

46,0

4407

1,05

8062

,055

055,

0420

70,0

0000

0;

1155

2,69

,199

2,04

6046

,044

071,

0580

58,0

5506

5,04

2070

,048

050;

11

554,

69,1

992,

0460

46,0

7107

1,05

8058

,055

055,

0420

42,0

5005

0;

1155

5,69

,199

2,04

6046

,044

044,

0580

58,0

5505

5,04

2054

,000

000;

11

556,

69,1

992,

0460

46,0

4407

1,05

8058

,055

055,

0420

70,0

5005

0;

1155

7,69

,199

2,04

6046

,044

071,

0580

58,0

5505

5,05

4070

,000

000;

11

558,

69,1

992,

0460

46,0

4407

1,05

8058

,055

055,

0540

70,0

0000

0;

1166

3,69

,199

2,04

6046

,044

065,

0580

58,0

5505

5,04

2054

,000

000;

11

664,

69,1

992,

0460

46,0

4406

5,05

8058

,055

055,

0420

54,0

0000

0;

1166

6,69

,199

2,04

6046

,071

071,

0580

58,0

5505

5,05

4054

,000

000;

11

675,

69,1

992,

0420

46,0

4407

1,05

8058

,055

055,

0420

54,0

0000

0;

1167

6,69

,199

2,04

6050

,044

071,

0500

58,0

5505

5,05

4070

,000

000;

11

679,

69,1

992,

0420

46,0

4407

1,05

8058

,055

055,

0420

54,0

0000

0;

1168

0,69

,199

2,04

2046

,044

071,

0580

58,0

5506

5,05

4054

,000

000;

11

684,

69,1

992,

0460

46,0

4407

1,05

8058

,055

055,

0540

54,0

0000

0;

1169

0,69

,199

2,04

6046

,044

071,

0580

58,0

5505

5,04

2054

,050

050;

11

691,

69,1

992,

0420

46,0

4407

1,05

8058

,055

055,

0420

54,0

5005

0;

1169

3,69

,199

2,04

2046

,044

071,

0580

58,0

5505

5,05

4054

,000

000;

11

701,

69,1

992,

0460

46,0

4404

4,05

8058

,055

055,

0420

42,0

0000

0;

1170

4,69

,199

2,04

6050

,044

044,

0580

58,0

5505

5,05

4070

,000

000;

11

705,

69,1

992,

0460

46,0

4404

4,05

8058

,055

055,

0420

54,0

0000

0;

1170

6,69

,199

2,04

6046

,044

071,

0580

58,0

5505

5,04

2054

,000

000;

11

708,

69,1

992,

0460

46,0

4407

1,05

8058

,055

065,

0420

54,0

0000

0;

1170

9,69

,199

2,04

2046

,071

071,

0580

58,0

5505

5,04

2042

,000

000;

11

711,

69,1

992,

0460

46,0

4407

1,05

8058

,055

055,

0420

70,0

0000

0;

1124

2,72

,199

2,05

0050

,044

053,

0500

50,0

6506

5,04

2046

,048

048;

11

264,

72,1

992,

0500

50,0

5305

6,05

0066

,055

065,

0460

46,0

4805

0;

1126

5,72

,199

2,05

0050

,053

053,

0500

50,0

5506

5,04

2042

,000

000;

11

266,

72,1

992,

0500

50,0

5305

6,05

0066

,065

065,

0420

46,0

5005

0;

1127

0,72

,199

2,05

0050

,053

056,

0500

66,0

5506

5,04

6046

,048

050;

11

291,

72,1

992,

0500

50,0

5605

6,05

0066

,065

065,

0420

42,0

4805

0;

1148

3,72

,199

2,05

0050

,053

056,

0500

50,0

5506

5,04

2046

,048

048;

11

501,

72,1

992,

0500

50,0

4405

6,05

0050

,055

065,

0460

46,0

4805

0;

1158

9,72

,199

2,04

2050

,044

065,

0620

62,0

5505

5,05

4054

,000

000;

11

520,

87,1

992,

0500

50,0

5005

0,05

4062

,055

060,

0000

00,0

5005

0;

1152

8,87

,199

2,05

0050

,050

056,

0500

50,0

0000

0,05

0050

,048

050;

11

534,

87,1

992,

0500

50,0

5005

3,05

8058

,050

055,

0500

50,0

5005

0;

1161

0,87

,199

2,03

8038

,050

056,

0620

62,0

5005

5,03

8058

,050

052;

11

611,

87,1

992,

0500

50,0

5005

0,05

0058

,055

055,

0380

58,0

4604

6;

1163

6,87

,199

2,05

0050

,044

044,

0460

46,0

5505

5,04

6050

,050

050;

11

700,

87,1

992,

0500

50,0

4405

3,05

0050

,070

075,

0420

46,0

5005

0;

1170

3,87

,199

2,05

0054

,044

053,

0460

50,0

5005

5,04

2046

,050

050;

11

484,

96,1

992,

0500

50,0

6807

1,00

0000

,050

055,

0000

00,0

5005

2;

1148

8,96

,199

2,05

0050

,053

071,

0000

00,0

5505

5,03

8038

,052

052;

11

502,

96,1

992,

0420

42,0

6807

1,05

8058

,050

060,

0000

00,0

5005

2;

1150

3,96

,199

2,04

6054

,050

053,

0580

58,0

5505

5,00

0000

,050

050;

11

512,

96,1

992,

0420

42,0

5305

3,00

0000

,060

070,

0000

00,0

5005

2;

1151

3,96

,199

2,05

0050

,053

053,

0460

46,0

5505

5,05

0050

,052

052;

11

519,

96,1

992,

0500

50,0

6806

8,05

4058

,055

060,

0500

74,0

5005

0;

1152

1,96

,199

2,05

0050

,053

053,

0580

58,0

5505

5,03

8038

,050

052;

11

530,

96,1

992,

0500

54,0

7107

1,05

4058

,060

060,

0380

50,0

5205

2;

1153

2,96

,199

2,04

6050

,053

068,

0580

58,0

5505

5,03

8050

,050

050;

11

629,

96,1

992,

0380

46,0

5605

6,05

4058

,065

065,

0460

54,0

5005

0;

1163

8,96

,199

2,04

2050

,044

068,

0540

58,0

5005

5,05

0050

,052

052;

11

642,

96,1

992,

0420

50,0

6807

1,05

4058

,055

070,

0380

42,0

5005

0;

1125

2,98

,199

2,05

4054

,053

053,

0620

62,0

5506

0,05

0054

,050

050;

11

254,

98,1

992,

0500

50,0

5305

6,05

8066

,055

055,

0420

54,0

5005

0;

1125

5,98

,199

2,05

4054

,050

050,

0500

58,0

5505

5,05

0054

,050

052;

11

268,

98,1

992,

0540

54,0

5005

6,05

0066

,055

060,

0380

50,0

5005

0;

1129

5,98

,199

2,04

6046

,056

056,

0580

62,0

5505

5,05

0058

,050

050;

11

515,

98,1

992,

0540

54,0

5607

1,05

0066

,055

055,

0500

54,0

4605

8;

1152

5,98

,199

2,05

0054

,053

053,

0500

58,0

5506

0,04

2050

,046

058;

11

565,

98,1

992,

0540

54,0

5005

9,04

6050

,050

060,

0500

54,0

0000

0;

1159

5,98

,199

2,03

8042

,050

056,

0500

66,0

5506

0,04

2042

,000

000;

11

596,

98,1

992,

0500

50,0

5305

3,05

0058

,055

060,

0500

50,0

0000

0;

1159

7,98

,199

2,04

6054

,050

053,

0500

58,0

5505

5,05

4058

,000

000;

11

598,

98,1

992,

0500

54,0

5607

1,05

8062

,055

055,

0380

54,0

0000

0;

1159

9,98

,199

2,05

0054

,053

071,

0500

58,0

5506

0,04

2042

,000

000;

11

600,

98,1

992,

0500

54,0

5307

1,05

0058

,055

055,

0420

42,0

0000

0;

1161

3,98

,199

2,05

4054

,050

071,

0580

66,0

5505

5,05

0054

,000

000;

11

615,

98,1

992,

0540

54,0

5007

1,05

0062

,060

060,

0500

50,0

0000

0;

1162

3,98

,199

2,05

0050

,062

071,

0460

70,0

5505

5,04

6050

,000

000;

11

585,

99,1

992,

0540

54,0

5005

6,05

0050

,050

060,

0460

50,0

0000

0;

1158

6,99

,199

2,05

4054

,050

056,

0460

50,0

5006

0,04

6050

,050

050;

11

587,

99,1

992,

0460

54,0

7107

4,05

0054

,055

055,

0380

54,0

5005

0;

1159

1,99

,199

2,05

4054

,050

056,

0460

66,0

5505

5,05

0054

,050

050;

11

593,

99,1

992,

0380

38,0

7108

0,04

6058

,055

055,

0500

58,0

0000

0;

1159

4,99

,199

2,05

4054

,056

071,

0500

50,0

5505

5,04

6050

,050

050;

11

614,

99,1

992,

0540

54,0

5605

9,04

6050

,050

055,

0500

50,0

5005

0;

1161

6,99

,199

2,03

8038

,050

059,

0500

66,0

5505

5,05

0054

,050

050;

11

617,

99,1

992,

0540

54,0

5907

1,04

6050

,050

060,

0460

50,0

5005

0;

1161

8,99

,199

2,03

8038

,050

059,

0500

66,0

5505

5,05

0054

,050

050;

11

632,

99,1

992,

0540

54,0

5005

9,04

6066

,055

055,

0500

54,0

5005

0;

1163

4,99

,199

2,05

4054

,050

071,

0500

66,0

5506

0,04

6054

,050

050;

11

568,

102,

1992

,050

050,

0500

50,0

5405

8,05

5065

,054

054,

0000

00;

1125

7,11

7,19

92,0

5405

4,05

0050

,050

062,

0550

60,0

5005

0,05

0050

; 11

258,

117,

1992

,050

050,

0500

53,0

5005

0,05

0055

,038

050,

0500

56;

1125

9,11

7,19

92,0

4205

4,05

3053

,050

054,

0550

55,0

4604

6,05

2052

; 11

260,

117,

1992

,050

054,

0530

53,0

5405

8,05

0060

,038

046,

0480

52;

1126

1,11

7,19

92,0

5005

4,05

3053

,050

058,

0500

55,0

3805

4,04

8052

; 11

262,

117,

1992

,050

054,

0530

53,0

5406

2,05

0055

,038

050,

0480

50;

1152

4,11

7,19

92,0

5005

0,05

3053

,058

062,

0500

55,0

3804

2,04

8052

; 11

526,

117,

1992

,038

038,

0000

00,0

0000

0,05

5055

,000

000,

0000

00;

1152

7,11

7,19

92,0

5005

4,05

3053

,054

054,

0550

60,0

3804

2,00

0000

; 11

567,

117,

1992

,050

050,

0000

00,0

5005

0,05

0055

,038

042,

0500

50;

1163

7,11

7,19

92,0

5005

4,05

3053

,054

062,

0550

60,0

4204

2,05

2052

; 11

657,

117,

1992

,050

054,

0530

53,0

5005

0,05

5055

,046

050,

0500

52;

1165

9,11

7,19

92,0

5005

4,04

4050

,050

058,

0500

55,0

4605

0,05

0052

; 11

269,

134,

1992

,050

050,

0500

50,0

5005

0,05

5060

,050

050,

0000

00;

1156

2,13

4,19

92,0

5005

4,05

3053

,046

050,

0550

60,0

4604

6,05

0050

; 11

563,

134,

1992

,050

050,

0500

50,0

5005

0,05

5060

,042

046,

0000

00;

1156

4,13

4,19

92,0

5005

0,05

0050

,050

050,

0550

60,0

4204

6,04

8048

; 11

574,

134,

1992

,046

050,

0500

56,0

5005

0,05

5065

,046

046,

0500

50;

1157

5,13

4,19

92,0

5005

0,05

0050

,054

054,

0550

60,0

4605

0,05

2052

; 11

576,

134,

1992

,050

050,

0500

50,0

6206

2,05

5055

,000

000,

0500

50;

1157

7,13

4,19

92,0

5005

0,05

0050

,000

000,

0550

60,0

0000

0,05

0050

; 11

578,

134,

1992

,050

050,

0500

50,0

0000

0,05

5055

,042

054,

0500

50;

1157

9,13

4,19

92,0

5005

0,05

0050

,050

050,

0550

60,0

4605

0,05

0050

; 11

580,

134,

1992

,038

050,

0500

53,0

5805

8,05

5055

,058

058,

0500

50;

1126

3,15

0,19

92,0

3803

8,05

3071

,062

062,

0550

70,0

0000

0,05

0050

; 11

489,

150,

1992

,038

038,

0710

77,0

0000

0,05

5055

,000

000,

0500

50;

1158

1,15

0,19

92,0

3803

8,05

3053

,062

062,

0650

70,0

5805

8,05

0056

; 11

582,

150,

1992

,050

050,

0470

47,0

0000

0,05

5070

,058

062,

0500

56;

1158

3,15

0,19

92,0

0000

0,00

0000

,000

000,

0650

70,0

5805

8,04

6056

; 11

584,

150,

1992

,038

038,

0530

53,0

5405

4,06

5070

,058

070,

0460

52;

1160

4,15

0,19

92,0

5005

0,06

8071

,054

054,

0550

70,0

5805

8,04

6058

; 11

606,

150,

1992

,038

038,

0710

71,0

5405

4,05

5070

,058

058,

0500

56;

1164

9,15

0,19

92,0

3805

4,07

1071

,050

062,

0550

70,0

5805

8,05

0056

; 11

267,

152,

1992

,042

042,

0530

53,0

5805

8,05

5055

,000

000,

0500

50;

1127

7,15

2,19

92,0

5005

4,05

3053

,046

050,

0550

55,0

5405

4,05

0050

; 11

279,

152,

1992

,042

054,

0530

53,0

5005

8,05

0050

,046

050,

0500

50;

1128

0,15

2,19

92,0

5405

4,05

3056

,054

062,

0600

60,0

4605

0,00

0000

; 11

281,

152,

1992

,050

054,

0530

53,0

5005

0,05

0055

,046

050,

0500

50;

1128

2,15

2,19

92,0

5405

4,05

3056

,054

062,

0600

60,0

5005

0,05

0050

; 11

283,

152,

1992

,050

050,

0530

53,0

0000

0,05

0055

,046

050,

0500

50;

1128

4,15

2,19

92,0

5405

4,00

0000

,000

000,

0500

55,0

0000

0,05

0050

; 11

285,

152,

1992

,050

054,

0530

53,0

0000

0,05

0060

,046

054,

0500

50;

1151

4,15

2,19

92,0

5005

0,05

3053

,050

050,

0500

60,0

5005

4,05

0050

; 11

516,

152,

1992

,050

050,

0530

53,0

5005

8,05

0055

,050

054,

0500

50;

1151

7,15

2,19

92,0

5405

4,05

3053

,046

058,

0500

55,0

5005

4,05

0050

; 11

531,

152,

1992

,054

054,

0530

53,0

4605

8,06

5065

,000

000,

0000

00;

1158

8,15

2,19

92,0

5005

0,05

3053

,050

050,

0550

55,0

4605

4,05

0050

; 11

590,

152,

1992

,050

054,

0530

53,0

5005

0,05

5055

,000

000,

0500

50;

1161

9,15

2,19

92,0

4604

6,05

3053

,054

058,

0550

55,0

4605

0,05

0050

; 11

620,

152,

1992

,050

050,

0530

53,0

5005

0,05

0055

,054

054,

0500

50;

1162

1,15

2,19

92,0

4604

6,05

0053

,054

062,

0550

60,0

4206

2,04

8050

; 11

624,

152,

1992

,050

050,

0500

53,0

5006

2,05

5055

,042

046,

0480

50;

1168

6,15

2,19

92,0

5005

0,05

3053

,050

058,

0550

60,0

5005

0,05

0050

; 11

687,

152,

1992

,050

050,

0530

53,0

4605

0,06

5070

,046

054,

0500

50;

1168

9,15

2,19

92,0

5005

4,05

3056

,046

050,

0650

65,0

5005

0,05

2052

; 11

696,

152,

1992

,050

050,

0530

53,0

5005

0,06

5070

,046

050,

0500

50;

1170

2,15

2,19

92,0

5005

0,05

3053

,050

050,

0650

65,0

5005

4,05

0050

; 11

230,

157,

1992

,038

038,

0710

77,0

6206

6,07

5075

,066

070,

0460

46;

1123

1,15

7,19

92,0

3803

8,07

1071

,058

066,

0650

65,0

5405

4,05

8058

; 11

232,

157,

1992

,038

038,

0680

71,0

5807

8,06

5070

,066

066,

0580

58;

1123

3,15

7,19

92,0

3803

8,07

1071

,054

066,

0600

60,0

6607

4,00

0000

; 11

234,

157,

1992

,038

038,

0710

71,0

6607

8,06

5065

,066

070,

0000

00;

1123

6,15

7,19

92,0

3803

8,07

1071

,066

066,

0650

70,0

6607

0,00

0000

; 11

237,

157,

1992

,038

038,

0710

77,0

6207

8,06

5075

,066

070,

0000

00;

1123

8,15

7,19

92,0

3803

8,07

1077

,054

070,

0600

65,0

5406

6,00

0000

; 11

239,

157,

1992

,038

038,

0770

77,0

7007

8,06

5075

,066

070,

0000

00;

16

303,

3,19

98,0

3803

8,07

4074

,066

074,

0650

65,0

6606

6,04

6058

; 16

380,

3,19

98,0

3803

8,07

1080

,066

074,

0650

65,0

5005

8,00

0000

;

1661

7,3,

1998

,038

038,

0680

80,0

6206

2,05

0065

,058

062,

0460

56;

16

618,

3,19

98,0

3803

8,05

9083

,050

070,

0650

65,0

6206

2,04

6046

; 16

191,

6,19

98,0

3803

8,05

6056

,074

074,

0500

65,0

6206

6,04

6058

; 16

192,

6,19

98,0

3803

8,07

1074

,070

074,

0650

70,0

7007

4,04

6046

;

1620

2,6,

1998

,038

038,

0590

71,0

6207

4,06

5070

,050

066,

0460

46;

16

228,

6,19

98,0

3805

0,07

1074

,058

074,

0600

65,0

5007

4,05

2056

; 16

271,

6,19

98,0

3803

8,04

4044

,070

074,

0650

65,0

6607

0,04

6050

; 16

307,

6,19

98,0

3805

0,07

4077

,058

074,

0650

65,0

5807

0,05

6056

;

1640

2,6,

1998

,038

038,

0770

83,0

5406

6,06

5065

,058

070,

0000

00;

16

619,

6,19

98,0

3803

8,07

4077

,058

062,

0650

65,0

7007

4,05

6056

;

1662

0,6,

1998

,038

038,

0710

83,0

5806

6,05

5065

,066

070,

0460

58;

16

422,

10,1

998,

0500

50,0

5305

3,05

8058

,055

055,

0380

38,0

5005

2;

1642

6,10

,199

8,03

8054

,053

053,

0540

62,0

5505

5,03

8038

,050

050;

1644

4,10

,199

8,05

0050

,053

053,

0580

66,0

5505

5,03

8038

,050

050;

1644

5,10

,199

8,05

0054

,053

053,

0580

66,0

5505

5,03

8054

,050

050;

1647

6,10

,199

8,05

0050

,053

053,

0580

66,0

5505

5,03

8038

,050

052;

Page 23: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

SELECTION IN THE HOUSE MOUSE HYBRID ZONE 615

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

1648

4,10

,199

8,05

0050

,053

053,

0580

66,0

5505

5,04

2054

,050

052;

16

491,

10,1

998,

0500

50,0

5305

3,05

8066

,055

055,

0380

54,0

5005

0;

1649

2,10

,199

8,05

0054

,053

053,

0580

66,0

5505

5,03

8038

,050

052;

16

493,

10,1

998,

0380

54,0

5305

3,05

4066

,050

055,

0380

54,0

5205

2;

1649

4,10

,199

8,04

2050

,053

053,

0580

58,0

5005

5,03

8038

,050

052;

16

495,

10,1

998,

0500

50,0

4405

3,05

8066

,055

055,

0500

54,0

5005

2;

1649

6,10

,199

8,03

8050

,053

053,

0540

58,0

5006

0,03

8050

,050

052;

16

188,

12,1

998,

0500

50,0

5005

0,06

6066

,050

050,

0500

50,0

5005

2;

1618

9,12

,199

8,05

0050

,050

050,

0540

66,0

5505

5,05

8058

,000

000;

16

366,

15,1

998,

0380

38,0

7407

4,06

6078

,065

065,

0540

54,0

5005

0;

1639

8,15

,199

8,03

8038

,050

050,

0700

78,0

6506

5,05

4054

,000

000;

16

615,

15,1

998,

0380

38,0

5007

4,06

6066

,065

065,

0540

54,0

5005

8;

1661

6,15

,199

8,03

8038

,050

050,

0700

78,0

6506

5,05

8074

,050

050;

16

267,

19,1

998,

0380

38,0

4404

4,06

2062

,065

065,

0740

74,0

4605

6;

1626

8,19

,199

8,03

8038

,050

071,

0620

62,0

6507

0,07

0070

,046

046;

16

273,

19,1

998,

0460

46,0

4404

4,00

0000

,050

050,

0000

00,0

5005

0;

1627

5,19

,199

8,00

0000

,071

071,

0660

66,0

6507

0,07

0074

,046

046;

16

302,

19,1

998,

0380

38,0

4407

1,05

4062

,065

065,

0580

62,0

4604

6;

1624

0,22

,199

8,04

2046

,071

071,

0540

58,0

6006

5,06

6074

,000

000;

16

237,

25,1

998,

0380

38,0

7107

1,06

2062

,050

065,

0580

74,0

4605

0;

1639

2,26

,199

8,03

8050

,056

080,

0580

66,0

5005

0,00

0000

,000

000;

16

439,

27,1

998,

0380

38,0

6807

1,06

6066

,060

060,

0620

62,0

4605

8;

1646

9,27

,199

8,03

8038

,056

077,

0660

70,0

6506

5,06

2070

,046

046;

16

624,

32,1

998,

0380

50,0

6806

8,07

4078

,050

065,

0500

58,0

4604

6;

1650

3,33

,199

8,04

2042

,059

065,

0580

58,0

5005

5,05

0058

,050

050;

16

504,

33,1

998,

0460

50,0

5305

3,04

6050

,050

055,

0500

54,0

5005

0;

1630

6,38

,199

8,03

8038

,071

071,

0580

66,0

5507

5,05

4066

,046

058;

16

311,

38,1

998,

0420

50,0

5008

0,05

0074

,060

065,

0500

50,0

4605

6;

1631

6,38

,199

8,03

8038

,071

071,

0580

66,0

6507

5,05

4054

,050

050;

16

324,

38,1

998,

0380

38,0

7107

1,05

8074

,065

075,

0660

66,0

4605

2;

1638

1,38

,199

8,03

8038

,071

077,

0540

62,0

5506

5,00

0000

,000

000;

16

382,

38,1

998,

0380

38,0

6807

1,06

2062

,065

075,

0540

54,0

0000

0;

1644

9,38

,199

8,03

8038

,071

083,

0620

74,0

6506

5,06

2066

,050

056;

16

450,

38,1

998,

0380

38,0

7107

1,06

2062

,055

075,

0700

70,0

4605

0;

1645

3,38

,199

8,03

8038

,071

071,

0620

62,0

5506

5,05

4070

,050

056;

16

454,

38,1

998,

0380

38,0

7107

1,05

4058

,065

075,

0540

70,0

5005

0;

1645

5,38

,199

8,03

8038

,071

071,

0580

62,0

5506

5,05

4070

,050

050;

16

594,

38,1

998,

0380

38,0

7108

3,05

8062

,065

075,

0620

66,0

4604

6;

1659

5,38

,199

8,03

8050

,083

083,

0620

62,0

5506

0,05

8066

,046

058;

16

596,

38,1

998,

0380

38,0

7107

1,06

2062

,055

075,

0540

70,0

5005

8;

1659

7,38

,199

8,03

8050

,071

071,

0500

70,0

6006

5,07

0070

,046

046;

16

598,

38,1

998,

0380

38,0

7107

1,05

8058

,075

075,

0540

62,0

5805

8;

1659

9,38

,199

8,03

8050

,068

080,

0540

62,0

5506

0,06

2066

,050

056;

16

600,

38,1

998,

0380

50,0

7107

4,05

0058

,055

065,

0540

54,0

4605

6;

1660

1,38

,199

8,03

8054

,071

077,

0500

62,0

5507

5,05

4070

,056

056;

16

602,

38,1

998,

0380

38,0

7107

1,06

2062

,055

075,

0700

70,0

5605

0;

1660

3,38

,199

8,03

8038

,071

071,

0580

62,0

5507

5,05

4054

,058

058;

16

604,

38,1

998,

0380

38,0

7108

3,06

2066

,065

075,

0540

62,0

4604

6;

1660

5,38

,199

8,03

8038

,068

077,

0580

66,0

6507

5,05

4070

,050

056;

16

606,

38,1

998,

0380

38,0

7107

1,05

8062

,055

065,

0540

62,0

4605

2;

1660

7,38

,199

8,03

8038

,071

083,

0660

66,0

5506

5,05

4062

,052

058;

16

608,

38,1

998,

0380

38,0

7107

1,05

8062

,065

075,

0540

70,0

5005

6;

1657

4,43

,199

8,04

6050

,068

071,

0580

62,0

6506

5,06

6066

,058

058;

16

575,

43,1

998,

0380

38,0

6807

1,07

0070

,065

070,

0620

62,0

5805

8;

1657

6,43

,199

8,03

8038

,071

077,

0700

70,0

6507

0,05

0050

,058

058;

16

577,

43,1

998,

0380

38,0

6807

1,06

6070

,065

070,

0500

50,0

5805

8;

1657

8,43

,199

8,03

8038

,071

077,

0580

62,0

6506

5,04

6050

,056

056;

16

579,

43,1

998,

0380

38,0

7107

1,05

8062

,050

065,

0500

50,0

4605

6;

1658

0,43

,199

8,03

8038

,068

071,

0700

70,0

6507

0,06

2066

,058

058;

16

581,

43,1

998,

0380

38,0

7107

1,06

2070

,065

065,

0620

66,0

5805

8;

1658

2,43

,199

8,03

8038

,071

077,

0580

70,0

6507

0,04

6050

,056

058;

16

587,

43,1

998,

0380

38,0

5305

3,06

6066

,070

070,

0620

62,0

5805

8;

1658

8,43

,199

8,03

8038

,068

071,

0000

00,0

6506

5,06

2062

,058

058;

16

589,

43,1

998,

0380

38,0

7107

7,06

2066

,065

070,

0460

50,0

5605

6;

1659

0,43

,199

8,03

8038

,071

077,

0580

58,0

7007

0,04

6050

,056

056;

16

591,

43,1

998,

0380

38,0

6807

1,00

0000

,070

070,

0620

62,0

5805

8;

1659

2,43

,199

8,03

8038

,071

071,

0000

00,0

6507

0,04

6050

,058

058;

16

593,

43,1

998,

0380

38,0

7107

1,00

0000

,065

065,

0460

50,0

5805

8;

1625

4,44

,199

8,04

2054

,050

050,

0460

62,0

5505

5,05

4054

,046

046;

16

255,

44,1

998,

0380

38,0

5005

0,06

6066

,060

060,

0540

54,0

4604

8;

1625

6,44

,199

8,03

8050

,053

068,

0000

00,0

5506

0,00

0000

,046

050;

16

257,

44,1

998,

0380

46,0

5006

8,05

4066

,055

060,

0420

50,0

4605

0;

1630

4,44

,199

8,03

8050

,050

068,

0620

66,0

5506

0,05

0074

,046

050;

16

315,

44,1

998,

0420

46,0

5005

0,05

4054

,055

055,

0420

62,0

4805

2;

1638

6,46

,199

8,03

8038

,050

053,

0620

66,0

6506

5,06

2066

,000

000;

16

253,

47,1

998,

0460

46,0

7107

1,04

6046

,050

065,

0500

74,0

4605

0;

1625

8,47

,199

8,05

0050

,065

065,

0500

50,0

6506

5,07

4074

,046

046;

16

260,

47,1

998,

0380

38,0

5006

5,05

8058

,065

065,

0500

74,0

4605

0;

1626

1,47

,199

8,03

8038

,071

074,

0620

62,0

6506

5,03

8038

,050

050;

16

262,

47,1

998,

0500

50,0

5307

4,06

2062

,060

065,

0380

38,0

5005

0;

1626

9,47

,199

8,03

8050

,071

074,

0620

62,0

6506

5,03

8054

,050

050;

16

272,

47,1

998,

0380

50,0

7107

1,06

2066

,060

065,

0380

54,0

5005

0;

1629

7,47

,199

8,03

8050

,071

074,

0580

62,0

6006

5,06

2074

,046

058;

16

298,

47,1

998,

0380

50,0

7107

1,06

2062

,065

065,

0380

74,0

4805

0;

1629

9,47

,199

8,03

8038

,071

071,

0620

62,0

5005

0,04

6050

,050

058;

16

403,

47,1

998,

0380

38,0

5605

6,04

6058

,060

065,

0740

74,0

5605

6;

1623

0,48

,199

8,03

8042

,071

071,

0660

66,0

5506

5,05

4070

,046

046;

16

231,

48,1

998,

0380

42,0

7107

1,06

6066

,055

065,

0580

70,0

5005

6;

1623

2,48

,199

8,03

8038

,071

071,

0580

74,0

6506

5,05

8070

,046

056;

16

233,

48,1

998,

0380

42,0

5607

1,06

6066

,065

065,

0580

70,0

4605

6;

1623

9,48

,199

8,03

8054

,053

074,

0460

74,0

5506

5,05

0058

,046

046;

16

241,

48,1

998,

0380

42,0

5607

1,06

6074

,065

065,

0580

58,0

4606

0;

1624

2,48

,199

8,03

8038

,050

074,

0660

74,0

5506

5,05

4070

,050

060;

16

243,

48,1

998,

0380

38,0

5607

1,05

8074

,065

065,

0540

70,0

4605

0;

1624

5,48

,199

8,05

0050

,050

071,

0580

58,0

5505

5,07

0070

,050

060;

16

246,

48,1

998,

0380

50,0

5007

1,05

8074

,065

065,

0540

70,0

5005

6;

1624

7,48

,199

8,03

8050

,050

050,

0580

74,0

6506

5,05

4054

,046

056;

16

248,

48,1

998,

0380

50,0

7107

1,05

8074

,065

065,

0540

54,0

5005

6;

1624

9,48

,199

8,03

8050

,071

071,

0580

74,0

6506

5,05

4070

,050

056;

16

250,

48,1

998,

0380

50,0

5005

0,05

8074

,065

065,

0460

54,0

4605

6;

1635

0,48

,199

8,05

0050

,050

050,

0580

58,0

5005

0,05

0050

,046

056;

16

352,

48,1

998,

0380

38,0

5005

0,07

4074

,055

065,

0580

58,0

4606

0;

1635

3,48

,199

8,03

8038

,053

071,

0620

62,0

6006

5,03

8054

,046

060;

16

354,

48,1

998,

0380

42,0

5607

1,06

6074

,065

065,

0540

70,0

5005

6;

1635

5,48

,199

8,03

8038

,074

074,

0620

62,0

6506

5,05

4054

,050

050;

16

349,

52,1

998,

0420

50,0

5305

6,05

4054

,050

050,

0460

50,0

4604

6;

1654

9,52

,199

8,03

8050

,053

056,

0540

62,0

7007

0,04

6046

,048

050;

16

551,

52,1

998,

0380

50,0

5005

3,05

4058

,050

055,

0420

46,0

5005

0;

1655

2,52

,199

8,05

0050

,050

056,

0460

54,0

5006

0,04

6050

,050

050;

16

553,

52,1

998,

0380

50,0

4407

1,04

6062

,060

070,

0460

50,0

4805

0;

1655

4,52

,199

8,03

8050

,053

056,

0460

62,0

7007

0,04

6046

,048

050;

16

555,

52,1

998,

0500

50,0

5305

6,04

6046

,050

070,

0460

50,0

4605

2;

1655

6,52

,199

8,04

6050

,050

050,

0540

62,0

7007

0,04

2046

,046

052;

16

557,

52,1

998,

0380

50,0

5305

6,05

4062

,070

070,

0460

46,0

4805

0;

1658

3,52

,199

8,03

8050

,053

056,

0620

62,0

7007

0,04

6046

,050

050;

16

585,

52,1

998,

0500

50,0

4404

4,05

4058

,065

065,

0500

50,0

4805

0;

1658

6,52

,199

8,05

0050

,053

053,

0420

46,0

7007

0,04

6050

,048

050;

16

635,

52,1

998,

0500

50,0

4405

3,04

6054

,070

070,

0460

46,0

0000

0;

1619

3,53

,199

8,03

8038

,068

074,

0660

66,0

6006

0,05

8070

,058

058;

16

194,

53,1

998,

0000

00,0

0000

0,00

0000

,065

065,

0000

00,0

5805

8;

1619

5,53

,199

8,03

8038

,068

068,

0500

66,0

6506

5,05

8070

,046

056;

16

196,

53,1

998,

0380

38,0

6806

8,05

4066

,060

060,

0700

70,0

5605

6;

1619

7,53

,199

8,03

8038

,000

000,

0540

58,0

6506

5,05

8070

,056

058;

16

198,

53,1

998,

0380

38,0

6806

8,05

0058

,065

065,

0580

70,0

5605

6;

1619

9,53

,199

8,03

8038

,068

074,

0580

62,0

6006

5,05

8058

,056

058;

16

200,

53,1

998,

0380

38,0

6807

4,05

8062

,060

065,

0580

62,0

5605

8;

1620

1,53

,199

8,03

8038

,068

068,

0580

66,0

6006

5,05

8070

,056

058;

16

203,

53,1

998,

0380

38,0

7407

4,05

4062

,060

060,

0580

70,0

4605

6;

1620

4,53

,199

8,03

8038

,068

068,

0500

66,0

6006

5,05

8058

,056

056;

16

205,

53,1

998,

0380

38,0

6806

8,05

4066

,065

065,

0700

70,0

5605

8;

1620

6,53

,199

8,03

8038

,068

068,

0620

66,0

6006

0,05

8070

,056

058;

16

208,

53,1

998,

0380

38,0

6806

8,05

4066

,060

065,

0580

70,0

5605

6;

1620

9,53

,199

8,03

8038

,068

068,

0540

66,0

6506

5,05

8062

,056

056;

16

210,

53,1

998,

0380

38,0

7407

4,06

2066

,060

060,

0580

62,0

5605

8;

1621

1,53

,199

8,03

8038

,068

074,

0620

66,0

6006

0,05

8070

,056

058;

16

212,

53,1

998,

0380

38,0

6806

8,05

8066

,060

065,

0580

70,0

5605

8;

1621

3,53

,199

8,03

8038

,068

068,

0540

62,0

6006

5,05

8070

,056

058;

16

214,

53,1

998,

0000

00,0

6806

8,00

0000

,065

065,

0700

70,0

0000

0;

1621

5,53

,199

8,03

8038

,068

074,

0000

00,0

6006

5,07

0070

,046

056;

16

216,

53,1

998,

0380

38,0

6806

8,05

0054

,065

065,

0580

70,0

5605

6;

1621

7,53

,199

8,03

8038

,068

068,

0540

58,0

6006

5,07

0070

,046

058;

16

218,

53,1

998,

0380

38,0

6806

8,05

4058

,060

065,

0620

70,0

4605

8;

1621

9,53

,199

8,03

8038

,068

074,

0580

62,0

6506

5,05

8070

,046

056;

16

220,

53,1

998,

0380

38,0

6806

8,05

4062

,060

060,

0580

62,0

5605

8;

1622

1,53

,199

8,03

8038

,068

068,

0540

62,0

6506

5,05

8058

,046

056;

16

222,

53,1

998,

0380

38,0

6806

8,05

0054

,065

065,

0580

70,0

0000

0;

1622

3,53

,199

8,03

8038

,068

068,

0500

62,0

6006

5,05

8062

,056

056;

16

224,

53,1

998,

0380

38,0

6807

4,06

2066

,060

060,

0620

62,0

5605

8;

1622

6,53

,199

8,03

8038

,056

071,

0540

58,0

6506

5,05

8070

,056

058;

16

227,

53,1

998,

0380

38,0

6806

8,05

4066

,065

065,

0580

58,0

5605

6;

1622

9,53

,199

8,03

8038

,068

068,

0540

62,0

6006

5,07

0070

,058

058;

16

266,

53,1

998,

0380

50,0

6806

8,05

8066

,065

065,

0580

70,0

4605

8;

1627

0,53

,199

8,03

8038

,068

068,

0540

66,0

6006

5,05

8070

,046

058;

16

284,

53,1

998,

0380

38,0

6806

8,05

8058

,060

060,

0500

58,0

5605

8;

1628

5,53

,199

8,03

8038

,068

068,

0500

66,0

6506

5,05

8062

,056

056;

16

286,

53,1

998,

0380

50,0

5005

0,05

4058

,060

065,

0580

62,0

5605

8;

1628

7,53

,199

8,00

0000

,068

068,

0620

62,0

5005

0,05

0050

,000

000;

16

288,

53,1

998,

0380

38,0

6806

8,05

4058

,065

065,

0580

70,0

4604

6;

1628

9,53

,199

8,03

8038

,068

068,

0580

62,0

6006

0,05

8070

,056

058;

16

290,

53,1

998,

0380

46,0

6806

8,04

6054

,065

065,

0700

70,0

5605

8;

1629

1,53

,199

8,03

8038

,068

068,

0540

54,0

6506

5,05

8062

,046

056;

16

292,

53,1

998,

0380

38,0

6807

4,05

0058

,060

065,

0580

70,0

5805

8;

1630

8,53

,199

8,03

8038

,068

068,

0580

66,0

6006

5,05

8062

,056

056;

16

310,

53,1

998,

0380

38,0

6807

4,05

4066

,060

060,

0620

70,0

4605

8;

1631

2,53

,199

8,03

8038

,068

074,

0540

62,0

6006

5,05

8058

,046

058;

16

313,

53,1

998,

0380

38,0

6806

8,05

4066

,060

060,

0700

70,0

5805

8;

1631

4,53

,199

8,03

8038

,068

068,

0500

54,0

6006

5,05

8062

,056

056;

16

318,

53,1

998,

0380

38,0

6806

8,05

4062

,065

065,

0580

70,0

5605

8;

1632

8,53

,199

8,03

8038

,068

068,

0540

62,0

6506

5,06

2070

,056

058;

16

329,

53,1

998,

0380

38,0

6807

4,05

4062

,065

065,

0580

70,0

5605

8;

1633

0,53

,199

8,03

8038

,068

068,

0500

58,0

6506

5,05

8070

,046

056;

16

332,

53,1

998,

0380

38,0

6806

8,05

4062

,065

065,

0580

58,0

5605

8;

1634

1,53

,199

8,03

8038

,068

068,

0620

66,0

6006

5,05

8070

,058

058;

16

351,

59,1

998,

0500

50,0

7107

1,05

8058

,060

060,

0000

00,0

4605

0;

1636

3,59

,199

8,05

0054

,053

071,

0620

70,0

6006

5,06

6074

,046

058;

16

404,

60,1

998,

0380

54,0

5307

1,05

8062

,060

060,

0000

00,0

0000

0;

1648

7,61

,199

8,03

8054

,071

071,

0580

66,0

6006

5,05

4054

,050

050;

16

512,

61,1

998,

0380

50,0

4407

1,06

6066

,065

065,

0500

50,0

4605

0;

1630

0,62

,199

8,03

8038

,062

062,

0580

74,0

6506

5,05

0066

,046

056;

16

301,

62,1

998,

0380

38,0

5907

7,06

6066

,065

070,

0420

50,0

5405

4;

1647

0,62

,199

8,03

8050

,068

074,

0700

70,0

5506

0,05

0050

,046

052;

16

471,

62,1

998,

0000

00,0

4408

6,07

0078

,065

065,

0500

50,0

5605

8;

1642

4,64

,199

8,03

8050

,053

071,

0460

62,0

5505

5,05

8058

,052

056;

16

625,

64,1

998,

0500

50,0

7107

1,06

6066

,065

065,

0660

66,0

0000

0;

1644

8,65

,199

8,03

8050

,071

071,

0580

70,0

5506

5,05

4058

,046

046;

16

459,

65,1

998,

0380

38,0

7107

1,05

0050

,055

070,

0580

58,0

4604

6;

1646

3,65

,199

8,03

8038

,053

071,

0580

74,0

6506

5,05

8062

,056

058;

16

464,

65,1

998,

0380

38,0

6807

1,00

0000

,050

065,

0000

00,0

5005

0;

1646

5,65

,199

8,05

0054

,053

053,

0500

58,0

5005

5,05

0058

,050

050;

16

466,

65,1

998,

0380

38,0

7107

7,06

6070

,065

070,

0500

66,0

4604

6;

1647

8,65

,199

8,03

8050

,071

071,

0700

70,0

5005

5,05

4066

,046

046;

16

485,

65,1

998,

0380

38,0

6806

8,07

4074

,055

055,

0580

62,0

5205

8;

1648

6,65

,199

8,03

8038

,071

071,

0500

50,0

5506

5,06

2062

,052

058;

16

488,

65,1

998,

0500

50,0

7107

1,07

0070

,055

065,

0620

66,0

4605

8;

1662

6,65

,199

8,03

8050

,068

068,

0000

00,0

5005

0,05

8058

,000

000;

16

627,

65,1

998,

0380

38,0

6807

4,07

0070

,050

065,

0580

66,0

0000

0;

1662

8,65

,199

8,03

8038

,071

071,

0500

62,0

6506

5,06

6066

,000

000;

16

629,

65,1

998,

0420

50,0

6807

1,07

0070

,055

065,

0580

58,0

0000

0;

1663

0,65

,199

8,03

8050

,071

071,

0620

70,0

6506

5,05

8058

,000

000;

16

631,

65,1

998,

0380

50,0

7107

4,06

2070

,055

065,

0540

58,0

0000

0;

1658

4,70

,199

8,05

0054

,059

071,

0580

58,0

5505

5,04

6046

,048

052;

16

339,

71,1

998,

0500

50,0

4404

4,06

2066

,045

045,

0380

46,0

0000

0;

1634

0,71

,199

8,03

8050

,044

053,

0580

62,0

5506

0,04

6046

,050

056;

16

342,

71,1

998,

0380

50,0

4405

3,05

8062

,055

065,

0380

46,0

5605

6;

1636

0,71

,199

8,03

8050

,044

053,

0620

62,0

5506

0,04

6046

,056

056;

16

550,

71,1

998,

0380

50,0

5307

1,04

6062

,050

070,

0460

46,0

5005

0;

1649

7,74

,199

8,03

8050

,050

071,

0580

74,0

5505

5,05

0074

,046

046;

16

499,

74,1

998,

0380

38,0

7107

1,05

8070

,060

065,

0620

74,0

4605

2;

1650

0,74

,199

8,04

2050

,053

071,

0460

50,0

6506

5,04

6070

,050

050;

16

225,

76,1

998,

0380

38,0

7108

0,05

8066

,065

065,

0500

50,0

4605

0;

1623

5,77

,199

8,03

8046

,056

071,

0460

66,0

6506

5,04

6074

,000

000;

16

263,

77,1

998,

0380

50,0

5607

1,06

2062

,065

065,

0420

74,0

4604

6;

1634

5,77

,199

8,03

8038

,056

071,

0620

66,0

6506

5,05

4074

,046

050;

16

346,

77,1

998,

0380

46,0

5607

1,04

6066

,065

065,

0420

62,0

4604

6;

1634

7,77

,199

8,03

8046

,056

071,

0460

66,0

6506

5,04

2062

,046

050;

16

348,

77,1

998,

0380

50,0

0000

0,06

2066

,060

065,

0540

62,0

4604

6;

1638

5,77

,199

8,03

8038

,056

071,

0620

66,0

6506

5,05

4074

,046

050;

16

234,

78,1

998,

0500

50,0

5008

0,05

8058

,055

065,

0500

58,0

0000

0;

1623

6,78

,199

8,03

8050

,050

080,

0580

74,0

6506

5,05

0050

,000

000;

16

238,

78,1

998,

0380

50,0

5008

0,05

8074

,065

065,

0500

70,0

4604

6;

1625

9,78

,199

8,03

8050

,000

000,

0580

58,0

5006

5,05

0074

,000

000;

16

264,

78,1

998,

0380

50,0

8008

0,05

8062

,055

065,

0500

58,0

4604

6;

1627

7,78

,199

8,03

8038

,050

050,

0620

62,0

6506

5,05

0070

,046

046;

16

278,

78,1

998,

0380

50,0

5008

0,05

8070

,055

065,

0500

70,0

4604

6;

1627

9,78

,199

8,03

8050

,050

080,

0580

62,0

5506

5,05

0050

,046

056;

16

280,

78,1

998,

0380

50,0

5008

0,05

8062

,055

065,

0500

70,0

4606

0;

1628

1,78

,199

8,03

8038

,050

080,

0620

74,0

5505

5,05

0070

,056

060;

16

282,

78,1

998,

0380

50,0

5005

0,05

8062

,055

065,

0500

50,0

4606

0;

1628

3,78

,199

8,03

8050

,050

080,

0580

62,0

6506

5,05

0058

,046

060;

16

344,

78,1

998,

0380

50,0

8008

0,05

8062

,065

065,

0500

50,0

4605

6;

1647

5,79

,199

8,03

8038

,074

080,

0620

70,0

6506

5,05

4066

,046

056;

16

477,

79,1

998,

0380

38,0

7408

0,06

2062

,065

065,

0540

66,0

4605

6;

1650

1,79

,199

8,03

8038

,074

080,

0620

70,0

6506

5,05

4066

,046

056;

16

378,

80,1

998,

0380

50,0

7108

0,06

2070

,055

055,

0460

66,0

0000

0;

1640

6,80

,199

8,03

8038

,080

080,

0580

62,0

5005

5,04

6050

,000

000;

16

442,

81,1

998,

0380

54,0

8008

0,05

8074

,065

065,

0740

74,0

5605

6;

1645

7,97

,199

8,04

2042

,050

050,

0500

58,0

5505

5,05

4066

,050

052;

16

480,

100,

1998

,042

050,

0440

44,0

4605

0,05

0050

,046

058,

0500

50;

1648

1,10

0,19

98,0

5005

0,04

4050

,046

046,

0500

50,0

4604

6,05

0050

; 16

482,

100,

1998

,050

050,

0440

44,0

4605

0,05

0050

,046

058,

0500

54;

Page 24: Inferences of selection and migration in the Danish house ...webpages.icav.up.pt/PTDC/BIA-BEC/103440/2008... · between the house mouse subspecies Mus musculus domesticus and M. m

616 N. RAUFASTE ET AL.

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 593–616

1648

3,10

0,19

98,0

5005

0,04

4053

,046

046,

0500

50,0

4604

6,05

0050

; 16

472,

101,

1998

,050

050,

0440

44,0

5005

8,05

0050

,038

046,

0500

50;

1627

4,10

3,19

98,0

3805

0,07

4080

,050

054,

0650

65,0

5406

2,04

6046

; 16

325,

103,

1998

,038

050,

0740

74,0

5005

8,05

5065

,054

058,

0460

56;

1632

6,10

3,19

98,0

3803

8,07

4074

,050

054,

0650

65,0

5806

6,04

6056

; 16

412,

103,

1998

,038

054,

0590

71,0

5406

2,05

5065

,000

000,

0000

00;

1638

3,10

4,19

98,0

5005

0,07

1074

,058

058,

0550

55,0

6206

2,00

0000

; 16

408,

104,

1998

,038

038,

0710

74,0

6607

4,06

5065

,046

050,

0000

00;

1641

8,10

4,19

98,0

3803

8,07

1074

,000

000,

0550

65,0

5005

4,04

6058

; 16

441,

104,

1998

,038

038,

0500

50,0

6207

4,06

5065

,050

054,

0460

46;

1627

6,10

5,19

98,0

4204

2,00

0000

,000

000,

0450

50,0

0000

0,04

6046

; 16

293,

105,

1998

,038

050,

0500

50,0

5806

2,05

5065

,070

070,

0460

56;

1629

4,10

5,19

98,0

3805

0,05

6077

,054

054,

0650

65,0

5405

8,04

6046

; 16

295,

105,

1998

,038

050,

0710

71,0

5806

2,06

5070

,054

070,

0500

52;

1637

6,10

5,19

98,0

3803

8,06

8071

,050

050,

0550

65,0

5005

4,04

6046

; 16

377,

105,

1998

,038

038,

0680

71,0

5806

2,06

5065

,050

058,

0440

58;

1638

4,10

5,19

98,0

3805

0,07

1074

,050

058,

0550

60,0

6206

2,00

0000

; 16

395,

105,

1998

,038

054,

0740

74,0

5005

0,06

5065

,054

054,

0000

00;

1639

6,10

5,19

98,0

5005

4,07

4074

,050

058,

0550

65,0

5406

2,00

0000

; 16

417,

105,

1998

,038

050,

0710

74,0

5806

6,06

0065

,062

070,

0460

50;

1642

0,10

5,19

98,0

3803

8,07

1074

,050

050,

0550

65,0

5406

2,04

6056

; 16

427,

105,

1998

,038

038,

0710

74,0

5005

0,05

5065

,050

066,

0500

56;

1644

0,10

5,19

98,0

3805

0,05

6071

,050

058,

0550

70,0

6207

0,04

6052

; 16

327,

110,

1998

,042

054,

0710

74,0

5005

8,05

5055

,050

054,

0500

50;

1633

6,11

0,19

98,0

5405

4,07

1071

,062

062,

0600

65,0

5005

8,04

8050

; 16

443,

110,

1998

,038

050,

0710

77,0

0000

0,05

0050

,000

000,

0000

00;

1629

6,11

6,19

98,0

3804

2,07

1071

,050

054,

0550

65,0

5805

8,04

6056

; 16

462,

118,

1998

,046

050,

0680

68,0

5807

4,05

0050

,000

000,

0460

56;

1649

8,11

8,19

98,0

3803

8,05

3053

,046

046,

0600

65,0

4205

8,05

0050

; 16

244,

122,

1998

,038

038,

0680

71,0

5005

8,05

0065

,050

066,

0460

58;

1625

1,12

2,19

98,0

3805

4,05

0071

,050

050,

0650

70,0

5405

4,04

6060

; 16

252,

122,

1998

,038

038,

0530

71,0

5005

4,06

5065

,050

062,

0460

58;

1626

5,12

2,19

98,0

3803

8,06

8071

,058

066,

0650

65,0

0000

0,05

6058

; 16

421,

123,

1998

,038

038,

0710

71,0

5805

8,06

5065

,050

050,

0460

46;

1642

8,12

3,19

98,0

3803

8,07

1071

,046

066,

0650

65,0

5005

0,04

6046

; 16

429,

123,

1998

,038

038,

0710

71,0

5005

0,06

5065

,054

062,

0460

72;

1643

0,12

3,19

98,0

3803

8,07

1071

,058

066,

0650

65,0

5005

0,04

6046

; 16

431,

123,

1998

,038

038,

0710

71,0

5805

8,06

5065

,050

050,

0560

56;

1643

2,12

3,19

98,0

3803

8,07

1071

,058

062,

0650

65,0

5405

4,04

6046

; 16

433,

123,

1998

,038

038,

0710

71,0

6606

6,06

5065

,050

070,

0460

58;

1643

4,12

3,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

5005

0,04

6046

; 16

435,

123,

1998

,038

038,

0710

71,0

5405

8,06

5065

,054

066,

0460

46;

1643

6,12

3,19

98,0

3803

8,07

1071

,050

058,

0650

65,0

5405

4,04

6046

; 16

437,

123,

1998

,038

038,

0710

71,0

5006

6,06

5065

,054

070,

0460

46;

1643

8,12

3,19

98,0

3803

8,07

1071

,050

058,

0650

65,0

5405

4,04

6046

; 16

572,

123,

1998

,038

038,

0710

71,0

4605

8,06

5065

,050

050,

0460

46;

1657

3,12

3,19

98,0

3803

8,07

1071

,054

058,

0650

65,0

5406

6,05

6058

; 16

468,

124,

1998

,038

038,

0680

71,0

6207

4,05

5065

,062

066,

0460

58;

1642

3,12

6,19

98,0

3804

2,04

7077

,058

062,

0650

70,0

6607

0,04

6046

; 16

425,

126,

1998

,038

042,

0560

71,0

6206

2,06

5070

,066

070,

0460

46;

1648

9,12

7,19

98,0

3804

2,07

1077

,062

062,

0650

70,0

7007

4,04

6046

; 16

558,

127,

1998

,038

038,

0710

71,0

6206

6,06

5075

,058

070,

0460

50;

1655

9,12

7,19

98,0

3805

0,07

1080

,054

074,

0650

70,0

5005

4,04

6050

; 16

560,

127,

1998

,038

038,

0710

71,0

5806

6,06

5075

,054

070,

0460

50;

1656

1,12

7,19

98,0

3803

8,07

1077

,062

066,

0650

75,0

5407

0,04

6050

; 16

562,

127,

1998

,038

046,

0710

77,0

5806

6,06

5070

,070

070,

0460

50;

1635

9,13

2,19

98,0

3803

8,07

1080

,050

070,

0650

65,0

6206

6,04

6046

; 16

374,

132,

1998

,038

038,

0710

71,0

5007

0,06

5070

,050

062,

0460

46;

1646

7,13

2,19

98,0

3803

8,06

8068

,050

074,

0650

65,0

5806

2,05

2058

; 16

490,

133,

1998

,046

050,

0470

53,0

5805

8,05

0065

,050

070,

0500

50;

1619

0,13

6,19

98,0

5005

0,07

1071

,058

070,

0500

65,0

5807

0,04

6046

; 16

207,

136,

1998

,038

038,

0710

80,0

6206

2,05

5060

,050

054,

0460

56;

1644

6,13

7,19

98,0

5005

0,04

4050

,050

050,

0500

70,0

4204

6,05

0058

; 16

419,

138,

1998

,038

050,

0710

71,0

6607

0,05

5065

,046

054,

0460

46;

1651

1,13

8,19

98,0

3805

0,07

1071

,066

070,

0550

65,0

5406

2,04

6046

; 16

334,

139,

1998

,038

038,

0710

71,0

5806

6,06

5065

,046

046,

0460

46;

1633

5,13

9,19

98,0

3803

8,07

1071

,058

066,

0650

65,0

4607

4,04

6046

; 16

356,

139,

1998

,038

042,

0710

71,0

5805

8,06

5065

,046

074,

0460

56;

1635

7,13

9,19

98,0

3804

2,07

1071

,058

058,

0650

65,0

7407

4,04

6056

; 16

358,

139,

1998

,038

038,

0710

71,0

5805

8,06

5065

,074

074,

0460

56;

1636

1,13

9,19

98,0

4204

2,07

1071

,058

058,

0650

65,0

7407

4,04

6056

; 16

362,

139,

1998

,042

042,

0710

71,0

5805

8,06

5065

,046

058,

0460

56;

1636

7,13

9,19

98,0

3803

8,07

1071

,058

066,

0650

65,0

7407

4,04

6056

; 16

368,

139,

1998

,038

042,

0710

71,0

5805

8,06

5065

,046

046,

0460

56;

1636

9,13

9,19

98,0

4204

2,07

1071

,058

066,

0650

65,0

4604

6,04

6046

; 16

370,

139,

1998

,038

038,

0710

71,0

5806

6,06

5065

,046

074,

0460

46;

1638

7,13

9,19

98,0

3804

2,07

1071

,058

058,

0650

65,0

4604

6,04

6046

; 16

397,

139,

1998

,038

042,

0710

71,0

5805

8,06

5065

,074

074,

0460

46;

1646

1,13

9,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

4607

4,04

6046

; 16

514,

139,

1998

,042

042,

0710

71,0

5805

8,06

5065

,074

074,

0560

58;

1651

5,13

9,19

98,0

3804

2,07

1071

,058

058,

0500

65,0

5005

0,04

6056

; 16

516,

139,

1998

,042

042,

0710

71,0

5805

8,06

5065

,074

074,

0460

56;

1651

7,13

9,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

5807

4,04

6056

; 16

518,

139,

1998

,042

042,

0710

71,0

5805

8,06

5065

,046

074,

0460

56;

1651

9,13

9,19

98,0

4204

2,07

1071

,058

058,

0650

65,0

4607

4,04

6046

; 16

520,

139,

1998

,038

042,

0710

71,0

5806

6,06

5070

,046

058,

0460

46;

1652

1,13

9,19

98,0

3804

2,07

1071

,058

058,

0650

65,0

5005

0,04

6046

; 16

522,

139,

1998

,042

042,

0710

71,0

5805

8,06

5065

,046

046,

0460

56;

1652

3,13

9,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

4607

4,04

6056

; 16

524,

139,

1998

,038

038,

0710

71,0

5805

8,06

5065

,046

046,

0460

56;

1652

5,13

9,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

7407

4,04

6056

; 16

526,

139,

1998

,038

042,

0710

71,0

5805

8,06

5065

,046

046,

0460

56;

1652

7,13

9,19

98,0

3804

2,07

1071

,058

066,

0650

65,0

4607

4,04

6056

; 16

528,

139,

1998

,038

038,

0000

00,0

5805

8,06

5065

,074

074,

0460

46;

1653

0,13

9,19

98,0

3803

8,07

1071

,050

058,

0650

65,0

5405

4,04

6056

; 16

479,

140,

1998

,050

050,

0440

53,0

7407

4,06

5065

,046

046,

0500

50;

1650

2,14

0,19

98,0

5005

0,04

4053

,074

074,

0650

65,0

4604

6,05

0050

; 16

305,

141,

1998

,038

038,

0530

71,0

5405

8,06

5065

,046

054,

0520

52;

1631

7,14

1,19

98,0

3803

8,07

1071

,050

058,

0650

65,0

4605

4,05

6056

; 16

319,

141,

1998

,038

038,

0710

71,0

5005

0,06

5065

,046

054,

0460

58;

1632

0,14

1,19

98,0

3803

8,06

8071

,050

050,

0650

65,0

4605

4,04

6058

; 16

321,

141,

1998

,038

038,

0710

71,0

5805

8,06

5065

,054

054,

0460

56;

1632

2,14

1,19

98,0

3803

8,06

8071

,058

058,

0650

65,0

4605

4,05

6056

; 16

323,

141,

1998

,038

038,

0710

71,0

5005

4,06

5065

,054

054,

0460

52;

1633

7,14

1,19

98,0

3803

8,07

1071

,062

062,

0650

65,0

4605

4,04

6046

; 16

338,

141,

1998

,038

038,

0710

71,0

5805

8,06

5065

,046

054,

0520

56;

1652

9,14

1,19

98,0

3803

8,07

1071

,058

066,

0650

70,0

4607

4,04

6056

; 16

531,

141,

1998

,038

038,

0710

71,0

5005

4,06

5065

,054

054,

0460

52;

1653

2,14

1,19

98,0

3803

8,07

1071

,050

058,

0650

65,0

5405

4,05

6058

; 16

533,

141,

1998

,038

038,

0710

71,0

5405

8,06

5065

,054

054,

0520

56;

1653

4,14

1,19

98,0

3803

8,07

1071

,050

050,

0650

65,0

5405

4,04

6056

; 16

535,

141,

1998

,038

038,

0710

71,0

5805

8,06

5065

,054

054,

0560

56;

1653

6,14

1,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

4605

4,04

6056

; 16

537,

141,

1998

,038

038,

0710

71,0

5005

8,06

5065

,046

054,

0560

58;

1653

8,14

1,19

98,0

3803

8,06

8071

,050

058,

0650

65,0

5405

4,04

6056

; 16

539,

141,

1998

,038

038,

0710

71,0

5005

0,06

5065

,046

054,

0520

52;

1654

0,14

1,19

98,0

3803

8,06

8071

,058

058,

0650

65,0

4605

4,05

6058

; 16

541,

141,

1998

,038

038,

0710

71,0

5805

8,06

5065

,046

054,

0560

58;

1654

2,14

1,19

98,0

3803

8,07

1071

,058

058,

0650

65,0

5405

4,05

6058

; 16

543,

141,

1998

,038

038,

0710

71,0

5005

8,06

5065

,054

054,

0460

58;

1654

4,14

1,19

98,0

3803

8,06

8071

,050

058,

0650

65,0

4605

4,05

2058

; 16

545,

141,

1998

,038

038,

0710

71,0

5006

2,06

5065

,054

054,

0460

56;

1654

6,14

1,19

98,0

3803

8,06

8071

,058

058,

0650

65,0

4605

4,05

6056

; 16

547,

141,

1998

,038

038,

0710

71,0

5005

8,06

5065

,046

054,

0460

46;

1636

4,14

2,19

98,0

3803

8,05

3053

,062

062,

0550

55,0

4605

0,05

0056

; 16

365,

142,

1998

,042

050,

0530

53,0

5005

0,06

0065

,046

070,

0500

50;

1637

1,14

2,19

98,0

3805

0,05

0050

,062

066,

0550

65,0

5807

0,04

6050

; 16

372,

142,

1998

,038

054,

0500

50,0

6206

2,05

5065

,046

050,

0460

56;

1637

3,14

2,19

98,0

3803

8,05

0050

,062

062,

0550

65,0

5005

4,05

0050

; 16

375,

142,

1998

,038

054,

0500

50,0

6206

2,06

0065

,050

054,

0480

52;

1637

9,14

2,19

98,0

3803

8,05

0050

,058

062,

0550

60,0

5005

4,05

2052

; 16

390,

142,

1998

,038

054,

0500

50,0

6206

6,05

5065

,050

054,

0000

00;

1639

3,14

2,19

98,0

5005

0,05

0071

,066

066,

0550

55,0

5405

4,00

0000

; 16

394,

142,

1998

,038

038,

0500

50,0

6206

2,06

0065

,050

070,

0000

00;

1640

0,14

2,19

98,0

3804

2,05

0050

,050

062,

0550

65,0

7007

0,00

0000

; 16

401,

142,

1998

,038

042,

0500

50,0

5006

2,06

0060

,050

070,

0000

00;

1640

5,14

2,19

98,0

5405

4,05

0050

,062

062,

0550

60,0

5005

0,00

0000

; 16

407,

142,

1998

,038

054,

0500

71,0

5806

2,05

5065

,070

070,

0000

00;

1640

9,14

2,19

98,0

3805

4,05

0050

,058

062,

0550

55,0

5005

4,00

0000

; 16

410,

142,

1998

,050

050,

0710

71,0

5006

6,05

5065

,058

070,

0000

00;

1641

1,14

2,19

98,0

5005

0,07

1071

,050

066,

0550

65,0

5807

0,00

0000

; 16

413,

142,

1998

,038

038,

0500

50,0

6206

2,06

0065

,050

054,

0000

00;

1641

6,14

2,19

98,0

3805

4,05

0050

,062

062,

0550

65,0

5007

0,00

0000

; 16

451,

142,

1998

,038

054,

0500

50,0

6206

2,05

5065

,050

054,

0460

50;

1645

2,14

2,19

98,0

3805

4,05

0050

,062

062,

0550

60,0

5005

4,04

6050

; 16

456,

142,

1998

,038

038,

0500

50,0

6206

2,05

5055

,054

054,

0500

50;

1645

8,14

2,19

98,0

4204

2,06

5071

,046

046,

0550

55,0

5005

4,04

6058

; 16

563,

142,

1998

,042

054,

0500

50,0

5006

2,05

5065

,050

070,

0460

50;

1656

4,14

2,19

98,0

3805

4,05

0050

,058

062,

0650

65,0

5005

0,05

0050

; 16

565,

142,

1998

,038

038,

0500

50,0

6206

2,06

5065

,070

070,

0500

56;

1656

6,14

2,19

98,0

5005

4,05

0071

,062

066,

0550

65,0

5405

8,04

6056

; 16

567,

142,

1998

,050

050,

0500

50,0

6606

6,05

5065

,070

070,

0460

56;

1656

8,14

2,19

98,0

3805

0,05

0050

,062

066,

0600

65,0

7007

0,05

0056

; 16

569,

142,

1998

,038

054,

0710

77,0

5406

2,05

0055

,066

070,

0460

50;

1657

0,14

2,19

98,0

5005

0,05

0071

,066

066,

0550

60,0

7007

0,05

0056

; 16

571,

142,

1998

,050

050,

0500

71,0

6606

6,05

5065

,070

070,

0460

56;

1660

9,14

2,19

98,0

3805

4,05

0050

,062

062,

0550

65,0

4605

4,04

6056

; 16

610,

142,

1998

,050

050,

0500

71,0

6606

6,05

5065

,058

070,

0500

56;

1661

1,14

2,19

98,0

3805

4,05

0050

,058

058,

0550

60,0

7007

0,05

0050

; 16

612,

142,

1998

,038

042,

0500

50,0

5006

2,05

5065

,050

050,

0560

56;

1661

3,14

2,19

98,0

3805

0,05

0059

,062

066,

0550

55,0

7007

0,04

6056

; 16

614,

142,

1998

,050

054,

0500

59,0

5006

2,05

5065

,054

054,

0560

56;

1644

7,14

3,19

98,0

4205

0,07

7080

,050

070,

0550

60,0

6607

4,05

0052

; 16

391,

144,

1998

,050

050,

0710

71,0

5005

0,06

5065

,062

074,

0000

00;

1641

4,15

1,19

98,0

3805

0,05

0056

,054

066,

0500

60,0

5005

4,00

0000

; 16

415,

151,

1998

,050

050,

0500

53,0

4605

0,06

0070

,046

046,

0000

00;

1647

3,15

1,19

98,0

5005

0,05

0056

,066

066,

0500

70,0

5005

4,04

8050

; 16

474,

151,

1998

,050

050,

0500

53,0

0000

0,05

0050

,046

054,

0500

50;

1650

6,15

1,19

98,0

3803

8,05

0056

,054

058,

0700

70,0

5005

4,04

8050

; 16

507,

151,

1998

,050

050,

0530

53,0

6606

6,06

0070

,054

054,

0500

50;

1650

8,15

1,19

98,0

5005

0,05

3053

,066

066,

0600

60,0

4605

4,05

0050

; 16

509,

151,

1998

,038

050,

0500

50,0

5806

6,05

0070

,046

050,

0480

50;

1651

0,15

1,19

98,0

3805

0,05

3053

,054

066,

0600

70,0

5405

4,05

0050

; 16

388,

154,

1998

,046

050,

0500

56,0

5005

8,05

0055

,046

070,

0000

00;

1638

9,15

4,19

98,0

4605

0,05

0053

,058

058,

0500

60,0

4607

0,00

0000

; 16

399,

154,

1998

,046

050,

0530

56,0

5005

8,06

0060

,046

046,

0000

00;

1663

4,15

9,19

98,0

5005

0,05

0053

,054

062,

0550

60,0

4204

6,00

0000

;

1

6460

,720

,199

8,03

8038

,074

077,

0580

58,0

6506

5,05

4058

,000

000;

AP

PE

ND

IX 3

Con

tin

ued