12
1 TRIANGLE SOLUTION AND INEQUALITIES OF ALEXANDRU SZOROS By Le Van June MMXVI Si rursus incipiens consilium sequerer Platonis incipere studiis mathematics. GalilΓ¦us GalilΓ¦i ABSTRACT Trigonometric inequalities in triangles may not be a new topic in the world of mathematics, but its problems have never been too old. Otherwise, they are created and challenged it day by day all around the world, and so are the inequalities proposed by teacher Alexandru Szoros. And it is truly my pleasure to represent in this article those problems, which I solved by using the triangle solution method. 1. Introduction In triangle sin 2 ≀ ( βˆ’ )( + )( + ) ( 2 ) 2 β‰₯ + + 27 β‰₯ 2 4 β‰₯ + β‰₯ 8 Alexandru Szoros In this article, I focus on solving these problems by using acknowledgements of triangle solution. In lieu of representing theories and solutions separately, I would discuss on them in parallel sections. The three problems proposed by Alexandru Szoros are represented in Section 2, Section 3, and Section 4, respectively. In Section 5, I represent more discussions of solving techniques and tricks. And Section 6 contains the conclusion of this article.

INEQUALITIES OF ALEXANDRU SZOROS

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

1

TRIANGLE SOLUTION

AND

INEQUALITIES OF ALEXANDRU SZOROS

By Le Van

June MMXVI

Si rursus incipiens consilium sequerer Platonis incipere studiis mathematics.

Galilæus Galilæi

ABSTRACT

Trigonometric inequalities in triangles may not be a new topic in the world of mathematics, but its

problems have never been too old. Otherwise, they are created and challenged it day by day all

around the world, and so are the inequalities proposed by teacher Alexandru Szoros. And it is truly

my pleasure to represent in this article those problems, which I solved by using the triangle solution

method.

1. Introduction

In triangle 𝐴𝐡𝐢

sin𝐴

2≀

π‘Žπ‘π‘

(𝑝 βˆ’ π‘Ž)(π‘Ž + 𝑏)(π‘Ž + 𝑐)

(𝑅

2)2

β‰₯π‘Ÿπ‘Žπ‘Ÿπ‘ + π‘Ÿπ‘π‘Ÿπ‘ + π‘Ÿπ‘π‘Ÿπ‘Ž

27β‰₯ π‘Ÿ2

4𝑅

π‘Žβ‰₯𝑏

𝑙𝑐+𝑐

𝑙𝑏β‰₯8π‘Ÿ

π‘Ž

Alexandru Szoros

In this article, I focus on solving these problems by using acknowledgements of triangle solution.

In lieu of representing theories and solutions separately, I would discuss on them in parallel

sections. The three problems proposed by Alexandru Szoros are represented in Section 2, Section

3, and Section 4, respectively. In Section 5, I represent more discussions of solving techniques and

tricks. And Section 6 contains the conclusion of this article.

2

2. A. Szoros’ Inequality I

Problem: Given triangle 𝐴𝐡𝐢, prove that

sin𝐴

2≀

π‘Žπ‘π‘

(𝑝 βˆ’ π‘Ž)(π‘Ž + 𝑏)(π‘Ž + 𝑐) (𝐼)

Solution: Note that, if we put

𝑓(π‘Ž; 𝑏; 𝑐) = 𝐿𝐻𝑆(𝐼)

𝑔(π‘Ž; 𝑏; 𝑐) = 𝑅𝐻𝑆(𝐼) Then 𝑑𝑒𝑔𝑓(π‘Ž; 𝑏; 𝑐) = 𝑑𝑒𝑔𝑔(π‘Ž; 𝑏; 𝑐) = 0.

This notation reminds me to rewrite 𝑅𝐻𝑆(𝐼) under trigonometric form. And fortunately,

the law of sine indicates that, in any triangle 𝐴𝐡𝐢:

π‘Ž

sin 𝐴=

𝑏

sin𝐡=

𝑐

sin 𝐢= 2𝑅

And this law results in a consequence, if

β„Ž(π‘Ž; 𝑏; 𝑐) =𝑃(π‘Ž; 𝑏; 𝑐)

𝑄(π‘Ž; 𝑏; 𝑐)

where 𝑑𝑒𝑔𝑃 = 𝑑𝑒𝑔𝑄 = 𝑛, then

β„Ž(π‘Ž; 𝑏; 𝑐) = β„Ž(sin 𝐴 ; sin𝐡 ; sin 𝐢) Indeed

β„Ž(π‘Ž; 𝑏; 𝑐) =(2𝑅)𝑛𝑃(sin𝐴 ; sin𝐡 ; sin 𝐢)

(2𝑅)𝑛𝑄(sin𝐴 ; sin𝐡 ; sin 𝐢)= β„Ž(sin𝐴 ; sin𝐡 ; sin 𝐢)

Hence, we are able to rewrite 𝑅𝐻𝑆(𝐼): π‘Žπ‘π‘

(𝑝 βˆ’ π‘Ž)(π‘Ž + 𝑏)(π‘Ž + 𝑐)=

2π‘Žπ‘π‘

(𝑏 + 𝑐 βˆ’ π‘Ž)(π‘Ž + 𝑏)(π‘Ž + 𝑐)

=2 sin𝐴 sin𝐡 sin 𝐢

(sin𝐡 + sin 𝐢 βˆ’ sin𝐴)(sin𝐴 + sin𝐡)(sin 𝐴 + sin 𝐢)

= (4 sin

𝐴2 cos

𝐴2

2 sin𝐡 + 𝐢2

cos𝐡 βˆ’ 𝐢2

βˆ’ 2 sin𝐴2cos

𝐴2

)(2 sin

𝐢2 cos

𝐢2

2 sin𝐴 + 𝐡2

cos𝐴 βˆ’ 𝐡2

)(2 sin

𝐡2 cos

𝐡2

2 sin𝐴 + 𝐢2

cos𝐴 βˆ’ 𝐢2

)

= (2 sin

𝐴2 cos

𝐴2

cos𝐴2 cos

𝐡 βˆ’ 𝐢2 βˆ’ cos

𝐡 + 𝐢2 cos

𝐴2

)(sin

𝐢2 cos

𝐢2

cos𝐢2 cos

𝐴 βˆ’ 𝐡2

)(sin

𝐡2 cos

𝐡2

cos𝐡2 cos

𝐴 βˆ’ 𝐢2

)

=2 sin

𝐴2sin

𝐡2sin

𝐢2

cos𝐴 βˆ’ 𝐡2 cos

𝐴 βˆ’ 𝐢2 (cos

𝐡 βˆ’ 𝐢2 βˆ’ cos

𝐡 + 𝐢2 )

=2 sin

𝐴2 sin

𝐡2 sin

𝐢2

2 sin𝐡2 sin

𝐢2 cos

𝐴 βˆ’ 𝐡2 cos

𝐴 βˆ’ 𝐢2

=sin

𝐴2

cos𝐴 βˆ’ 𝐡2 cos

𝐴 βˆ’ 𝐢2

3

And obviously, since

cos𝐴 βˆ’ 𝐡

2cos

𝐴 βˆ’ 𝐢

2≀ 1

We get

𝑅𝐻𝑆(𝐼) β‰₯ sin𝐴

2β‰₯ 𝐿𝐻𝑆(𝐼)

QED. Equality holds when cosπ΄βˆ’π΅

2cos

π΄βˆ’πΆ

2= 1, in other words, 𝐴 = 𝐡 = 𝐢 =

πœ‹

3. β– 

3. A. Szoros’ Inequality II

Problem: Given triangle 𝐴𝐡𝐢, prove that

(𝑅

2)2

β‰₯π‘Ÿπ‘Žπ‘Ÿπ‘ + π‘Ÿπ‘π‘Ÿπ‘ + π‘Ÿπ‘π‘Ÿπ‘Ž

27β‰₯ π‘Ÿ2 (𝐼𝐼)

3.1.About inradius and exradii of a triangle

In this subsection, I revise the calculation of inradius and exradii of a triangle.

Figure 1. Excircle (IA; ra) of triangle ABC

4

From Figure 1, we get

𝑆 = 𝑆𝐴𝐡𝐼𝐴 + 𝑆𝐴𝐢𝐼𝐴 βˆ’ 𝑆𝐡𝐢𝐼𝐴

=1

2𝐴𝐡. 𝐼𝐴𝑍 +

1

2𝐴𝐢. πΌπ΄π‘Œ βˆ’

1

2𝐡𝐢. 𝐼𝐴𝑋

=1

2(𝑏 + 𝑐 βˆ’ π‘Ž)π‘Ÿπ‘Ž

= (𝑝 βˆ’ π‘Ž)π‘Ÿπ‘Ž

And therefore

π‘Ÿπ‘Ž =𝑆

𝑝 βˆ’ π‘Ž=

2𝑆

𝑏 + 𝑐 βˆ’ π‘Ž

Totally similarly

π‘Ÿπ‘ =𝑆

𝑝 βˆ’ 𝑏=

2𝑆

𝑐 + π‘Ž βˆ’ 𝑏; π‘Ÿπ‘ =

𝑆

𝑝 βˆ’ 𝑐=

2𝑆

π‘Ž + 𝑏 βˆ’ 𝑐

And additionally

π‘Ÿ =𝑆

𝑝=

2𝑆

π‘Ž + 𝑏 + 𝑐

3.2.Solution for A. Szoros’ Inequality II

Rewrite (𝐼𝐼):

(𝑅

2)2

β‰₯4𝑆2

27βˆ‘

1

(𝑏 + 𝑐 βˆ’ π‘Ž)(𝑐 + π‘Ž βˆ’ 𝑏)β‰₯

4𝑆2

(π‘Ž + 𝑏 + 𝑐)2

⟺ (𝑅

2)2

β‰₯4𝑆2(π‘Ž + 𝑏 + 𝑏)

27(𝑏 + 𝑐 βˆ’ π‘Ž)(𝑐 + π‘Ž βˆ’ 𝑏)(π‘Ž + 𝑏 βˆ’ 𝑐)β‰₯

4𝑆2

(π‘Ž + 𝑏 + 𝑐)2

Firstly, I show the back part of this double-inequality, which could be rewritten as

(π‘Ž + 𝑏 + 𝑐)3 β‰₯ 27(𝑏 + 𝑐 βˆ’ π‘Ž)(𝑐 + π‘Ž βˆ’ 𝑏)(π‘Ž + 𝑏 βˆ’ 𝑐) Since π‘Ž, 𝑏, and 𝑐 are three sides of a triangle, there exist three positive numbers π‘₯, 𝑦,

and 𝑧 such that

π‘Ž = π‘₯ + 𝑦; 𝑏 = 𝑦 + 𝑧; 𝑐 = 𝑧 + π‘₯

Hence, the above inequality should be transformed to

8(π‘₯ + 𝑦 + 𝑧)3 β‰₯ 216π‘₯𝑦𝑧

⟺ (π‘₯ + 𝑦 + 𝑧)3 β‰₯ 27π‘₯𝑦𝑧

⟺ π‘₯ + 𝑦 + π‘₯ β‰₯ 3√π‘₯𝑦𝑧3

This is true due to the AM-GM inequality of three non-negative numbers.

Return to the front part, where we need to prove

(𝑅

2)2

β‰₯𝑝𝑆2

27(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)=𝑝2

27

⟺ 𝑅

2β‰₯

𝑝

3√3=π‘Ž + 𝑏 + 𝑐

6√3=𝑅(sin𝐴 + sin 𝐡 + sin 𝐢)

3√3

⟺ sin𝐴 + sin 𝐡 + sin 𝐢 ≀3√3

2

5

This is also true in any triangle 𝐴𝐡𝐢 thanks to the proof of using Jensen’s inequality to

concave functions. However, here I represent an amazing way to prove this, which was

recommended by teacher Tran Phuong. Recall

𝑇 = sin𝐴 + sin 𝐡 + sin 𝐢

= sin𝐴 + sin𝐡 + sin(𝐴 + 𝐡)

= sin𝐴 + sin𝐡 + sin𝐴 cos 𝐡 + sin𝐡 cos 𝐴

=2

√3(√3

2sin𝐴 +

√3

2sin 𝐡) +

1

√3(√3 cos 𝐴 sin𝐡 + √3 cos 𝐡 sin𝐴)

Using AM-GM inequality from the geometric mean side, we get

𝑇 ≀1

√3[3

4+ (sin𝐴)2 +

3

4+ (sin𝐡)2]

+1

2√3[3(cos𝐴)2 + (sin𝐡)2 + 3(cos𝐡)2 + (sin 𝐴)2] =

3√3

2

Both parts of inequality (𝐼𝐼) are proven, QED. Equalities hold when π‘Ž = 𝑏 = 𝑐. β– 

In Section 5, I would demonstrate more about Tran Phuong’s recommendation.

4. A. Szoros’ Inequality III

Problem: Given triangle 𝐴𝐡𝐢, prove that

4𝑅

π‘Žβ‰₯𝑏

𝑙𝑐+𝑐

𝑙𝑏β‰₯8π‘Ÿ

π‘Ž (𝐼𝐼𝐼)

4.1.About angle bisectors of a triangle

Figure 2. Angle bisector AD and incenter I of triangle ABC

6

Lemma I. (where π‘™π‘Ž is the length of 𝐴𝐷)

π‘™π‘Ž =2𝑏𝑐 cos

𝐴2

𝑏 + 𝑐

Proof. According to the angle bisector’s property

𝐡𝐷

𝐴𝐡=𝐢𝐷

𝐴𝐢=𝐡𝐷 + 𝐢𝐷

𝐴𝐡 + 𝐴𝐢=

𝐡𝐢

𝐴𝐡 + 𝐴𝐢=

π‘Ž

𝑏 + 𝑐

⟹ 𝐡𝐷 =π‘Žπ‘

𝑏 + 𝑐; 𝐢𝐷 =

π‘Žπ‘

𝑏 + 𝑐

Using the law of cosine in triangles 𝐴𝐡𝐷 and 𝐴𝐢𝐷:

{𝐡𝐷2 = 𝐴𝐡2 + 𝐴𝐷2 βˆ’ 2𝐴𝐡. 𝐴𝐷 cos𝐡𝐴�̂�

𝐢𝐷2 = 𝐴𝐢2 + 𝐴𝐷2 βˆ’ 2𝐴𝐢. 𝐴𝐷 cos 𝐢𝐴�̂�

⟺

{

(π‘Žπ‘

𝑏 + 𝑐)2

= 𝑐2 + π‘™π‘Ž2 βˆ’ 2π‘π‘™π‘Ž cos

𝐴

2

(π‘Žπ‘

𝑏 + 𝑐)2

= 𝑏 + π‘™π‘Ž2 βˆ’ 2π‘π‘™π‘Ž cos

𝐴

2

⟹ π‘Ž2(𝑐2 βˆ’ 𝑏2)

(𝑏 + 𝑐)2= 𝑐2 βˆ’ 𝑏2 βˆ’ 2(𝑐 βˆ’ 𝑏)π‘™π‘Ž cos

𝐴

2

⟹ π‘Ž2

𝑏 + 𝑐= 𝑏 + 𝑐 βˆ’ 2π‘™π‘Ž cos

𝐴

2

(we might assume that 𝑏 β‰  𝑐)

⟹ 2π‘™π‘Ž cos𝐴

2= 𝑏 + 𝑐 βˆ’

π‘Ž2

𝑏 + 𝑐=𝑏2 + 𝑐2 βˆ’ π‘Ž2 + 2𝑏𝑐

𝑏 + 𝑐=2𝑏𝑐 cos𝐴 + 2𝑏𝑐

𝑏 + 𝑐

=2𝑏𝑐(1 + cos𝐴)

𝑏 + 𝑐=4𝑏𝑐 (cos

𝐴2)

2

𝑏 + 𝑐

⟹ π‘™π‘Ž =2𝑏𝑐 cos

𝐴2

𝑏 + 𝑐

If 𝑏 = 𝑐, triangle 𝐴𝐡𝐢 becomes isosceles at vertex 𝐴, where π‘™π‘Ž = β„Žπ‘Ž , and the Lemma is

clearly true since

2𝑏𝑐 cos𝐴2

𝑏 + 𝑐=2𝑏2 cos

𝐴2

2𝑏= 𝑏 cos

𝐴

2= β„Žπ‘Ž

QED. ●

Lemma II. (where π‘™π‘Ž is the length of 𝐴𝐷)

π‘™π‘Ž =2

𝑏 + π‘βˆšπ‘π‘π‘(𝑝 βˆ’ π‘Ž)

Proof. In Figure 2, I solve for 𝐴𝐷 in triangle 𝐴𝐡𝐷, of which 𝐴𝐡, 𝐡𝐷, and cos 𝐡 are given.

𝐴𝐷2 = 𝐴𝐡2 + 𝐡𝐷2 βˆ’ 2𝐴𝐡. 𝐡𝐷 cos 𝐴𝐡�̂�

⟹ π‘™π‘Ž2 = 𝑐2 + (

π‘Žπ‘

𝑏 + 𝑐)2

βˆ’ 2𝑐 (π‘Žπ‘

𝑏 + 𝑐) (𝑐2 + π‘Ž2 βˆ’ 𝑏2

2π‘π‘Ž)

7

π‘™π‘Ž2 = 𝑐2 + (

π‘Žπ‘

𝑏 + 𝑐)2

βˆ’π‘(𝑐2 + π‘Ž2 βˆ’ 𝑏2)

𝑏 + 𝑐

=1

(𝑏 + 𝑐)2[π‘Ž2𝑐2 + 𝑐2(𝑏 + 𝑐)2 βˆ’ 𝑐(𝑏 + 𝑐)(𝑐2 + π‘Ž2 βˆ’ 𝑏2)]

=1

(𝑏 + 𝑐)2[π‘Ž2𝑐2 + 𝑐(𝑏 + 𝑐)(𝑏𝑐 + 𝑐2 βˆ’ 𝑐2 βˆ’ π‘Ž2 + 𝑏2)]

=1

(𝑏 + 𝑐)2[π‘Ž2𝑐2 + (𝑏𝑐 + 𝑐2)(𝑏𝑐 βˆ’ π‘Ž2 + 𝑏2)]

=1

(𝑏 + 𝑐)2(π‘Ž2𝑐2 + 𝑏2𝑐2 βˆ’ π‘Ž2𝑏𝑐 + 𝑏3𝑐 + 𝑏𝑐3 βˆ’ π‘Ž2𝑐2 + 𝑏2𝑐2)

=1

(𝑏 + 𝑐)2(𝑏3𝑐 + 2𝑏2𝑐2 + 𝑏𝑐3 βˆ’ π‘Ž2𝑏𝑐)

=𝑏𝑐(𝑏2 + 2𝑏𝑐 + 𝑐2 βˆ’ π‘Ž2)

(𝑏 + 𝑐)2

=𝑏𝑐[(𝑏 + 𝑐)2 βˆ’ π‘Ž2]

(𝑏 + 𝑐)2

=𝑏𝑐(𝑏 + 𝑐 + π‘Ž)(𝑏 + 𝑐 βˆ’ π‘Ž)

(𝑏 + 𝑐)2

=4𝑏𝑐𝑝(𝑝 βˆ’ π‘Ž)

(𝑏 + 𝑐)2

⟹ π‘™π‘Ž =2

𝑏 + π‘βˆšπ‘π‘π‘(𝑝 βˆ’ π‘Ž)

QED. ●

From the above lemmas, we could obtain

cos𝐴

2= √

𝑝(𝑝 βˆ’ π‘Ž)

𝑏𝑐

And in Figure 2, using the law of sine in triangle 𝐴𝐡𝐷, we get

𝐡𝐷

sin𝐴2

=𝐴𝐷

sin𝐡

And therefore

sin𝐴

2=𝐡𝐷 sin𝐡

𝐴𝐷=

(π‘Žπ‘π‘ + 𝑐

)𝑏2𝑅

2𝑏 + 𝑐

βˆšπ‘π‘π‘(𝑝 βˆ’ π‘Ž)=

π‘Žπ‘π‘

4π‘…βˆšπ‘π‘π‘(𝑝 βˆ’ π‘Ž)=

𝑆

βˆšπ‘π‘π‘(𝑝 βˆ’ π‘Ž)

= √(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)

𝑏𝑐

These formulas allow us to find trigonometric functions of 𝐴

2 with three sides given.

Furthermore, I would represent one direct way to find any triangle’s incenter in plane 𝑂π‘₯𝑦.

8

Property: Given triangle 𝐴𝐡𝐢 with incenter I, then

π‘ŽπΌπ΄βƒ—βƒ—βƒ—βƒ— + 𝑏𝐼𝐡⃗⃗⃗⃗ + 𝑐𝐼𝐢⃗⃗⃗⃗ = 0βƒ—

Proof: In Figure 2, 𝐡𝐼 is the angle bisector of 𝐴𝐡�̂�. Consider triangle 𝐴𝐡𝐷:

𝐼𝐷

𝐡𝐷=𝐼𝐴

𝐴𝐡⟹ 𝐼𝐴 =

𝐴𝐡

𝐡𝐷𝐼𝐷 =

π‘π‘Žπ‘π‘ + 𝑐

𝐼𝐷 =𝑏 + 𝑐

π‘ŽπΌπ·

⟹ π‘ŽπΌπ΄βƒ—βƒ—βƒ—βƒ— = βˆ’(𝑏 + 𝑐)𝐼𝐷⃗⃗⃗⃗ And note that

𝐷𝐡

𝑐=𝐷𝐢

π‘βŸΉ 𝑏𝐷𝐡⃗⃗⃗⃗⃗⃗ = βˆ’π‘π·πΆβƒ—βƒ—βƒ—βƒ— βƒ—

Hence

π‘ŽπΌπ΄βƒ—βƒ—βƒ—βƒ— + 𝑏𝐼𝐡⃗⃗⃗⃗ + 𝑐𝐼𝐢⃗⃗⃗⃗

= βˆ’(𝑏 + 𝑐)𝐼𝐷⃗⃗⃗⃗ + 𝑏𝐼𝐡⃗⃗⃗⃗ + 𝑐𝐼𝐢⃗⃗⃗⃗

= 𝑏(𝐼𝐡⃗⃗⃗⃗ βˆ’ 𝐼𝐷⃗⃗⃗⃗ ) + 𝑐(𝐼𝐢⃗⃗⃗⃗ βˆ’ 𝐼𝐷⃗⃗⃗⃗ )

= 𝑏𝐷𝐡⃗⃗⃗⃗⃗⃗ + 𝑐𝐷𝐢⃗⃗⃗⃗ βƒ—

= 0βƒ— QED. ●

4.2.Solution for A. Szoros’ Inequality III

Rewrite (𝐼𝐼𝐼): 4𝑅

π‘Žβ‰₯

𝑏

2π‘Žπ‘ cos𝐢2

π‘Ž + 𝑏

+𝑐

2π‘Žπ‘ cos𝐡2

π‘Ž + 𝑐

β‰₯8π‘Ÿ

π‘Ž

⟺ 4𝑅 β‰₯π‘Ž + 𝑏

2 cos𝐢2

+π‘Ž + 𝑐

2 cos𝐡2

β‰₯ 8π‘Ÿ

⟺ 4𝑅 β‰₯2𝑅(sin𝐴 + sin𝐡)

2 cos𝐢2

+2𝑅(sin𝐴 + sin 𝐢)

2 cos𝐡2

β‰₯ 8π‘Ÿ

⟺ 4 β‰₯2sin

𝐴 + 𝐡2 cos

𝐴 βˆ’ 𝐡2

sin𝐴 + 𝐡2

+2 sin

𝐴 + 𝐢2 cos

𝐴 βˆ’ 𝐢2

sin𝐴 + 𝐢2

β‰₯8π‘Ÿ

𝑅

⟺ 2 β‰₯ cos𝐴 βˆ’ 𝐡

2+ cos

𝐴 βˆ’ 𝐢

2β‰₯4π‘Ÿ

𝑅

The front part is obviously true since cos πœƒ ≀ 1, βˆ€πœƒ ∈ ℝ, so equality holds only when

𝐴 = 𝐡 = 𝐢 =πœ‹

3.

However, to prove the back part of this double-inequality, I am supposed to return to

initial steps, with help from Lemma II. Rewrite the back part of (𝐼𝐼𝐼):

9

𝑏(π‘Ž + 𝑏)

2βˆšπ‘Žπ‘π‘(𝑝 βˆ’ 𝑐)+

𝑐(π‘Ž + 𝑐)

2βˆšπ‘Žπ‘π‘(𝑝 βˆ’ 𝑏)β‰₯8𝑆

π‘π‘Ž

⟺ (π‘Ž + 𝑏)βˆšπ‘Žπ‘

2βˆšπ‘ βˆ’ 𝑐+ (π‘Ž + 𝑐)βˆšπ‘Žπ‘

2βˆšπ‘ βˆ’ 𝑏β‰₯ 8√(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐) (βˆ—)

Using AM-GM inequality, of which

π‘Ž + 𝑏 β‰₯ 2βˆšπ‘Žπ‘; π‘Ž + 𝑐 β‰₯ 2βˆšπ‘Žπ‘

𝐿𝐻𝑆(βˆ—) β‰₯π‘Žπ‘

βˆšπ‘ βˆ’ 𝑐+

π‘Žπ‘

βˆšπ‘ βˆ’ 𝑏β‰₯

2π‘Žβˆšπ‘π‘

√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)4

So it is enough to show that

π‘Žβˆšπ‘π‘ β‰₯ 4√(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)4

⟺ π‘Ž2𝑏𝑐 β‰₯ 16(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐) (βˆ—βˆ—)

Indeed, from geometric mean side to arithmetic mean side:

2√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐) ≀ 𝑝 βˆ’ 𝑏 + 𝑝 βˆ’ 𝑐 = π‘Ž

2√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐) ≀ π‘Ž

2√(𝑝 βˆ’ 𝑐)(𝑝 βˆ’ π‘Ž) ≀ 𝑏

2√(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏) ≀ 𝑐

⟹ 𝑅𝐻𝑆(βˆ—βˆ—) ≀ 𝐿𝐻𝑆(βˆ—βˆ—) Equality holds when π‘Ž = 𝑏 = 𝑐. QED. β– 

5. More discussions

5.1.The relation between circumscribed radius and inradius of a triangle

From A. Szoros’ Inequalities II and III, we obtain 𝑅 β‰₯ 2π‘Ÿ. This is also consequently

resulted in from many triangle-trigonometric problems, and I would represent one

direct way of proving this:

𝑅 β‰₯ 2π‘Ÿ βŸΊπ‘Žπ‘π‘

4𝑆β‰₯2𝑆

π‘βŸΊ π‘Žπ‘π‘ β‰₯

8𝑆2

𝑝= 8(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)

This is due to a result in last subsection, where

2√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐) ≀ π‘Ž

2√(𝑝 βˆ’ 𝑐)(𝑝 βˆ’ π‘Ž) ≀ 𝑏

2√(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏) ≀ 𝑐

And the back part of (𝐼𝐼𝐼) leads to a nice problem:

cos𝐴 βˆ’ 𝐡

2+ cos

𝐴 βˆ’ 𝐢

2β‰₯4π‘Ÿ

𝑅

Or generally

10

cos𝐴 βˆ’ 𝐡

2+ cos

𝐡 βˆ’ 𝐢

2+ cos

𝐢 βˆ’ 𝐴

2β‰₯6π‘Ÿ

𝑅

5.2.Proving basic triangle-trigonometric inequalities

In triangle 𝐴𝐡𝐢

𝑇 = sin𝐴 + sin𝐡 + sin 𝐢 ≀3√3

2 (𝑖𝑣)

π‘ˆ = cos 𝐴 + cos𝐡 + cos 𝐢 ≀3

2 (𝑣)

𝑉 = sin𝐴

2+ sin

𝐡

2+ sin

𝐢

2≀3

2 (𝑣𝑖)

π‘Š = cos𝐴

2+ cos

𝐡

2+ cos

𝐢

2≀3√3

2 (𝑣𝑖𝑖)

Except (𝑣), all (𝑖𝑣), (𝑣𝑖), and (𝑣𝑖𝑖) could be proven by using Jensen’s inequality to

concave functions. But I would represent a method proposed by Tran Phuong to prove

these inequalities, just like in subsection 4.2. Moreover, problem (𝑣) could be proven

by using the SOS method, a highly convenient way.

Indeed:

𝑅𝐻𝑆(𝑣) βˆ’ 𝐿𝐻𝑆(𝑣) = 1 βˆ’ cos 𝐴 βˆ’ (cos𝐡 + cos 𝐢) +1

2

= 2(sin𝐴

2)2

βˆ’ 2 cos𝐡 + 𝐢

2cos

𝐡 βˆ’ 𝐢

2+1

2(cos

𝐡 βˆ’ 𝐢

2)2

+1

2(sin

𝐡 βˆ’ 𝐢

2)2

= 2(sin𝐴

2)2

βˆ’ 2 sin𝐴

2cos

𝐡 βˆ’ 𝐢

2+1

2(cos

𝐡 βˆ’ 𝐢

2)2

+1

2(sin

𝐡 βˆ’ 𝐢

2)2

=1

2(2 sin

𝐴

2βˆ’ cos

𝐡 βˆ’ 𝐢

2)2

+1

2(sin

𝐡 βˆ’ 𝐢

2)2

β‰₯ 0

QED. Equality holds when 𝐴 = 𝐡 = 𝐢 =πœ‹

3. ●

Tran Phuong’s recommendation:

Proof of (𝑣), assuming 𝐢 = max(0; πœ‹)

{𝐴; 𝐡; 𝐢}:

π‘ˆ = cos 𝐴 + cos𝐡 + cos𝐢 = cos𝐴 + cos𝐡 βˆ’ cos(𝐴 + 𝐡) = 1(cos𝐴 + cos𝐡) βˆ’ cos 𝐴 cos 𝐡 + sin 𝐴 sin𝐡

Using AM-GM inequality:

π‘ˆ ≀1

2[1 + (cos 𝐴 + cos𝐡)2] βˆ’ cos 𝐴 cos 𝐡 +

1

2[(sin 𝐴)2 + (sin𝐡)2] =

3

2

Proof of (𝑣𝑖):

𝑉 = sin𝐴

2+ sin

𝐡

2+ sin

𝐢

2= sin

𝐴

2+ sin

𝐡

2+ cos

𝐴 + 𝐡

2

= 1(sin𝐴

2+ sin

𝐡

2) + cos

𝐴

2cos

𝐡

2βˆ’ sin

𝐴

2sin

𝐡

2

Using AM-GM inequality:

11

𝑉 ≀1

2[1 + (sin

𝐴

2+ sin

𝐡

2)2

] βˆ’ sin𝐴

2sin

𝐡

2+1

2[(cos

𝐴

2)2

+ (cos𝐡

2)2

] =3

2

Proof of (𝑣𝑖𝑖):

π‘Š = cos𝐴

2+ cos

𝐡

2+ cos

𝐢

2= cos

𝐴

2+ cos

𝐡

2+ sin

𝐴 + 𝐡

2

= cos𝐴

2+ cos

𝐡

2+ sin

𝐴

2cos

𝐡

2+ sin

𝐡

2cos

𝐴

2

=2

√3(√3

2cos

𝐴

2+√3

2cos

𝐡

2) +

1

√3(√3 sin

𝐴

2cos

𝐡

2+ √3 sin

𝐡

2cos

𝐴

2)

Using AM-GM inequality:

π‘Š ≀1

√3[3

4+ (cos

𝐴

2)2

+3

4+ (cos

𝐡

2)2

]

+1

2√3[3 (sin

𝐴

2)2

+ (cos𝐴

2)2

+ 3(sin𝐡

2)2

+ (cos𝐡

2)2

] =3√3

2

QED. To all of these problems, equalities hold when triangle 𝐴𝐡𝐢 is equilateral. ●

5.3.About A. Szoros’ Inequality I

sin𝐴

2= √

(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)

𝑏𝑐

Using this formula, then (𝐼) becomes

π‘Žπ‘π‘

(𝑝 βˆ’ π‘Ž)(π‘Ž + 𝑏)(π‘Ž + 𝑐)β‰₯ √

(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)

𝑏𝑐

⟺ π‘Žπ‘π‘βˆšπ‘π‘ β‰₯ (𝑝 βˆ’ π‘Ž)(π‘Ž + 𝑏)(π‘Ž + 𝑐)√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐) (𝑣𝑖𝑖𝑖)

Like I mentioned above:

2√(𝑝 βˆ’ 𝑐)(𝑝 βˆ’ π‘Ž) ≀ 𝑏

2√(𝑝 βˆ’ π‘Ž)(𝑝 βˆ’ 𝑏) ≀ 𝑐

⟹ 𝑏𝑐 β‰₯ 4(𝑝 βˆ’ π‘Ž)√(𝑝 βˆ’ 𝑏)(𝑝 βˆ’ 𝑐)

So it would be enough were it possible to show that

π‘Žβˆšπ‘π‘ β‰₯(π‘Ž + 𝑏)(π‘Ž + 𝑐)

4

However, this is totally not true, since

π‘Ž + 𝑏 β‰₯ 2βˆšπ‘Žπ‘; π‘Ž + 𝑐 β‰₯ 2βˆšπ‘Žπ‘

Therefore, problem (𝑣𝑖𝑖𝑖) could be an unpleasant challenge in any contest.

6. Conclusion

Solving Alexandru Szoros’ Inequalities about triangle and trigonometric factors brought

me three lessons. First, transform expressions from complicated to simple forms. Second,

try to find common factors of both sides. And final, basic methods with classical

inequalities should be approached initially, there must be a key to clinch the problems.

12

References

[1] https://www.facebook.com/groups/Imad.Zak/

[2] http://www.geogebra.org/

[3] Tran Phuong, Selected Topics for Vietnam College Entrance Exam Preparation-

Trigonometric Relations, Ha Noi Publishing Co., 2008, p. 9.