30
IN3170/4170, Spring 2020 Philipp Häfliger [email protected] Excerpt of Sedra/Smith Chapter 5: CMOS Field Effect Transistors (FETs)

IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

IN3170/4170, Spring 2020

Philipp Hä[email protected]

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs)

Page 2: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussed later)

Page 3: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussed later)

Page 4: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Device Concept

Page 5: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Device Cross Section

Page 6: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Short Sidetrack: PN-junction

(from book: Carusone, Johns, Martin)

Cj =Cj0√1 + VR

Φ0

(1.17)

Cj0 =

√qKSε02Φ0

NAND

NA + ND(1.18)

Φ0 = UT ln(

NAND

n2i

)(1.6)

Page 7: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

nFET/NMOS and pFET/PMOS cross section

Page 8: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

nMOSFET Device Symbols

Page 9: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

pMOSFET Device Symbols

Page 10: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

The EKV model

(Check hand out paper by Vittoz, equations (1)-(12).)

iD = iF − iR

iF (R) = IS ln[1 + e

vG−Vtn−nvS(D)nVT

]2

(1 + λvDS)

(Note that parameter λ is also expressed as the Early VoltageVA = 1

λ and VA is proportional to the transistor length L and thussometimes expressed as VA = V ′

AL, where V ′A is a process

parameter.)This complete formula is usually simplified for 4 specific regionsof operation as follows. (The book only consider those regiondependent simpler equations.

Page 11: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Regions of operation: strong- vs weak inversion

This two regions of operation are dependent on vGS !!!INDEPENDENT of the active- and triode region of operation (seenext slide) the transistor can operate in either:weak inversion = subthreshold vs. strong inversion = abovethresholdThese are dependent on vGS ≥ Vtn for strong inversion andvGS < Vtn for weak inversion. The transition between the two is notreally aprupt and refered to as moderate inversion.

Page 12: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Regions of operation: triode- vs active region

This two regions of operation are dependent on vDS !!!INDEPENDENT of weak- and strong inversion the transistor canoperate in either:Triode region = ’linear’ region vs. saturation = active regionThese are dependent on vDS ≥ Vsat for active region andvDS < Vsat for triode region, where the definition of Vsat isdifferent dependent on if the transistor is in weak (Vsat ≈ 4VT )orstrong inversion (Vsat = VOV ).

Page 13: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Regions of operation summary

So there are 4 differnt combinations possible:1) weak inversion, triode region OR 2) weak inversion, active regionOR 3) strong inversion, triode region OR 4) strong inversion, activeregion!

Page 14: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

strong inversion, active region

iD =12n

kn (vG − Vtn − nvS)2 (1 + λvDS)

Different name in the EKV model: β := kn and 1 ≤ n ≤ 2 andoften n ≈ 1 and is neglected

Page 15: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

weak inversion, active region

iD = ISevG−Vtn−nvS

nVT (1 + λvDS) (16.13)

Where IS = 2nknV 2T

Page 16: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

strong inversion, triode region

(Note: term ∗ (1 + λvDS) neglected here... not so influential for small vDS)EKV:

iD = knvDS

[vG − Vtn −

n2

(vD + vS)]

Sedra & Smith:

iD = knvDS

[vOV −

12vDS

]Which is the same for vS = 0 and n = 1For vDS << VOV (1st order Taylor expansion around vDS = 0):

iD = knvOV vDS ⇒ gDS = knvOV

Page 17: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

weak inversion, triode region

EKV:

iD = evG−Vtn

nVT

(e

−vSVT − e

−vDVT

)For vS = 0:

iD = evOVnVT

(1− e

−vDVT

)For vDS << VOV (1st order Taylor expansion around vDS = 0):

iD = evOVnVT

VD

VT⇒ gDS = e

vOVnVT

1VT

Page 18: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Illustration ID vs VGS

Page 19: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Illustration ID vs VGS

’old school’ without considering weak inversion.

(fig. 5.14)

Page 20: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Illustration ID vs VDS , channel length modulation

Here in saturation, but this works in subthreshold too.

(fig. 5.17)

Page 21: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Chapter 5 NFET

Note! Chapter 5 only treats Above Threshold Regions of Operation’Above Threshold’ is also called ’Strong Inversion’

Page 22: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Chapter 5 PFET

’Above Threshold’ is also called ’Strong Inversion’

Page 23: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Subthreshold in book?

Mentioned in passing in chapter 5 and equation in chapter 16.1.4

Page 24: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Effects of Parameter Tweaking: λ

λ can be tweaked at design time by changing L: note thatλ = VA = L ∗ V ′

A where V ′A is a process parameter.

Page 25: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Effects of Parameter Tweaking: kn

kn can be tweaked at design time by chaging W /L. Note thatkn = W

L µCox where µCox is a process parameter.

Page 26: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Effects of Parameter Tweaking: vtn, vtp

vtn, vtp cannot be tweaked at design time. They are processparameters.

Page 27: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussed later)

Page 28: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Diode Connected Transistor

In strong inversion:

I =12kn(V − Vtn)2

Page 29: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Simple Current Mirror

When will Iout = Iin, Iout 6= Iin, Iout ≈ Iin, Iout ≈ xIin?

Page 30: IN3170/4170, Spring 2020€¦ · TheEKVmodel (CheckhandoutpaperbyVittoz,equations(1)-(12).) i D = i F i R i F(R) = I S ln 1+ e vG Vtn nvS(D) nVT 2 (1+ v DS) (Notethatparameter

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussed later)