144
IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE FONTAINE {SALVELINUSFONTINALIS) par Amandine Marie These presentee au Departement de Biologie en vue de l'obtention du grade de docteur en sciences (Ph.D.) FACULTE DES SCIENCES UNIVERSITE DE SHERBROOKE Sherbrooke, Quebec, Canada, octobre 2010

IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

IMPACTS GENETIQUES DES ENSEMENCEMENTS

D'OMBLES DE FONTAINE {SALVELINUSFONTINALIS)

par

Amandine Marie

These presentee au Departement de Biologie en vue

de l'obtention du grade de docteur en sciences (Ph.D.)

FACULTE DES SCIENCES

UNIVERSITE DE SHERBROOKE

Sherbrooke, Quebec, Canada, octobre 2010

Page 2: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

1*1 Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliotheque et Archives Canada

Direction du Patrimoine de I'edition

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre reference ISBN- 978-0-494-74672-1 Our file Notre reference ISBN: 978-0-494-74672-1

NOTICE: AVIS:

The author has granted a non­exclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or non­commercial purposes, in microform, paper, electronic and/or any other formats.

L'auteur a accorde une licence non exclusive permettant a la Bibliotheque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par telecommunication ou par I'lnternet, preter, distribuer et vendre des theses partout dans le monde, a des fins commerciaies ou autres, sur support microforme, papier, electronique et/ou autres formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

L'auteur conserve la propriete du droit d'auteur et des droits moraux qui protege cette these. Ni la these ni des extraits substantiels de celle-ci ne doivent etre imprimes ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

Conformement a la loi canadienne sur la protection de la vie privee, quelques formulaires secondaires ont ete enleves de cette these.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

1*1

Canada

Page 3: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Le 4 mars 2011

lejury a accept e la these de Madame Amandine Marie dans sa version finale

Membres du jury

Professeur Dany Garant Directeur de recherche

Departement de biologie

Monsieur Louis Bernatchez Codirecteur de recherche

Universite de Laval

Professeur John William Shipley Membre

Departement de biologie

Monsieur Guillaume Evanno Membre externe

Universite de Lausanne

Professeur Marc Belisle President rapporteur

Departement de biologie

Page 4: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

SOMMAIRE

Les introductions d'individus domestiques au sein de populations naturelles sont des pratiques

courantes partout dans le monde. Cependant, de telles pratiques peuvent modifier l'integrite

genetique des populations naturelles selon l'etendue des differences genetiques entre individus

sauvages et domestiques, ainsi que l'intensite des ensemencements. Les ensemencements

peuvent ainsi generer de l'hybridation entre les populations sauvages et domestiques.

Cependant, les ensemencements, seuls, n'expliquent pas toujours les patrons d'hybridation

observes, suggerant que d'autres facteurs environnementaux les facilitent aussi. L'objectif

principal de cette these est d'evaluer les impacts genetiques causes par les ensemencements au

sein de populations d'ombles de fontaine {Salvelinus fontinalis), l'espece la plus utilisee pour

supporter l'offre de peche sportive au Quebec, Canada. Environ 2000 individus, issus de 24

lacs localises au sein de 2 reserves fauniques du Quebec, ont ete genotypes a l'aide de 9

marqueurs microsatellites. A travers le premier chapitre portant sur l'effet de l'intensite des

ensemencements sur la diversite et la structure genetique des populations, une augmentation

du niveau de variabilite genetique a ete observee avec l'augmentation de l'intensite des

ensemencements, en raison de Papport de nouveaux alleles par les poissons domestiques. Et,

en consequence, une homogeneisation de la structure genetique des populations est observee

avec l'intensite des ensemencements. Le second chapitre traite de revaluation quantitative de

l'efficacite globale de deux des principaux logiciels utilises, STRUCTURE et

NEWHYBRIDS, pour determiner les niveaux d'hybridation au sein de populations d'ombles

de fontaine soumises a diverses intensites d'ensemencements. II apparalt que les deux logiciels

doivent etre conjointement utilises pour determiner les niveaux d'hybridation. L'emploi de

STRUCTURE est preferable pour detecter la presence d'hybrides au sein des populations

sauvages, tandis que celui de NEWHYBRIDS Test pour detecter precisement le nombre

d'individus hybrides present dans une population deja connue pour son hybridation. Ainsi,

l'emploi de STRUCTURE aux populations d'ombles de fontaine naturelles montre que le

ii

Page 5: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

niveau d'hybridation augmente avec l'intensite des ensemencements. Le troisieme chapitre

fournit une evaluation de l'effet des facteurs environnementaux et de l'intensite des

ensemencements sur le niveau d'hybridation observe dans les populations ensemencees

d'ombles de fontaine. Les resultats confirment que le niveau d'hybridation augmente avec

l'intensite des ensemencements. De plus, une reduction de la disponibilite d'habitats et de sa

qualite favorise egalement 1'augmentation du niveau d'hybridation. L'ensemble de ce projet a

done permis de mettre en evidence differents impacts genetiques des pratiques

d'ensemencements au sein de populations en milieu naturel. De plus, pour la premiere fois,

l'effet des ensemencements sur l'integrite genetique des populations naturelles a ete predit a

partir de connaissances sur les facteurs environnementaux et des ensemencements. Ces

resultats devraient ainsi contribuer a ameliorer les directives sur les pratiques des

ensemencements au Quebec et, de fait, renforcer la protection de l'integrite genetique des

populations naturelles.

Mots-cles : impacts - ensemencements - diversite genetique - structure genetique de

population - hybridation - facteurs environnementaux - omble de fontaine.

iii

Page 6: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

REMERCIEMENTS

Je voudrais tout d'abord remercier mon directeur, Dany Garant, et mon co-directeur, Louis

Bernatchez, pour I'aide et les conseils qu'ils m'ont apportes tout au long de mon doctorat, et

tout particulierement Dany de m'avoir, dans un premier temps, acceptee pour realiser ce

projet. Je remercie egalement mes deux conseillers, Marc Belisle et Bill Shipley, pour leurs

commentaires et conseils sur le deroulement de mon projet. Mes remerciements vont

egalement aux differentes personnes qui m'ont aidee tant sur le terrain qu'au laboratoire a

savoir Fabien Lamaze, Melissa Lieutenant-Gosselin, Bruno Mayot, Andreanne Lessard et

Marc-Andre Poulin. Merci aussi a Renaud Baeta, Patrick Bergeron, Julien Martin, Jennifer

Chambers et Melody Porlier pour les «petites pauses», scientifiques ou non, qui ont

contributes a l'avancement de mon projet. Je remercie aussi l'ensemble des labos Festa-

Bianchet et Pelletier pour leurs conseils et suggestions durant les rencontres inter-labo. Merci

a mes parents, mon compagnon et mes amis qui m'ont encourage tout au long de ces annees.

Enfin, un grand merci a Jojo !

Je remercie egalement les differents partenaires du projet: le Ministere des Ressources

Naturelles et de la Faune du Quebec (MRNF), la Societe des Etablissements de Plein Air du

Quebec (SEPAQ), la Pourvoirie des Bouleaux Blancs, le Reseau d'Aquaculture du Quebec

(RAQ) ainsi que le Conseil de Recherches en Sciences Naturelles et en Genie (CRSNG). Je

tiens aussi a remercier les differentes piscicultures pour leur soutien dans nos recherches (la

pisciculture des Truites de Mauricie, la pisciculture du Lac-des-Ecorces et la pisciculture

Jacques Cartier).

iv

Page 7: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

TABLE DES MATIERES

SOMMAIRE II

REMERCIEMENTS IV

TABLE DES MATIERES V

LISTE DES TABLEAUX VII

LISTE DES FIGURES XI

INTRODUCTION 1

1. Activites humaines et menaces pour la biodiversite 2

a. La degradation d'habitat 2

b. La surexploitation 3

c. Les introductions d'especes 3

2. Les introductions de poissons 4

a. Mise encontexte 4

b. Les piscicultures 5

i. Impact des piscicultures sur les individus domestiques 7

ii. Differences entre individus sauvages et domestiques 8

3. L'hybridation 11

a. Types d'hybridation 11

b. Detection de l'hybridation 12

c. Consequences de l'hybridation 14

d. Determinants de l'hybridation 15

4. Objectifs et interets du projet 17

a. Contexte aquacole quebecois 17

b. Biologie de Pespece 18

v

Page 8: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

i. Omble de fontaine sauvage 19

ii. Omble de fontaine domestique 20

c. Objectifset structure de la these 21

CHAPITRE I IMPACTS DES ENSEMENCEMENTS D'OMBLES DE FONTAINE..24

Loss of genetic integrity correlates with stocking intensity in brook charr {Sahelinus

fontinalis) 25

CHAPITRE n DETECTION DE L'HYBRIDATION EN MILIEU NATUREL 51

An empirical assessment of software efficiency to detect introgression under variable

stocking scenarios in wild brook charr {Sahelinus fontinalis) populations 53

CHAPITRE III DETERMINANTS ENVIRONNEMENTAUX DE L'HYBRTDATION

79

Environmental determinants of hybridization in stocked brook charr {Sahelinus fontinalis)

populations 81

CONCLUSION 100

ANNEXES 106

BIBLIOGRAPHIE 110

vi

Page 9: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

LISTE DES TABLEAUX

Chapitre I

Table 1. Characteristics of the lakes in each reserve including their stocking intensity category

(SI), the number of fish sampled (Ns), the number of fish genotyped (N) over two years of

sampling, allelic richness {Ar), mean observed {Ho) and expected {He) heterozygosity and Fis

for each lake and the average for all the lakes of a same stocking intensity (with the sum of

fish genotyped for a same stocking intensity) 37

Table 2. Effects of reserve of origin, stocking intensity and their interaction on allelic richness

(A), observed heterozygosity (B) and Fis (C). Full model results from linear mixed models are

presented with corresponding Wald statistic for each term when fitted last in model.

Significant random effects for each model are also presented with their standard error 38

Table 3. Partial Mantel tests results with overall r2 of the model, partial correlation

coefficients, slope and associated F-values 42

Table 4. Mean individual admixture (<y-value) ± standard deviation for each stocked lake and

the average for all lakes belonging to a given stocking intensity (SI). MS: moderately stocked

lakes; HS: heavily stocked lakes 44

Chapitre II

Table 1. Pairwise genetic differentiation (FST) between wild and domestic individuals for each

lake obtained using STRUCTURE (for the first 36 individuals selected and for all individuals

vii

Page 10: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

with a ^-values > 0.95) and NEWHYBRIDS (for the first 36 individuals selected). The averages

and the standard errors are given for all lakes 63

Table 2. Percentage of simulated wild, hybrid and domestic individuals that were assigned

respectively to the wild, hybrid and domestic category with STRUCTURE (ST) and

NEWHYBRIDS (NH), using individuals selected using either STRUCTURE or NEWHYBRIDS for

samples including a) 10% of hybrids and b) 67% of hybrids. The means and standard errors

are given for all lakes. SWI: simulated wild individuals; SDI: simulated domestic individuals

65

Table 3. Effects of software, stocking intensity, individuals category (wild, hybrid or

domestic) and their interaction on the efficiency (number of correctly assigned individuals for

a category over the actual number of individuals of that category in the sample) and accuracy

(number of correctly identified individuals for a category over the actual number of

individuals assigned to that category) of assignment of simulated individuals for samples

including a) 10% of hybrids and b) 67% of hybrids. Results from the final model including

significant terms are presented (from ANOVAs with the corresponding F-statistic) 70

Table 4. Effects of software, stocking intensity and their interaction on categorical assignment

of wild, hybrids and domestic individuals sampled from lakes in the Portneuf reserve Quebec,

Canada. Results from ANOVAs are presented with the corresponding F-statistic 71

Table 5. Number of assigned individuals and categorical assignments of individuals (wild,

hybrid and domestic individuals in percentage) of each lake obtained with a) STRUCTURE {q-

values > 0.9 or < 0.1) and b) NEWHYBRIDS (threshold of 0.7). The mean percentage of

assignments and standard errors are given for the heavily and moderately stocked lakes 72

viii

Page 11: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Chapitre IH

Table 1. Characteristics of the lakes in each reserve including the latitude, the longitude, the

mean level of hybridization (g-value), number of stocking events since 1971 (NS), and the

environmental factors (surface area (SA), maximum depth (MD), temperature (T), dissolved

oxygen (DO), pH, competition (Co)). 0 for competition: absence of competitors; 1 for

competition: presence of competitors 88

Table 2. Loading coefficients, eigenvalues and percentages of variation obtained from the

PCA analyses of the SD and TOP indexes 90

Table 3. Final model showing significant effects of the number of stocking events and

environmental factors on the level of hybridization detected in brook charr populations.

Results obtained from final general linear mixed models (with quasi binomial error structure)

are presented with corresponding Wald statistic for each fixed term when fitted last in model.

Significant random effects (lakes) are also presented with their standard error 92

Table 4. Level of hybridization predicted for three hypothetical lakes exhibiting various

abiotic characteristics and stocking history. Results obtained from the linear mixed model,

which has been used for the graphical representations (Fig 2), to get levels of hybridization

predicted 96

Annexes

Article I - Supplementary Table 1. Microsatellites loci details including the size range in

base pairs (bp), the annealing temperature in degrees Celsius (°C), the number of cycles used

in the polymerase chain reaction (PCR), the GenBank accession number and references 107

IX

Page 12: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Article I - Supplementary Table 2. Pairwise FST (above diagonal) and associated F-value

(below diagonal) for a) the Portneuf reserve and b) the Mastigouche reserve 108

Page 13: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

LISTE DES FIGURES

Introduction

Figure 1. Comportement et histoire de vie du saumon Atlantique en milieu naturel et en

aquaculture. (Modifie de Gross, 1998) 6

Figure 2. Concept simple du modele phenotypique. (Modifie de Ford 2002) 9

Figure 3. Types d'hybridation anthropique : sans introgression, avec introgression et avec

mixage genetique complet. (Modifie de Allendorf et ah, 2001) 13

Chapitre I

Figure 1. Geographical locations of lakes within the two wildlife reserves: a) Portneuf, and b)

Mastigouche, in Quebec, Canada. See Table 1 for abbreviations of lake names 31

Figure 2. Average pairwise genetic differentiation (FST) between lakes for each intensity of

stocking of the Portneuf and Mastigouche Reserves. Standard error bars represent the 95 %

confidence intervals on the mean 41

Figure 3. Relationships (resulting from the Partial Mantel test) between the average value of

pairwise genetic differentiation (FST) values of lakes in both lakes and the average number of

stocking events occurred since 1971 in both lakes for the Portneuf and Mastigouche Reserve.

The r2 and the F-value (obtained from the Partial Mantel test) are indicated for each reserve 42

xi

Page 14: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Chapitre II

Figure 1. Geographical locations of lakes within the Portneuf wildlife Reserve in Quebec,

Canada. BEL: Belles-de-Jour Lake; AMA: Amanites Lake; MET: Methot Lake; RIV: Rivard

Lake; VEI: Veillette Lake; ARC: Arcand Lake; CIR: Circulaire Lake; CAR: Caribou Lake;

LAN: Langoumois Lake; SOR: Sorbier Lake; MAI: Main de Fer Lake 58

Figure 2. Summary of the different steps used for individual assignments. See text for detailed

explanation. ST : STRUCTURE; NH : NEWHYBRIDS; ST_ST : selection of parental individuals

with ST and assignments with ST; ST-NH: selection of parental individuals with ST and

assignments with NH; NH-ST : selection of parental individuals with NH and assignments

with ST; NH-NH : selection of parental individuals with NH and assignments with NH 60

Chapitre III

Figure 1. Geographical locations of lakes within the two wildlife reserves: (a) Portneuf, and

(b) Mastigouche, in Quebec, Canada. See Table 1 for abbreviations of lake names 86

Figure 2. Predicted hybridization values, obtained from the linear mixed model including all

factors, for a) the number of stocking events, b) the SD index and c) the TOP index of each

lake. Units of the x axis of each are values issued from PCA the analyses. Units of the y axis

represent the level of hybridization predicted according to one factor (i.e. the number of

stocking events) taking into account both other factors (SD and TOP indexes) 94

xn

Page 15: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

INTRODUCTION

1

Page 16: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

INTRODUCTION

1. Activites humaines et menaces pour la biodiversite

La diversite biologique, ou biodiversite, represente la richesse des especes vivantes a travers le

monde. La biodiversite est constituee de plusieurs niveaux d'organisation hierarchises a

differentes echelles spatiales et temporelles. Cette structure hierarchique est reconnue a travers

de nombreuses definitions dont les niveaux genetique, populationnel, ecosystemique et

paysage sont ceux le plus souvent consideres (Chevassus-Au-Louis, 2008). Le changement

etant universel, ces differents niveaux de biodiversite se modifient. Cependant, certains de ces

changements constituent une menace pour la biodiversite tels ceux issus des activites

humaines comme la degradation de l'habitat (e.g. la rainette verte, Hyla arborea, Luquet et al,

2011 ; le loir muscardin, Muscardinus avellanarius, Mortelliti et al, 2011), la surexploitation

des ressources naturelles (e.g. le pin d'Alep, Pinus halepensi, Wahid et al, 2010 ; le hurleur

roux, Alouatta seniculus, Wiederholt et al, 2010) et les introductions d'especes (e.g. la

palourde asiatique, Corbula amurensis, Paganini et al, 2010 ; le bryozoaire spaghetti,

Zoobotryon verticillatum, Farrapeira 2011).

a. La degradation d'habitat

La degradation d'habitat en tant que telle comporte divers aspects. Elle peut referer a la

conversion totale d'un habitat utilisable en un habitat inutilisable (e.g. perte d'habitat); a la

degradation d'un habitat a travers, par exemple, la pollution, le rendant ainsi plus dangereux a

habiter pour les especes; ou bien encore a la fragmentation d'habitats qui, en reduisant le

potentiel de dispersion des individus, peut a long terme modifier l'integrite genetique et la

2

Page 17: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

viabilite des especes et, par consequent, la persistence des populations (Groom et al, 2006).

L'industrie, 1'agriculture, la foresterie, la pecherie, le developpement d'infrastructures

represented quelques activites humaines pouvant generer de la degradation d'habitats (IUCN,

2009). Ainsi, de nombreuses especes et populations sont concernees par ce phenomene

(Collier et al, 2002 ; Arroyo-Rodriguez et Dias, 2010 ; Delgado et Moreira, 2010 ; Rochette et

al, 2010 ; Watson et al, 2010), et ce nombre va croissant (IUCN, 2009 ; Butchart et al,

2010).

b. La surexploitation

La surexploitation est consideree comme la seconde cause majeure de risque d'extinction des

especes apres la degradation d'habitats. Les motivations liees a la surexploitation des

ressources vivantes sont variees allant de la consommation alimentaire (e.g. chasse, peche;

Hutchings, 2005) a la sante humaine (McGeoch et al, 2008). La surexploitation peut mener a

l'extinction locale ou globale d'especes ou de populations (Hutchings, 2005 ; Bishop et al,

2009). Moins evident, la diminution de taille des populations due a la surexploitation peut

alterer la composition et le fonctionnement de Pecosysteme tout entier (i.e. top-down effect,

Myers et al, 2007 ; Njiru et al, 2010).

c. Les introductions d'especes

L'introduction d'especes, intentionnelles ou non, peuvent egalement constituer une menace

pour la biodiversite (Groom et al, 2006). Les introductions non-intentionnelles resultent du

relachement ou de l'evasion par inadvertance d'individus domestiques ou non au sein de

populations naturelles (e.g. le renard arctique, Alopex lagopus, en Scandinavie, Noren et al,

3

Page 18: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

2005 ; l'arbuste aux papillons, Buddleja davidii, en Angleterre, Tallent-Halsell et Watt, 2009;

le lapin de garenne, Oryctolagus cuniculus, en Australie, Fenner, 2010). Au contraire, les

introductions volontaires correspondent au relachement deJibere d'individus domestiques en

milieu naturel (e.g. l'oryx, Oryx leucoryx, en Arabie Saoudite, Mesochina et al, 2003 ; le

loup, Canis lupus, aux Etats-Unis, Hedrick et Fredrickson, 2008) ou bien a la translocation

d'individus d'une population a une autre (e.g. le creadion rounoir, Philesturnus carunculatus,

et le miro rubisole, Petroica australis, Taylor et al, 2005 ; la salamandre tigree, Ambystoma

tigrinum mavortium, Johnson et al, 2010). L'objectif des introductions volontaires est

generalement d'augmenter la taille des populations naturelles lorsque les niveaux de

recrutement naturel sont insuffisants afin de permettre la persistance des populations (Groom

et al, 2006). Cependant, que ces pratiques soient ou non intentionnelles, les especes

introduites peuvent compromettre les especes indigenes a travers des interactions directes (e.g.

predation, parasitisme, maladies, competition ou hybridation) ou indirectes (e.g. changements

de l'abondance ou de la dynamique des especes indigenes, modifications de l'habitat reduisant

la qualite de celui-ci), generant parfois de terribles impacts pour la biodiversite locale (Maerz

et al, 2009 ; Delibes et al, 2010 ; Fenner, 2010 ; Watson et al, 2010). Par consequent, les

poissons suscitent un interet tout particulier du a la pratique courante des introductions de

differentes especes, intentionnelles ou non, partout dans le monde (Copp et al, 2005).

2. Les introductions de poissons

a. Mise en contexte

Les poissons constituent une ressource alimentaire de premiere importance pour environ un

milliard d'etres humains selon la World Wildlife Fund (2001). Ainsi, avec une augmentation

de la population humaine d'environ 1,1 % par annee (Food and Agriculture Organization of

the United Nations, 2004), les besoins en ressources marines et d'eau douce s'accroissent.

4

Page 19: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Actuellement de 100 millions de tonnes environ par an, la demande en ressources marines

pourraient atteindre les 179 millions de tonnes en 2015 (Food and Agriculture Organization of

the United Nations, 2004). Parallelement a cela, les stocks de peche de plusieurs especes (i.e.

saumon Atlantique, Salmo salar, morue, Gadus morhua) diminuent drastiquement depuis

plusieurs decennies en raison de facteurs directement ou indirectement lies aux activites

humaines tels que la surexploitation, la perte d'habitat, les invasions biologiques (Frankham,

2008). En reponse aux diminutions des stocks, les ensemencements, c'est-a-dire 1'introduction

d'especes vivantes en milieu naturel, ont peu a peu pris place un peu partout dans le monde

(Hindar et al, 1991 ; Aprahamian et al, 2003). Differents types d'ensemencements existent

selon l'objectif poursuivi tels que le repeuplement qui vise a retablir les populations menacees

d'extinction (e.g. salmonides, Berejikian et al, 1997 ; Heath et al, 2003), l'ensemencement de

soutien pour soutenir les populations indigenes notamment afin de valoriser l'offre de peche

sportive (Gozlan, 2008), l'ensemencement experimental afin d'en ameliorer les pratiques

(Wijenayake et al, 2005) et les introductions (Copp et al, 2005).

b. Les piscicultures

Les ensemencements sont realises avec des individus eleves en piscicultures (Wang et Ryman,

2001). Cependant, le milieu piscicole differe grandement du milieu naturel (Figure 1 ; Gross,

1998 ; Waples, 1999) avec un environnement physique plus simple (i.e. espace restreint et

migrations impossibles), une disponibilite de la nourriture, des predateurs absents, des

maladies traitees, une reproduction non aleatoire des individus et des densites tres elevees. Ces

differences avec le milieu naturel suggerent des impacts potentiels sur les populations

domestiquees, comme par exemple une alteration de la diversite genetique (Frankham, 1995).

5

Page 20: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Nature Aquaculture

Fraie des aduites •migration en eau douce • evitement des predateurs •competition des femellespourle temtoire et construction denids •competition des males pour la reproduction • choix de partenaire

Incubation des <xujsw nviere • frayeres de graviers * dispersion des alewis • Emergence des alevuns

Crotsscmce des juveniles • tenitotres en riviere • consommation d'inverttbres • evitement des predateurs •migration versl'oc^an

Croissance des aduites •migration dansl'oceffli • capture de nourriture • evitement des predateurs •retour a la riviere d'ortgme

Frate des aduites Capture

Hurnain

Stock de gentleurs •confinement •mampulationhormonaSe •lumiere et temperature controlees •ponte arnficielle

Mchserte •plateau lisse • surveillance, traitements medicamenteux • confinement des alevms

•bassms, cages •haute density •vaccination •regime de granules

Ekvage hors des formes • cages oc£amques •regime de granules * surveillance, traitements medicamenteux • importante densite de confinement

Recolte

i Stock de gemteurs

Figure 1. Comportement et histoire de vie du saumon Atlantique en milieu naturel et en

aquaculture. (Modifie de Gross, 1998).

6

Page 21: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Or, la diversite genetique (i.e. heterozygotie moyenne, richesse allelique) est indispensable en

termes de capacites evolutives des populations, car elle leur permet d'evoluer en reponse aux

changements environnementaux (Taylor, 1991 ; Frankham, 1995 ; Frankham, 1996 ; Wang et

al, 2002). Le niveau de diversite genetique depend de plusieurs facteurs tels que les mutations

et migrations, la derive genetique ou bien encore la selection naturelle (Frankham et al, 2005).

La diversite genetique est ainsi augmentee a travers les mutations et migrations (les migrations

contribuant egalement a reduire la differentiation genetique entre les populations), tandis

qu'elle est perdue a travers la derive genetique (e.g. taille de populations restreinte). Quant a la

selection naturelle, elle peut aussi bien permettre d'augmenter la frequence des alleles

benefiques que de reduire la frequence des alleles deleteres du point de vue du changement

evolutif adaptatif (Frankham et al., 2005). Cependant, Taction de ces differents facteurs

differe en milieu captif, comme par exemple le fait que la diversite genetique peut ne pas etre

augmentee a travers les migrations, dans le sens ou celles-ci ne concernent qu'un faible

nombre d'individus (Wang et al, 2002). Par consequent, differents impacts sur les populations

domestiquees sont attendus en milieu captif.

i. Impact des piscicultures sur les individus domestiques

La taille effective des populations {Ne) tend a diminuer en raison des pratiques des

piscicultures (e.g. faible nombre de reproducteurs; Busack et Currens, 1995), qui modifie, par

exemple, le sexe ratio (Larsen et al, 2004). Des periodes prolongees avec une taille effective

de populations reduite peuvent mener a une perte de diversite genetique (e.g. augmentation de

la proportion d'homozygotes; Verspoor, 1988 ; Frankham, 1996). De plus, lorsque la relation

de parente entre les individus reproducteurs est elevee, les risques de consanguinite associes

augmentent, ce qui conduit egalement a une augmentation de la proportion d'homozygotes

(Wang et al, 2002). La consanguinite est egalement souvent associee a la depression de

consanguinite (reduction de la valeur phenotypique moyenne d'un ou plusieurs traits), laquelle

7

Page 22: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

augmente le risque d'extinction a court terme des petites populations en reduisant leur taille

effective (Wang et al, 2002). Enfin, meme lorsque la domestication en piscicultures est non

intentionnelle, les individus s'adaptent aux conditions captives (Frankham, 2008). II a ainsi ete

montre que 1'adaptation en milieu piscicole etait tres rapide et generalement accompagnee

d'effets deleteres sur les populations domestiques (e.g. un trait avantageux en milieu captif

mais pas en milieu naturel, Ford, 2002 ; Araki et al, 2008 ; Araki et Schmid, 2010). Ainsi, il

n'est pas rare d'observer des differences entre individus domestiques et sauvages que la

selection ait ou non ete intentionnelle (Figure 2 ; Gross, 1998 ; Ford, 2002 ; Frankham et al,

2005 ; Araki et Schmid, 2010).

ii. Differences entre individus sauvages et domestiques

Les differences entre individus domestiques et sauvages existent a differents niveaux, et

nombre d'entre elles ont ete rapportees chez les salmonides (revise dans Araki et Schmid,

2010). Tout d'abord, au niveau comportemental, des differences ont ete rapportees en termes

de reproduction (e.g. date d'arrivee precoce ou tardive des truites arc-en-ciel domestiques,

Oncorhynchus mykiss, sur les sites de frai, McLean et al, 2003 ; pauvre recouvrement des

nids par les femelles domestiques de saumon Atlantique, Fleming et al, 1996 ; faible

agressivite des males domestiques de saumon Atlantique se traduisant par peu d'obtention de

sites de frai, Fleming et al, 1996), de comportement alimentaire (e.g. plus grande audace et

temps alloue a la recherche de nourriture plus faible pour les saumons Atlantique domestiques,

Einum et Fleming, 1997 ; et les truites brunes domestiques, Salmo trutta, Sundstrom et al,

2004), d'agressivite (e.g. plus grande agressivite des saumons Atlantique domestiques,

Blanchet et al, 2008 ; ou non, Einum et Fleming, 1997), de comportement anti-predateur (e.g.

propension plus grande de la part des saumons Atlantique domestiques a prendre des risques,

Einum et Fleming, 1997 ; ainsi que des truites brunes domestiques, Sundstrom et al, 2004).

D'autre part, morphologiquement, le taux de croissance des individus domestiques est

8

Page 23: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

•100 -50 0 SO 100 Valeur du trait, z

Figure 2. Concept simple du modele phenotypique. La courbe a droite est la fonction

decrivant la fitness en milieu naturel d'un individu ayant z comme valeur de trait. La fitness en

milieu naturel est maximisee pour les individus ayant comme valeur de trait z = Ow. La courbe

a gauche est la fonction decrivant la fitness en environnement captif. La valeur de trait optimal

en environnement captif est z = 9C. La largeur de la courbe de fitness, et done I'etendue de la

selection, est decrite par les parametres cow and coc pour I'environnement sauvage et captif

respectivement (cow2 = OJC

2 = 1000). La petite courbe sous celle representant la fonction de

fitness en milieu naturel decrit une population dont le phenotype moyen est egal au phenotype

optimal en milieu naturel. La variance phenotypique dans la population, a2, est 10 et

consideree comme constante. Si une partie de la population est mise en captivite et utilisee a

des fins de supplementation, la courbe du trait de fitness sera progressivement deplacee vers la

gauche, autrement vers l'optimum de I'environnement captif. (Modifie de Ford 2002).

9

Page 24: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

generalement superieur a celui des individus sauvages en raison de la selection appliquee en

pisciculture (e.g. saumon coho, Oncorhynchus kisutch, Hard et al, 2000 ; saumon Atlantique,

Blanchet et al, 2008). Un lien a d'ailleurs ete etabli entre la selection en fonction de la

croissance lors de la domestication et la regulation endocrine de la croissance (Fleming et al,

2002). Ainsi, physiologiquement, les individus domestiques divergent des individus sauvages

(e.g. concentrations en hormones de croissance pituitaire et plasmatique plus elevees chez les

saumons Atlantique domestiques, Fleming et al, 2002). Enfin, genetiquement, les individus

domestiques ont une plus faible variability genetique que les individus sauvages en termes

d'heterozygotie et de richesse allelique (e.g. saumon Atlantique, Machado-Schiaffino et al,

2007 ; Blanchet et al, 2008). Cependant, la richesse allelique tend a etre plus rapidement

affectee avec le nombre de generations de captivite que l'heterozygotie (i.e. goulot

d'etranglement, Frankham, 1995 ; Saisa et al, 2003). Des changements au sein de la

distribution des frequences alleliques ont egalement ete rapportes (e.g. distributions plus

variables dans le temps pour les saumons Atlantique domestiques, Tessier et al, 1997 ; Saisa

et al, 2003). Concernant la transcription des genes, des differences au niveau de leur

expression ont egalement ete montrees entre individus domestiques et sauvages suite a la

selection artificielle (Roberge et al, 2006 ; Sauvage et al, 2010), et ces differences

apparaissent se maintenir avec l'hybridation entre individus domestiques et sauvages (Roberge

et al, 2008 ; Normandeau et al, 2009 ; Bourgas et al, 2010).

Par consequent, les differences observees entre individus domestiques et sauvages suggerent

que les individus domestiques ont une plus faible capacite a survivre en milieu naturel (Biro et

al, 2004 ; Araki et al, 2008 ; Araki et Schmid, 2010). De plus, leurs interactions avec les

individus sauvages peuvent generer des impacts negatifs sur les populations naturelles (Ford,

2002 ; Weber et Fausch, 2003 ; Biro et al, 2004 ; Kelley et al, 2006 ; Araki et al, 2008 ;

Araki et Schmid, 2010), dont l'impact majeur reconnu est l'hybridation entre individus

domestiques et sauvages (Rhymer et Simberloff, 1996).

10

Page 25: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

3. L'hybridation

L'introduction d'individus domestiques au sein de populations naturelles, qu'elles soient ou

non intentionnelle, favorise les phenomenes d'hybridation, aussi bien au niveau inter

qu'intraspecifique (Allendorf et al, 2001). Contrairement a l'hybridation naturelle qui peut

contribuer a la diversification et l'adaptation (e.g. traits adaptatifs) de certaines populations

(e.g. pinson de Darwin, Geospiza scandens, Freeland et Boag, 1999), l'hybridation d'origine

anthropique contribue souvent au declin, voire a l'extinction d'especes (Allendorf et al,

2001). Par consequent, en raison de leur grande valeur economique et recreative, l'hybridation

chez les salmonides represente un enjeu majeur pour la conservation des populations

(Allendorfera/., 2001).

a. Types d'hybridation

L'etendue des consequences liees aux introductions de poissons domestiques peut aller d'une

hybridation sans introgression a une complete « admixture » (mixage genetique complet) des

populations naturelles (Allendorf et al, 2001 ; Hansen, 2002). Trois types d'hybridation

d'origine anthropique existent, et ceux-ci peuvent aussi bien etre applicables au niveau inter

qu'intraspecifique (Figure 3 ; Allendorf et al, 2001). Tout d'abord, dans le cas d'une

hybridation sans introgression (i.e. absence de flux de genes entre les populations s'hybridant),

les hybrides produits sont steriles en raison d'un probleme d'appariement chromosomique

durant la meiose (Figure 3, Bartley et al, 2001 ; Allendorf et Luikart, 2007). La production de

ces hybrides reduit ainsi le potentiel reproducteur des populations, et peut contribuer a

l'extinction d'especes (Allendorf et al, 2001). Par exemple, Leary et al (1993) ont montre

que l'introduction d'ombles de fontaine {Sahelinus fontinalis) dans des rivieres contenant des

ombles a tete plate {Sahelinus confluentus) a permis la production d'hybrides steriles. En

11

Page 26: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

raison de conditions ecologiques propres a chaque espece (e.g. age de maturation) et de la

menace d'extinction de l'omble a tete plate (e.g. faible diversite genetique), la production

d'hybrides steriles entre ces deux especes a entraine un deplacement de la niche ecologique

des ombles a tete plate (Leary et al, 1993). D'autre part, l'hybridation peut etre accompagnee

d'introgression (Figure 3), autrement dit d'un flux de genes au sein des populations

s'hybridant (i.e. reproduction entre les hybrides et une espece parentale). Dans ce cas, les

hybrides produits sont fertiles et se reproduisent aussi bien entre eux qu'avec leurs parents

(Allendorf et al, 2001). Ce type d'hybridation a largement ete rapporte chez les salmonides

comme par exemple chez la truite brune. Par exemple, Hansen et Mensberg (2009) ont montre

que 71 % des individus de la riviere Skjern, au Danemark, presentaient un signal

d'introgression suite a des ensemencements, alors que les individus sauvages ne representaient

que 13 %. L'hybridation introgressive chez le saumon d'Atlantique, due aux echappements de

poissons domestiques, a egalement largement ete rapportee (McGinnity et al, 2003 ;

Hutchings et Fraser, 2008 ; Normandeau et al, 2009). Enfin, l'hybridation peut generer une

complete « admixture » (i.e. mixage genetique complet, Figure 3). Des lors, la selection

favorisera les hybrides au detriment des populations parentales (Allendorf et al, 2001).

b. Detection de l'hybridation

II est souvent difficile d'identifier les individus hybrides sur la seule base de caracteres

morphologiques (Rhymer et Simberloff, 1996 ; Mallet, 2005). Les hybrides presentent

generalement une mosai'que de phenotypes parentaux, plutot qu'un phenotype intermediate a

celui des individus parentaux (revise dans Rieseberg et Carney, 1998 ; Allendorf et al, 2001).

Les caracteres morphologiques ne permettent pas non plus de determiner si un individu est un

hybride de premiere generation ou bien d'une suivante (Rhymer et Simberloff, 1996). De fait,

le developpement des techniques moleculaires ainsi que des logiciels d'analyses a permis de

12

Page 27: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

documenter I'etendue de l'hybridation entre populations de maniere plus precise (Rhymer et

Simberloff, 1996 ; Allendorf et al, 2001).

Le developpement de marqueurs d'ADN, tels que les ADN mitochondriaux et

chloroplastiques (ADN maternel herite), ont permis d'etudier l'hybridation en identifiant les

haplotypes specifiques de l'ADN mitochondrial ou chloroplastique des populations parentales.

Le developpement de cette technique a done permis de determiner la direction de l'hybridation

(Rhymer et Simberloff, 1996). Cependant, cette technique fournit une « image » incomplete de

I'etendue de l'hybridation et de l'introgression. Par consequent, afin de determiner sans

equivoque l'ensemble des individus hybrides et d'identifier leurs parents respectifs, il est

necessaire d'utiliser des marqueurs nucleaires herites biparentalement (Rhymer et Simberloff,

1996), tels que les microsatellites, regions de l'ADN nucleaire non-codantes et hypervariables.

Hybridation anthropique

/

Hybrides de premiere generation

hybridede lere generation sterile

Hybridation sans introgression

croiseraents

\

-> Essaixn d'hybrides

/ \

Hybridation avec introgression

Mixage genetique complet

Figure 3. Types d'hybridation anthropique : sans introgression, avec introgression et avec

mixage genetique complet. (Modifie de Allendorf et al, 2001).

13

Page 28: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Une avancee egalement majeure afin de detecter l'hybridation est le developpement de

techniques statistiques permettant des analyses individuelles sur plusieurs locus tels que les

methodes d'assignation et les methodes de groupement (Pritchard et al, 2000 ; Hansen et al,

2001 ; Anderson et Thompson, 2002 ; Susnik et al, 2004 ; Vaha et Primmer, 2006). Ces

methodes permettent de classifier les individus hybrides selon leur categorie (Fl, F2 ou retro-

croisements). Cependant, afin d'assigner precisement les individus a leur classe d'hybrides

respective, un nombre minimal de 48 locus avec un niveau de differentiation genetique (i.e.

FST) entre les populations parentales de 0,21 est requis (Vaha et Primmer, 2006). La rigidite

des ces conditions font qu'elles ne sont que rarement appliquees, la plupart des etudes

n'utilisant que 6 a 10 marqueurs microsatellites (Koskinen et al, 2004). Parmi les methodes

disponibles, les methodes bayesiennes apparaissent plus efficaces que les methodes

probabilistiques classiques (Vaha et Primmer, 2006), notamment lorsque les donnees

genetiques sur les populations avant hybridation sont manquantes. Cependant, au sein meme

des approches bayesiennes, les logiciels different par leur methode d'assignation (e.g.

STRUCTURE, Pritchard et al, 2000 ; NEWHYBRIDS, Anderson et Thompson, 2002) ainsi qu'au

niveau de leur efficacite et exactitude d'assignation (Vaha et Primmer, 2006 ; Burgarella et al,

2009 ;Sanz era/., 2009).

c. Consequences de l'hybridation

Bien que les impacts lies aux introductions dependent en partie de I'etendue des differences

genetiques et ecologiques entre individus sauvages et domestiques, de faibles differences

peuvent tout de meme generer des effets deleteres au sein des populations naturelles (Ford,

2002). Ces effets deleteres se traduisent generalement par une depression de consanguinite

(diminution de la fitness en termes de fertilite et survie), a laquelle deux principaux

mecanismes lui sont attribuables (Allendorf et Luikart, 2007). Ainsi, la depression de

consanguinite peut etre liee a une perturbation des interactions entre les locus de genes

14

Page 29: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

coadaptes (e.g. traits de fitness). Autrement dit, les complexes de genes coadaptes entre

populations occupant un environnement similaire peuvent differer, et la recombinaison entre

des genomes divergeant peut perturber de tels complexes (Allendorf et Luikart, 2007). La

depression de consanguinite peut egalement resulter d'une perte d'adaptations locales.

Generalement, les populations s'adaptent a leur environnement (e.g. adaptations

morphologiques, comportementales, physiologiques), que Pechelle geographique entre les

populations soit grande ou petite (Taylor, 1991). Ainsi, les hybrides, issus du croisement entre

populations de differents environnements, ne sont pas aussi bien adaptes que les individus

parentaux, car ils ne possedent que la moitie des alleles adaptes a I'environnement parental

(Allendorf et Luikart, 2007). Plusieurs exemples de pertes locales d'adaptations et de

modifications de l'integrite genetique des populations ont ete rapportes chez les salmonides en

raison des introductions d'especes (Reisenbichler et Rubin, 1999 ; Englbrecht et al, 2002 ;

revise dans Fraser, 2008 ; Normandeau et al, 2009 ; Bourgas et al, 2010). Par exemple,

Miller et al (2004) ont montre, au sein de populations de truites arc-en-ciel {Oncorhynchus

mykiss) ensemencees dans des tributaires du lac Superieur aux Etats-Unis, que les individus

sauvages etaient mieux adaptes que les individus domestiques et hybrides. Le taux de survie,

relativement a celui des alevins sauvages, etait de 59 % et 37 % pour les alevins hybrides

ayant respectivement une mere sauvage et domestique, et de 21 % pour les alevins

domestiques (Miller et al, 2004). Par consequent, la poursuite des ensemencements dans cette

region constitue une menace pour l'integrite genetique des populations naturelles (Miller et

al, 2004).

d. Determinants de l'hybridation

L'impact des ensemencements sur les niveaux d'hybridation observes a ete montre a travers

plusieurs etudes (Halbisen et Wilson, 2009 ; Heath et al, 2010). Par exemple, Hansen et

Mensberg (2009) ont montre, dans certaines rivieres du Danemark, que le niveau

15

Page 30: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

d'hybridation observe entre truites brunes sauvages et domestiques etait positivement correle

au nombre de truites brunes domestiques relachees. Cependant, I'historique des

ensemencements pris en compte au sein de cette etude comme pour d'autres comporte

certaines limites en termes de precision, ce qui peut ainsi affecter la robustesse des resultats.

Par exemple, certaines eUides considerent I'historique des ensemencements comme un facteur

binaire (i.e. presence/absence, Largiader et Scholl, 1995 ; Halbisen et Wilson, 2009 ; Heath et

al, 2010), une periode d'ensemencements (e.g. de 1985 a 1997, Taylor et al, 2007), le

nombre de poissons ensemences avec les incertitudes que cela comporte en terme de nombre

exact (Hansen et Mensberg, 2009) ou bien encore comme le nombre total de poissons

ensemences pour une periode donne ne fournissant done aucune indication quant aux annees

d'ensemencements (Poteaux et al, 1998; Hansen et Mensberg 2009). De fait, les etudes

evaluant 1'impact des ensemencements sur les populations naturelles serait nettement

amelioree en utilisant des historiques d'ensemencements plus precis, lesquels comporteraient

par exemple I'historique complet des annees d'ensemencements, le nombre de poissons

ensemences ainsi que leur provenance.

De plus, peu d'etudes ont a ce jour evalue l'effet de facteurs, autres que celui des

ensemencements, sur le niveau d'hybridation observe en milieu naturel, a l'exception de Heath

et al. (2010). Les auteurs ont montre, en contexte interspecifique, qu'une combinaison de

facteurs (e.g. activites forestieres, developpement d'infrastructures urbaines, ensemencements)

influait sur le niveau d'hybridation observe au sein de populations de truites fardees cotieres

{Oncorhynchus clarki clarki) et de truites arc-en-ciel {Oncorhynchus mykiss) dans des rivieres

de Pile de Vancouver, au Canada. Le manque d'etudes a ce sujet contraste avec les etudes de

genetique du paysage, au sein desquelles l'effet des facteurs environnementaux sur la structure

genetique des populations est couramment etudie. Par exemple, la structure genetique des

populations de poissons peut etre influencee par certaines caracteristiques du paysage telles

que la profondeur des lacs (Turgeon et al, 1999), la distance entre les rivieres (Castric et

Bernatchez, 2003) ou bien encore P accessibility a Pembouchure des rivieres (Launey et al,

2010). Les conditions physiques peuvent egalement influer sur la structure des populations

16

Page 31: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

comme le pH (Gunnarsson et al, 2007), I'oxygene dissous (Crispo et Chapman, 2008), la

temperature (Dionne et al, 2008) et la salinite (Gaggiotti et al, 2009). Ainsi, en raison de ces

differents resultats, on peut s'attendre a ce que le niveau d'hybridation observe au sein des

populations naturelles soit etroitement lie aux conditions environnementales du milieu et qu'il

depende de facteurs specifiques (Halbisen et Wilson, 2009). Par consequent, P evaluation des

facteurs environnementaux influant sur le niveau d'hybridation observe permettrait d'accroitre

les connaissances sur l'hybridation en milieu naturel, et de fait, servir a ameliorer la gestion

des populations naturelles en termes d'ensemencements.

4. Objectifs et interets du projet

a. Contexte aquacole quebecois

L'industrie aquacole constitue un secteur d'activite economique important au Canada, la

production ayant progresse de 775% en 10 ans. Au Quebec, la production salmonicole a connu

une forte croissance au cours des 30 dernieres annees avec un taux de croissance annuel de

16% de 1978 a 2007. La production annuelle de salmonides est ainsi passee de 150 a 2200

tonnes, dont 93% associable a la production en eau douce (SORDAC, 2001). Cependant, cette

industrie fait face a plusieurs problemes qui en ralentissent la croissance, dont la difficulte a

respecter les exigences de nouvelles normes environnementales. Par consequent, toute action

pouvant mener a une reduction significative de P impact de ces facteurs est prioritaire pour

l'industrie.

L'omble de fontaine {Sahelinus fontinalis, Mitchill) est une espece indigene au Quebec et a

PEst du Canada, et elle est la plus utilisee pour supporter l'offre de peche sportive et

l'industrie recreo-touristique qui en decoule partout au Quebec. L'espece fait done l'objet de

17

Page 32: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

plusieurs ensemencements de mise en valeur depuis plusieurs decennies. Le Quebec est le

principal producteur nord-americain de cette espece avec une production annuelle pour fins

d'ensemencement de Pordre de 745 tonnes. Ceci represente entre cinq et sept millions

d'ombles de fontaine de taille exploitable (> lOOg) deposes dans les plans d'eau a chaque

annee. De fait, le marche des ensemencements d'omble de fontaine represente pres de 50% du

chiffre d'affaires total pour l'industrie aquacole quebecoise et s'avere done vital pour celle-ci.

Cependant, en raison de P importance qu'occupe Pactivite economique de la production

aquacole pour fins d'ensemencements, le public et les autorites gouvernementales se

questionnent quant aux impacts negatifs potentiels des ensemencements d'ombles

domestiques. Notamment, les pratiques d'ensemencements telles que realisees jusqu'a present

au Quebec comportent un niveau d'incertitude eleve quant aux risques d'alterer la composition

genetique des populations d'ombles indigenes, d'en modifier les traits de vie par hybridation

genetique, de meme que de transferer des maladies. Ces impacts potentiellement negatifs sur

les populations sauvages peuvent en retour affecter les rendements de peche sportive et se

traduire par des pertes de revenus pour l'industrie recreo-touristique.

b. Biologie de l'espece

L'omble de fontaine {Sahelinus fontinalis) appartient a la famille des Salmonidae. Cette

espece, indigene de PAmerique du Nord, est repandue dans le Nord-Est du continent. Sa

distribution actuelle a directement ete influencee par les changements climatiques et

topographiques survenus durant la derniere glaciation au Pleistocene (Power 1980),

constituant ainsi une opportunity pour Pisolation d'individus au sein de refuges distincts et de

recontact entre differentes lignees (Power, 1980 ; Magnan et al, 2002). Par consequent,

l'omble de fontaine presente des caracteristiques variables au niveau de son ecologie, de sa

morphologie ainsi que de sa variability genetique et sa plasticite phenotypique. Ces differentes

caracteristiques en font done un excellent modele d'etude du point de vue evolutif. De plus,

18

Page 33: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

l'omble de fontaine est une espece sensible a la qualite de son environnement, la perte

d'habitat ainsi que la surexploitation (Magnan et al, 2002). De fait, la comprehension de sa

biologie est d'interet afin de preserver au mieux cette espece. Son interet commercial,

notamment pour la peche sportive, lui confere egalement un lien etroit avec les humains

stimulant ainsi Pinteret de ceux-ci pour cette espece (Magnan et al, 2002).

i. Omble de fontaine sauvage

L'omble de fontaine adulte mesure en moyenne de 20 a 30 cm, mais peut atteindre une taille

plus considerable dans divers plans d'eau et sa longevite n'excede generalement pas 12 ans

(Bernatchez et Giroux, 2000). II vit preferentiellement entre 0 et 6 metres de profondeur

(Venne et Magnan, 1995) dans des eaux oligotrophes caracterisees par des eaux claires, bien

oxygenees (a partir de 5 mg/L, Spoor, 1990) et fraiches (optimum thermique de 16°C,

Coutant, 1977).

La diversification trophique, courante chez les individus d'une meme espece dans les lacs

oligotrophes de I'Hemisphere Nord (Peres-Neto et Magnan, 2004 ; revise dans Proulx et

Magnan, 2004), se retrouve chez l'omble de fontaine. Carnivore specialiste (Bernatchez et

Giroux, 2000), il presente un polymorphisme trophique subtil variable selon les lacs (Bourke

et al, 1999 ; Proulx et Magnan, 2004 ; Bertrand et al, 2008). Dans les lacs du bouclier

canadien, il n'est pas rare de trouver l'omble de fontaine en presence d'especes competitrices

telles que le mulet a cornes {Semotilus atromaculatus) et le meunier noir {Catostomus

commersoni) (Magnan, 1988 ; Bourke et al, 1999). La competition interspecifique de ces

especes avec l'omble de fontaine, pour la nourriture et Pespace, entraine generalement un

changement de niche ecologique de l'omble de fontaine. Generalement benthique, il devient

alors pelagique (Magnan, 1988 ; Bourke et al, 1999).

19

Page 34: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Le comportement reproducteur des ombles de fontaine est semblable a celui d'autres especes

de salmonides, tels que le saumon Atlantique et la truite brune (Baril et Magnan, 2002). II se

reproduit a Pautomne et les sites de frai se situent au niveau des emissaires de lacs, dans des

cours d'eau de faibles profondeurs ou bien encore au sein meme des lacs (Power, 1980, Baril

et Magnan, 2002). La selection des frayeres depend de la granulometrie ainsi que du

ruissellement souterrain, deux facteurs essentiels a la survie des oeufs (Power, 1980 ; revise

dans Baril et Magnan, 2002). La femelle creuse un nid et y depose ses oeufs, de 500 a 1000

selon sa taille. Apres leur fecondation, elle les recouvre de graviers. lis eclosent 50 a 100 jours

plus tard et les alevins emergent des graviers au printemps (Bernatchez et Giroux, 2000).

Cependant, la presence d'especes competitrices peut diminuer le succes reproducteur des

ombles de fontaine par une utilisation commune des sites de frai (Warrilow et al, 1997).

ii. Omble de fontaine domestique

Les ensemencements d'ombles de fontaine sont effectues a partir d'individus domestiques ou

hybrides provenant de differentes piscicultures, gouvernementales ou non. Bien que des

differences entre individus domestiques et sauvages du a la domestication aient ete mis en

evidence (Hayes et al, 1996 ; Gross, 1998), peu d'etudes ont a ce jour ete entreprises sur

l'omble de fontaine. Toutefois, les conclusions des etudes effectuees a ce sujet (Lachance et

Magnan, 1990 ; Hayes et al, 1996 ; Ashford et Danzmann, 2001 ; Sauvage et al, 2010)

s'averent similaires a celles rapportees pour d'autres especes de salmonides (Heath et al, 2003

; McGinnity et al, 2003 ; Roberge et al, 2006 ; Araki et al, 2007b). Ainsi, les ombles de

fontaine domestiques semblent presenter une diversite genetique plus faible que celle des

individus sauvages (Hayes et al, 1996). Et, en plus d'avoir une maturite precoce, le taux de

fecondite (nombre d'oeufs produits) et de croissance des individus domestiques semblent

egalement superieurs durant la premiere annee d'ensemencement (Lachance et Magnan,

1990). Cependant, les performances des ombles de fontaine domestiques semblent moindre

comparativement a celles des individus sauvages (i.e. faible taux de survie, Lachance et

20

Page 35: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Magnan, 1990 ; faible succes reproducteur (succes d'appariement) pour les femelles, Ashford

et Danzmann, 2001).

c. Objectifs et structure de la these

L'objectif principal de ce projet a ete d'etablir les impacts genetiques des ensemencements

d'ombles de fontaine {Sahelinus fontinalis, Mitchill) selon I'historique des ensemencements

et Pheterogeneite environnementale des lacs ou ils ont et6 effectues.

Selon I'etendue des differences genetiques entre individus sauvages et domestiques, les

ensemencements peuvent alterer l'integrite genetique des populations naturelles. Or, preserver

l'integrite genetique (e.g. diversite genetique) des populations naturelles est essentiel car celle-

ci constitue la base de la flexibilite evolutive de Pespece et de reponse aux changements

environnementaux. A travers le chapitre I, j 'ai done evalue les impacts genetiques causes par

les ensemencements dans des populations naturelles d'ombles de fontaine. Plus precisement,

j'ai evalue le niveau de diversite genetique (i.e. richesse allelique, heterozygotie moyenne)

ainsi que la structure genetique des populations selon l'intensite des ensemencements. Bien

que je m'attendais a observer une diminution de la diversite genetique avec l'intensite des

ensemencements, mes resultats ont au contraire montre une augmentation de celle-ci, fait

explicable par Papport de nouveaux alleles des poissons domestiques. Concernant la structure

genetique des populations, mes predictions de depart ont ete confirmees avec une

homogeneisation de la structure genetique des populations naturelles observee avec l'intensite

des ensemencements. Ainsi, l'ensemble de ces resultats constituent un enjeu majeur pour la

gestion de ces populations.

21

Page 36: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Les avancees des techniques moleculaires et le developpement de nouvelles methodes

statistiques nous permettent dorenavant d'estimer avec une plus grande precision les niveaux

d'hybridation au sein de differents contextes populationnels. Cependant, l'efficacite globale

des differents moyens mis a disposition est variable. Ainsi, afin de detecter precisement le

niveau d'hybridation, le chapitre II vise tout d'abord a evaluer quantitativement l'efficacite

(nombre d'individus correctement identifies pour une categorie par rapport au nombre actuel

d'individus appartenant a cette meme categorie au sein de Pechantillon) et Pexactitude

(nombre d'individus correctement identifies pour une categorie par rapport au nombre actuel

d'individus assignes a cette categorie) de deux des logiciels les plus couramment utilises,

STRUCTURE et NEWHYBRIDS, a partir de simulations. STRUCTURE apparait etre le logiciel

adequat pour detecter le niveau d'hybridation au sein des populations naturelles d'ombles de

fontaine de cette etude. Puis, le niveau d'hybridation a ete evalue au sein de ces populations

ainsi que l'effet de l'intensite des ensemencements sur celui-ci. L'augmentation du niveau

d'hybridation observe avec l'intensite des ensemencements a confirme mes predictions de

depart.

Alors que l'effet des ensemencements sur le niveau d'hybridation a ete montre, tres peu

d'etudes ont a ce jour evalue l'effet des facteurs environnementaux sur le niveau

d'hybridation. Ainsi, l'objectif du chapitre HI est done de montrer l'effet des facteurs

environnementaux, couples au nombre d'ensemencements, sur le niveau d'hybridation

observe au sein de populations naturelles d'ombles de fontaine. Les facteurs

environnementaux retenus pour le modele ont ete choisis selon les connaissances liees a la

biologie de l'omble de fontaine. Compte tenu des resultats du precedent chapitre et de la

litterature, je m'attendais a ce que le nombre d'ensemencements soit retenu au sein du modele,

et que celui-ci influe positivement sur le niveau d'hybridation. D'autre part, je m'attendais

egalement a ce que la morphometrie des lacs (i.e. superficie et profondeur maximale) influe

sur le niveau d'hybridation en diminuant celui-ci. De plus, compte tenu de la biologie de

Pespece, je m'attendais a ce que les donnees physico-chimiques influent sur le niveau

d'hybridation en augmentant celui-ci avec une diminution de la temperature et du pH et une

22

Page 37: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

augmentation de la teneur en oxygene dissous. Je m'attendais egalement a ce que la presence

d'especes competitrices connues pour l'omble de fontaine influe negativement sur le niveau

d'hybridation. Alors que mes deux premieres predictions (i.e. nombre d'ensemencements et

morphometrie des lacs) ont ete validees au sein du modele, les resultats ont cependant montre

que le niveau d'hybridation augmentait lorsque les conditions physico-chimiques des lacs

devenaient Hmitantes, ce qui contraste avec ma prediction de depart. De plus, aucun effet de la

presence de competiteurs n'est apparu au sein du modele. Cette etude constitue une premiere

approche en termes d'evaluation des facteurs environnementaux influant sur le niveau

d'hybridation, dont le modele final permet de predire le niveau d'hybridation en fonction des

caracteristiques biotiques et abiotiques ainsi que de I'historique des ensemencements connus

du milieu.

23

Page 38: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

CHAPITRE I

IMPACTS DES

ENSEMENCEMENTS

D'OMBLES DE FONTAINE

24

Page 39: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Loss of genetic integrity correlates with stocking intensity

in brook charr {Sahelinus fontinalis)

Amandine D. Marie, Louis Bernatchez et Dany Garant

Description et contribution

A travers ce manuscrit est presente pour la premiere fois avec un historique

d'ensemencements precis, l'effet de l'intensite de ceux-ci sur la diversite et la structure

genetique des populations d'ombles de fontaine en milieu naturel. La diminution de diversite

genetique ainsi que Phomogeneisation de la structure genetique des populations causees par

l'intensite des ensemencements ont ainsi ete mis en evidence. Ma contribution a cet article

consiste en deux annees de recoltes de donnees ainsi que les travaux de laboratoire (e.g.

extraction d'ADN et genotypage). J'ai egalement effectue les analyses statistiques et redig6 le

manuscrit. L'ensemble du processus a ete supervise a la fois par Dany Garant et Louis

Bernatchez, qui ont tous deux beaucoup apporte par leurs conseils et revisions du manuscrit.

25

Page 40: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Loss of genetic integrity correlates with stocking intensity

in brook charr {Sahelinus fontinalis)

par

Amandine D. Marie1, Louis Bernatchez2 et Dany Garant1

publie dans Molecular Ecology (2010) 19: 2025-2037.

1 Departement de biologie, Universite Sherbrooke, Sherbrooke, QC, JIK 2R1, Canada

2 IBIS (Institut de Biologie Integrative et des Systemes), Pavilion Charles-Eugene-Marchand,

Universite Laval, Quebec, QC, G1V 0A6, Canada

""Corresponding author: Dany Garant

Departement de Biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Qc,

JIK 2R1 Canada. Tel. 819 821 8000 ext. 63198, Fax: 819 821 8049.

Email: Dany.Garant(a),USherbrooke.ca

26

Page 41: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Abstract

Supportive breeding and stocking performed with non-native or domesticated fish to support

sport fishery industry is a common practice throughout the world. Such practices are likely to

modify the genetic integrity of natural populations depending on the extent of genetic

differences between domesticated and wild fish and on the intensity of stocking. The purpose

of this study is to assess the effects of variable stocking intensities on patterns of genetic

diversity and population differentiation among nearly 2000 brook charr {Sahelinus fontinalis)

from 24 lakes located in 2 wildlife reserves in Quebec, Canada. Our results indicated that the

level of genetic diversity was increased in more intensively stocked lakes, mainly due to the

introduction of new alleles of domestic origin. As a consequence, the population genetic

structure was strongly homogenized by intense stocking. Heavily stocked lakes presented

higher admixture levels and lower levels of among lakes genetic differentiation than

moderately and un-stocked lakes. Moreover, the number of stocking events explained the

observed pattern of population genetic structure as much as hydrographical connections

among lakes in each reserve. We discuss the implications for the conservation of exploited

fish populations and the management of stocking practices.

Key words: brook charr; stocking; microsatellites; genetic diversity; population structure,

salmonids.

27

Page 42: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Introduction

Environmental impacts originating from human activities have caused important decline in

wild animal populations throughout the world (IUCN 2009). This is especially important in

salmonid fishes which have a considerable economical and recreational value (i.e. sport and

commercial fishing) and whose stocks have been exhausted by overharvesting, habitat loss

and biological invasions (Waples & Hendry 2008). As a result, stocking, performed with non-

native or domesticated fish, is now commonly performed in many lakes and rivers (Hindar et

al. 1991; Aprahamian et al. 2003). However, whereas stocking was originally regarded as a

measure to counteract population declines, recent studies have suggested that stocking

domestic hatchery-reared individuals could instead hinder the recovery of wild populations

(Ford 2002; reviewed in Araki et al. 2008). Domestic and wild fish often drastically differ in

terms of behavior, morphology and genetics due to the different selection regimes they

experience (Hindar et al. 1991; Gross 1998; Heath et al. 2003; Huntingford 2004). For

example, domestic fish have been shown to be more aggressive than wild fish as a result of the

higher density under which they are maintained in captivity (Gross 1998; Einum & Fleming

2001; Blanchet et al. 2008). As well, domestic fish are typically genetically distinct from wild

populations, both in terms of allelic composition and genetic diversity (reviewed in Hutchings

& Fraser 2008; Finnegan & Stevens 2008; Shikano et al. 2008). At the genomic level,

pronounced differences in genome wide levels of gene expression have also been reported

between domestic and wild salmon (Roberge et al. 2006; Normandeau et al. 2009).

Such differences entail possible important consequences of stocking hatchery-reared domestic

fish into wild populations. A reduction of the genetic differentiation between populations and

a loss of genetic diversity in the recipient populations (Araguas et al. 2004; Hansen et al. 2006;

Eldridge & Naish 2007; Karaiskou et al. 2009) might ultimately lead to a loss of local

adaptation and a reduction in fitness of wild populations (reviewed in Araki et al. 2008;

reviewed in Finnegan & Stevens 2008; reviewed in Hansen et al. 2009). These impacts might

substantially reduce the evolutionary potential of wild populations and affect their chance of

persistence (Stockwell et al. 2003; Frankham 2005). Yet, few studies have empirically

28

Page 43: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

quantified the impacts of stocking on the genetic integrity of wild populations. A recent study

by Hansen et al. (2009) documented the effects of stocking on several rivers from western

Jutland, Denmark. Following a severe decline of the populations of brown trout {Salmo trutta),

the rivers were subjected to stocking with non local strains. The authors showed that a genetic

change occurred between historical and contemporary time periods and that in most cases the

genetic differentiation was lower between hatchery strains and contemporary samples than

between hatchery strains and historical samples. However, the determinants of the observed

levels of population genetic structure remained unclear.

Here we assess the impacts of variable stocking practices on the genetic integrity of population

of brook charr {Sahelinus fontinalis, Salmonidae) in two wildlife reserves in Quebec, Canada.

Brook charr is one of the most important fish species from both an economical and

recreational point of view in Eastern Canada. For example, six millions specimens are stocked

every year in lakes throughout the Province of Quebec which represents 50 % of all business

generated by its aquaculture industry (Ministere des Ressources Naturelles et de la Faune du

Quebec, 2008). Yet, despite the importance of this species, very little is known about the

possible genetic outcomes of such stocking practices on charr wild populations. Specifically,

we quantatively compared the effects of different stocking intensities on the resulting genetic

diversity within lakes and population genetic differentiation among 24 lakes from 2 distinct

geographic areas with different stocking history. We further assessed the relative importance

of stocking intensity and putative ecological determinants of population structure on the

observed patterns of genetic differentiation among lakes within each reserve.

Materials and Methods

Sampling sites

Sampling was conducted in the Portneuf and Mastigouche wildlife Reserves in Quebec,

Canada (47°09'N, 72°17'W and 46°40'N, 73°30'W respectively; Figure 1). We chose lakes in

29

Page 44: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

these reserves because of their well documented stocking histories since 1971. Reserves were

created then, with the objective of preserving the wildlife resources while allowing various

recreational activities such as fishing. Thus, some lakes are subjected to stocking to support

recreational fishing activities, to decrease the pressure of fishing on the natural populations or

to restore the depleted populations. Consequently, the stocking intensity is more or less

important depending on the objectives for the lakes. This enabled us to select lakes from three

categories of stocking intensity: non-stocked (NS), moderately stocked (MS) and heavily

stocked (HS) (Table 1). A NS lake was a lake where no stocking event was documented from

1971 to 2007. A MS lake underwent stocking in less than 50 % of years over the past 15 years

(from 1992 to 2007). On average, such type of lake was stocked with 5819 ± 3427 (mean ±

SD) and 6604 ±6715 fish per year respectively for the Portneuf and the Mastigouche Reserve.

A HS lake underwent stocking events in more than 50% of the past 15 years (from 1992 to

2007) with on average 14926 ± 12930 and 34425 ± 12641 stocked fish per lake per year

respectively for the Portneuf and the Mastigouche Reserve. The origin of stocked fish was also

known for each reserve: for the Portneuf Reserve, only domestic fish from a single hatchery

were stocked; for the Mastigouche Reserve, domestic-wild hybrids from three other hatcheries

were used for stocking, with wild males originating from lakes within the reserve being

crossed to domestic females. Brook charr were sampled in 24 lakes (11 in Portneuf and 13 in

Mastigouche) using multifilament gillnets (1.8 m deep x 38 m long) in June 2007 and 2008

(Table 1). Tissues were also obtained from hatcheries (56 individuals and 122 individuals

respectively for the Portneuf and Mastigouche hatchery sources). Tissue samples (adipose

fins) were preserved in 95 % ethanol until DNA extraction.

DNA extraction

DNA was extracted from fin clips (5 mm2) using a slightly modified version of Aljanabi &

Martinez (1997) salting out method. Namely, after addition of the saline solution, the mixture

was centrifuged for 30 minutes at 10 000 g. Also, DNA precipitation was achieved by

incubation at -20°C with 600 uL isopropanol for 30 minutes. Then, after washing out the

pellet with ethanol, we centrifuged at 10 000 g for 10 minutes.

30

Page 45: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

a)

b)

Legend A Heavily stocked lakes

A ModeraHy stocked takes

Ito-stocked lakes

: % Other lakes

;"J5 Reserve Mastigouche limits

H H Hydrography

73 WW

Figure 1. Geographical locations of lakes within the two wildlife reserves: a) Portneuf, and b)

Mastigouche, in Quebec, Canada. See Table 1 for abbreviations of lake names.

31

Page 46: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Microsatellites analyses

A total of 852 (Portneuf) and 1141 (Mastigouche) brook charr as well as all individuals from

hatcheries were genotyped with ten microsatellite loci (see supplementary Table 1).

Microsatellite loci amplification was performed using a GeneAmp PCR 9700 thermocycler

(Applied Biosystems) with the following 10 uL reaction mixture: 16 mM Tris-HCl pH 8.3; 16

mM KC1; 16 mM (NHO2SO4; 2.5 mM MgCl2 (sfoC129), 3 mM MgCl2 (sfoC113, sfoC88,

SC0216, sfoB52, sfoD75), 3.5 mM MgCl2 (sfoC24, sfoC86, SC0218, sfoDlOO); 0.2 mM of

each dNTPs; 0.4 mg/mL BSA; 200 mM forward primer (sfoC129), 400 mM forward primer

(sfoC113, sfoC88, SC0216, sfoB52, sfoD75, sfoC24, sfoC86, SC0218, sfoDlOO); 400 mM

reverse primer (sfoC129, sfoC113, sfoC88, SC0216, sfoB52, sfoD75, sfoC24, sfoC86,

SC0218, sfoDlOO); 1 U Taq; 5 ng DNA template. We combined 0.15 uL of 600 Liz (Applied

Biosystems) internal size standard and 8.85 uL of Formamide Hi-Di (Applied Biosystems) to

1 uL of pooled PCR products (first pool included sfoCl 13, sfoC88, sfoD75 and sfoDlOO, and

another pool included SC0216, sfoB52, sfoC24, sfoC86, SC0218 and sfoC129). PCR

products were visualized using an AB 3130 capillary DNA sequencer (Applied Biosystems)

and allele size was established using the software Genemapper version 4.0 (Applied

Biosystems).

Genetic diversity

Deviation from Hardy-Weinberg equilibrium was tested using Genepop (version 4.0; Rousset

2008). Linkage disequilibrium, the presence of null alleles for each locus, expected and

observed heterozygosity {He and H0 respectively) were investigated using Cervus (version

3.0.3; Marshall et al. 1998; Kalinowski et al. 2007). Allelic richness {Ax) and Fis were

estimated using FSTAT (version 2.9.3.2; Goudet 1995).

Indexes of genetic diversity {Ho, AT and Fis) were assessed for each lake in each year, and then

averaged for all lakes, in each year and in each reserve, belonging to the same category of

stocking intensity. We also estimated genetic diversity for the individuals of hatcheries for the

32

Page 47: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Portneuf and the Mastigouche Reserve respectively. We combined the individuals of the three

hatcheries for the Mastigouche Reserve since these were stocked in unknown level of

admixture. We used linear mixed models to assess the effects of stocking intensity, reserve of

origin, and their interaction on each index of genetic diversity. Lakes were included as a

random effect in the model, if significant following a likelihood ratio test. The significance of

fixed effects was assessed from their Wald statistic. Analyses were performed with GenStat

(version 12; VSN intl.).

Private alleles, defined as alleles for a given locus present in only one of the category of

stocking intensity, were estimated for each reserve, both including and removing individuals

obtained from hatcheries in order to assess their specific contribution, in terms of private

alleles, to each lake, using Convert (version 1.31; Glaubitz 2004). We used a generalized

linear model and a Poisson distribution with GenStat to assess the effects of reserve, category

of stocking intensity and microsatellites loci on the number of private alleles observed both

with and without individuals from hatcheries. Significance was established using the change in

deviance resulting from dropping one of the factors from the full model and tested against a

chi-square distribution with appropriate change in degrees of freedom.

Population genetic structure

We first evaluated the extent of spatio-temporal variability in the population genetic structure

using an analysis of molecular variance (AMOVA) implemented in Arlequin (version 3.11;

Excoffier et al. 2005). Specifically, for each stocking intensity we assessed the amount of

variance attributable to 1) years of sampling, 2) lakes within years and, 3) individuals within

lakes. Given there were no significant differences among years of sampling (results not

shown), we pooled data from both years in all remaining analyses.

The extent of genetic differentiation among each pair of lakes, for each stocking intensities

category and for each reserve, was assessed using pairwise FST estimates (Weir & Cockerham

1984) obtained in FSTAT. We tested if there were differences in genetic differentiation

33

Page 48: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

between reserves and different levels of stocking intensity using the comparison among groups

of samples with FSTAT. We also assessed the significance of the genetic differentiation

observed 1) among each type of lakes and 2) between hatchery fish and fish from each

category of lake using Mann-Whitney tests implemented in GenStat. Each FST estimates

between wild and hatchery populations was based on fish sampled in a given lake vs. hatchery

fish which were of one source for the Portneuf Reserve and three different hatchery sources

for the Mastigouche Reserve.

We performed Mantel tests (Mantel 1967; implemented in FSTAT) to test for isolation by

distance (IBD) patterns for each stocking intensity within each reserve. IBD is present if a

significant relationship is found between the geographic distance matrix and the pairwise

genetic differentiation matrix (using linearized FST/(1- FST); Rousset 1997). Geographical

distances between lakes for each reserve were estimated linearly using ArcGis program

(version 9.2; ESRI Corporation, Redlands, California). Each IBD test was based on 10000

randomizations.

Finally, we performed Partial Mantel tests (using FSTAT) to assess the relative importance of

stocking intensity and ecological determinants on the observed patterns of genetic

differentiation among lakes within each reserve. More specifically, we assessed the partial

correlations between the extent of genetic differentiation among two lakes and 1) the

geographic distance between them, 2) their level of hydrographical connections and 3) the

average number of stocking events in both lakes. The hydrographical connections refer to the

lakes of our study which are connected between them. If a lake has one or more hydrographic

connections with another lake, the value 1 was given, if not it was the value 0. The

hydrographical network was obtained using ArcGis program (version 9.2; ESRI Corporation,

Redlands, California). The average number of stocking events for a pair of lakes was assessed

by averaging their number of stocking events occurring between 1971 and 2007.

34

Page 49: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Admixture analyses

We estimated the individual admixture proportions (^-values) for each individual in each

stocked lake (MS and HS) using STRUCTURE v.2.2. (Pritchard et al. 2000). Each analysis

included fish sampled in a given lake as well as hatchery fish (fish from a single hatchery or

three hatcheries respectively for the Portneuf and the Mastigouche Reserve). In the case of

Mastigouche, since the proportions of each putative hatchery source could not be quantified,

we pooled fish of all three hatcheries to constitute a single "domestic gene pool". We assumed

that fish should be assigned to two distinct genetic groups (K = 2; i.e. wild and domestic

individuals). An admixture model with correlated allele frequency was used for each analysis

with 250,000 steps of the Markov-Chain preceded by a burnin-period of 100,000 steps. We

then assessed the relationships between the average individual admixture proportions {q-

values) and the number of stocking events for each lake using a non-parametric Spearman

correlation.

Results

All loci were highly polymorphic, ranging from nine to 19 alleles, with an average of 13

alleles at each locus. The proportion of null alleles within our data (pooled loci) was 5.8 %

(range 2.8 % to 11.3 %). The locus SC0216 showed the highest proportion of null alleles and

was removed from our remaining analyses. Significant deviations from Hardy-Weinberg

equilibrium were found in 16 lakes out of 24, nine of which were stocked lakes (Table 1).

Genetic diversity

Name, level of stocking, sample size and measures of genetic diversity are summarized for

each lake within each reserve in Table 1. Results of the linear mixed model analysis showed

35

Page 50: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

that allelic richness increased significantly with stocking intensity. The differences were 1.19

± 0.28 and 1.22 ± 0.30 alleles {P < 0.001) between MS and NS lakes, and HS and NS lakes

respectively. While there was no difference between reserve in terms of allelic richness {P =

0.156), there was a significant interaction between reserve and stocking intensity {P = 0.050),

mainly due to the difference in allelic richness observed for MS lakes between reserves (3.01

± 0.18 in Portneuf and 3.93 ± 0.15 in Mastigouche) (Table 2). Accordingly, hatchery fish

showed higher levels of allelic richness than the wild populations with values of 6.16 and 4.60

for fish stocked in the Portneuf and the Mastigouche Reserves, respectively.

Analyses of differences in observed heterozygosity using linear mixed model showed that the

mean observed heterozygosity significantly increased with stocking intensity {P < 0.001). The

differences were 0.24 ± 0.05 and 0.32 ± 0.06 respectively between MS and NS lakes, and HS

and NS lakes (Table 2). Moreover, the mean observed heterozygosity was significantly

different between reserves, being higher in the Mastigouche than in the Portneuf reserve (0.56

± 0.02 in Portneuf and 0.68 ± 0.03 in Mastigouche, P < 0.001; Table 2). Again, this was in line

with value found in hatchery fish that showed value of observed heterozygosity close to those

found in HS lakes ( 0.72 and 0.77 for the Portneuf and the Mastigouche Reserve respectively).

Stocking intensity alone did not affect Fis values (Table 2). However, Fis were significantly

different among reserves {P = 0.001), being positive in Portneuf and negative in Mastigouche

(0.03 ± 0.02 in Portneuf and -0.05 ± 0.02 in Mastigouche; Table 2). The interaction between

reserve and stocking intensity was also significant (P < 0.001), partly due to the difference

between HS lakes of each reserve. Thus Fis values were significantly positive for HS lakes in

the Portneuf reserve (mean Fis = 0.09, P = 0.031) but negative (mean Fis = -0.13, P = 0.008)

for the Mastigouche reserve (Table 1). Once again, Fis values of hatchery individuals were in

line with those found in each reserve, being positive in Portneuf (0.022) and negative in

Mastigouche (-0.006).

36

Page 51: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 1. Characteristics of the lakes in each reserve including their stocking intensity category

(SI), the number of fish sampled (Ns), the number of fish genotyped (N) over two years of

sampling, allelic richness {Ar), mean observed {Ho) and expected {He) heterozygosity and Fis

for each lake and the average for all the lakes of a same stocking intensity (with the sum of

fish genotyped for a same stocking intensity).

Reserve Lake SI Ns N Ar Ho He Fis Portneuf Caribou (CAR)

Langoumois (LAN) Sorbier (SOR) Main de Fer (MAI) Average Rivard (RIV) Veillette (VEI) Arcand (ARC) Circulaire (CIR) Average Belles de Jour (BEL) Amanites (AMA) Methot (MET) Average

Mastigouche Head(HEA) Cerne (CER) Moyen (MOY) Arlequin (ARL) Average Chamberlain (CHA) Demarest (DEM) Petit St-Bernard (PET) Mercure (MER) Gelinotte (GEL) Average Brochard (BRO) Deux etapes (DEU) Hollis (HOL) Pitou (PIT) Average

NS NS NS NS NS MS MS MS MS MS HS HS HS HS NS NS NS NS NS MS MS MS MS MS MS HS HS HS HS HS

79 55 92 129 355 48 125 57 80

310 81 91 102 274 80 110 102 85

377 110 149 59 90 76 484 71 90 82 101 344

79 51 84 102 316 46 101 56 77

280 81 88 87

256 76 103 97 81

357 103 137 54 84 72

450 67 85 82 100 334

2.966 2.787 2.959 2.487 2 798 3.456 3.425 2.339 2.825 3 011 4.160 3.570 4.210 3 947 3.316 3.130 2.114 2.227 2 697 4.285 3.040 3.941 4.067 3.846 3 836 3.837 3.919 3.867 3.924 3 887

0.524* 0.461* 0.511 0.469 0 491 0.646

0.592* 0.491

0.518* 0 562

0.683* 0.572* 0.736* 0 664 0.606

0.538* 0.431* 0.368 0 485 0.795

0.570* 0.655* 0.728* 0.826* 0 715

0.752* 0.806* 0.838* 0.819* 0 803

0.555 0.568 0.542 0.456 0 530 0.614 0.632 0.448 0.503 0 549 0.738 0.665 0.753 0 719 0.669 0.662 0.428 0.380 0 535 0.769 0.657 0.705 0.722 0.667 0 704 0.725 0.714 0.730 0.731 0 725

0.059 0.116 0.065 -0.043 0 049 -0.035 0.064 -0.099 -0.034 -0 026 0.082 0.157 0.028 0 089 0.002 0.041 -0.032 0.035 0 011 -0.035 0.029 0.082 0.005 -0.153 -0 014 -0.069 -0.151 -0.163 -0.132 -0129

NS: non-stocked lakes; MS: moderately stocked lakes; HS: heavily stocked lakes; *Hardy-

Weinberg disequilibrium (P < 0.05).

37

Page 52: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 2. Effects of reserve of origin, stocking intensity and their interaction on allelic richness

(A), observed heterozygosity (B) and Fis (C). Full model results from linear mixed models are

presented with corresponding Wald statistic for each term when fitted last in model.

Significant random effects for each model are also presented with their standard error.

(A) Variable Wald

statistic d.f. F-value Reserve Stocking intensity Reserve*Stocking intensity

Lakes Residual

(B) Variable Reserve Stocking intensity Reserve*Stocking intensity

Lakes Residual

(C) Variable

2.19 29.79 7.12

Estimate 0.150 0.042

Wald statistic

9.08 40.71 5.67

Estimate 0.005 0.001

Wald statistic

1 2 2

SE 0.060 0.014

d.f. 1 2 2

SE 0.002 0.000

d.f.

0.156 < 0.001 0.050

F-value 0.008

< 0.001 0.086

F-value

Reserve Stocking intensity Reserve*Stocking intensity

Residual

12.04 4.87

23.29

1 2 2

0.001 0.101

< 0.001 Estimate SE

0.005 0.001

We found a marginally non-significant effect of stocking intensity on the number of private

alleles detected (x2(2) = 4.90, P = 0.086) when running the analyses without hatchery fish. This

was due to a greater number of private alleles being found in HS lakes (8 and 7 respectively

38

Page 53: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

for the Portneuf and Mastigouche Reserves) than in NS lakes (5 and 1 respectively) (x2(i) =

3.99, P = 0.046). The number of private alleles for the MS lakes was likely closer to that found

in NS lakes for the Portneuf reserve (2 and 5 respectively), while in Mastigouche it was closer

to that found in HS lakes (5 and 7 respectively). Yet, there was no effect of reserve (x2(i) =

0.14, P = 0.71) or loci (x2(8) = 4.54, P = 0.81) on the number of private alleles observed. The

analyses including the hatchery fish revealed that the contribution of these fish to the number

of private alleles observed in stocked lakes was important. Indeed, the difference among

stocking intensity was no longer significant when removing alleles from stocked lakes that

were similar to hatchery alleles (x2(2) = 139, P - 0.50). Specifically, HS lakes shared four and

one alleles with hatchery individuals respectively for the Portneuf and the Mastigouche

Reserve. For the MS lakes, the results revealed the sharing of one private allele with hatchery

individuals for the Mastigouche Reserve.

Population genetic structure

AMOVA results showed that there was no significant difference in genetic variation between

years for any of the stocking intensity and in both reserve (percentage of variation from -8.04

% to 2.06 %; all P > 0.14). Among lakes structure within reserve was responsible for 24.8 %

and 24.3 % {P < 0.001 for each reserve) of the variation for NS lakes for the Portneuf and

Mastigouche Reserves respectively, whereas HS lakes had much lower values at 4.6 % and 1.5

% respectively {P < 0.001 for each reserve). Moderately stocked lakes were intermediate with

the structure among lakes being responsible of 18.4 % and 9.2 % {P < 0.001 for each reserve)

of the variation respectively for the Portneuf and Mastigouche Reserves. Within individuals

level was responsible for the remaining variation (all values above 74% and all P < 0.05

except for HS lakes of the Mastigouche reserve P > 0.05). Overall, the AMOVA analyses

provided a first indication that the level of genetic differentiation among lakes was impacted

by the intensity of stocking whereby an increase in stocking intensity resulted in a weaker

genetic structuring among lakes.

39

Page 54: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Analyses of pairwise FST among lakes revealed no differences in the mean level of genetic

differentiation among reserves {P = 0.70). However, there was a significant difference in FST

among stocking intensities within reserves (P < 0.001), which indicated that the level of

genetic differentiation among lakes decreased as a function of stocking intensity (Figure 2).

Post-hoc Mann Whitney tests indeed revealed significant differences between each stocking

intensity comparison (NS > MS: U = 45.0, P = 0.017; NS > HS: U = 12.0, P = 0.002; MS >

HS: U = 24.0, P = 0.005). More specifically, in the Portneuf reserve, FST among lakes was

0.199 ± 0.045 on average for NS lakes but only 0.050 ± 0.013 for HS lakes (Figure 2; Table

S2). Similarly, in the Mastigouche reserve values were 0.268 ± 0.055 for NS lakes but reduced

to 0.013 ± 0.005 for HS lakes (Figure 2; Table S2). Moderately stocked lakes were

intermediate in both cases (see Table SI). Moreover, Mann-Whitney tests on FST between

hatchery fish and each lake category showed, for the Portneuf Reserve, marginally significant

greater difference between comparisons involving NS lakes than HS lakes (NS > HS, U = 0, P

= 0.057) as well as MS lakes than HS lakes (MS > HS, U = 0, P = 0.057), while no significant

differences were found in comparisons of NS lakes and MS lakes {P = 0.886). For the

Mastigouche Reserve, significant difference was shown among MS lakes and HS lakes

comparisons to the hatchery fish (MS > HS, U = 0, P = 0.029) and marginally significant

differences appeared among NS lakes and MS lakes (NS > MS, U = 2, P = 0.063) and among

MS lakes and HS lakes (MS > HS, U = 2, P = 0.063). More specifically, the FST among lakes

and hatchery fish were on average of 0.220 ± 0.032 and 0.183 ± 0.066 respectively for the

Portneuf and the Mastigouche Reserve for NS lakes, 0.215 ± 0.042 and 0.071 ± 0.061 for the

same comparisons involving MS lakes and 0.054 ± 0.026 and 0.023 ± 0.004 on average for HS

lakes-hatchery fish differentiation.

40

Page 55: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

03

^ .̂:

0 1

I I

- i )

:• il

Un-stocked lakes

t • <*'

Mode rate ly stocked lakes

• Portneuf

B Mastigouche

* ZESL

Heavily stocked lakes

Figure 2. Average pairwise genetic differentiation (FST) between lakes for each intensity of

stocking of the Portneuf and Mastigouche Reserves. Standard error bars represent the 95 %

confidence intervals on the mean.

Results of the Mantel test of IBD showed that linear geographic distance explained 82.7% of

the genetic differentiation among the un-stocked lakes of the Portneuf Reserve (slope = 0.009,

P = 0.03). This relationship was marginally non-significant among the un-stocked lakes of the

Mastigouche reserve (76.0 %, slope = 0.036, P = 0.069). On the other hand, IBD patterns were

absent among the heavily and moderately stocked lakes of each reserve (results not shown).

The Partial Mantel tests indicated that overall, geographic distance did not significantly impact

the extent of genetic differences among populations within both reserves. In contrast, the test

showed that the genetic differentiation between lakes decreased with the average number of

stocking events performed and with the strength of hydrographical connections among lakes

(Table 3; Figure 3).

41

Page 56: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 3. Partial Mantel tests results with overall r2 of the model, partial correlation

coefficients, slope and associated F-values.

Reserve Explanatory variable Partial

correlation coefficient {%)

Slope {fi) P-value

Portneuf (r2 = 0.571)

geographical distance hydrographical connections number of stocking events

-26.1 -42.4 -56.9

-0.0003 -0.2040 -0.0077

0.79 < 0.001 < 0.001

Mastigouche geographical distance {r2 = 0.442) hydrographical connections

number of stocking events

13.2 37.6 53.2

-0.0010 -0.0843 -0.0103

0.40 0.031

< 0.001

0 6

0.4

0.2

0.0

&>~ • •

'••* l ^ > 1 l — l i^i-s , :*rfetef!

• Portneuf r2= 0.12 P< 0.001

A Mastigouche r2=S.40 P< 0.001

S f i 1

0 5 10 IS 20 25

NI u m be r of stocking eve nts since 1971

Figure 3. Relationships (resulting from the Partial Mantel test) between the average value of

pairwise genetic differentiation (FST) values of lakes in both lakes and the average number of

stocking events occurred since 1971 in both lakes for the Portneuf and Mastigouche Reserve.

The r2 and the F-value (obtained from the Partial Mantel test) are indicated for each reserve.

42

Page 57: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Admixture

Results of admixture analyses are summarized in Table 4. In brief, in both reserves the

admixture levels (mean ^-values) were higher for the HS lakes than for the MS lakes (see

Table 4). However, the difference was more pronounced in Portneuf reserve (0.023 ± 0.046

for the MS lakes and 0.451 ± 0.414 for the HS lakes) than in Mastigouche (0.428 ± 0.290 for

the MS lakes and 0.449 ± 0.238 for the HS lakes). Spearman correlations also showed that

average individual admixture increased significantly with the number of stocking events in

both reserves (Portneuf: r = 0.65; t = 2.53; d.f. = 9; P = 0.032; Mastigouche: r = 0.68; t = 2.92;

d.f. = 10; F = 0.015).

Discussion

Our main objective was to assess the impact of stocking intensity on the level of genetic

diversity and the resulting population genetic structure in brook charr. Our results showed that

stocking domesticated brook charr in wild populations greatly affected their genetic integrity

by modifying the nature of genetic diversity within populations and by reducing the level of

population genetic differentiation among lakes.

Our findings of higher genetic diversity in stocked lakes contrast with the usual perception that

domestic fish should harbor lower genetic diversity (Hutchings & Fraser 2008; Shikano et al.

2008; Karaiskou et al. 2009). For example, Blanchet et al. (2008) showed that captive bred

Atlantic salmon {Salmo salar) have lower allelic richness and heterozygosity than their wild

counterparts. Also, Hansen et al. (2006) found that hatchery-reared catla {Catla catla)

populations exhibited a lower genetic variation, in terms of allelic richness and heterozygosity,

than wild populations. Other studies, however, found no difference between the genetic

diversity of hatchery-reared populations and wild populations. For example, Small et al.

(2009) showed that in general, supplemented populations of chum salmon {Oncorhynchus

43

Page 58: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

keta) had the same level of genetic diversity and similar effective population size as

unsupplemented populations in the Puget Sound area (Washington, USA).

Table 4. Mean individual admixture (^-value) ± standard deviation for each stocked lake and

the average for all lakes belonging to a given stocking intensity (SI). MS: moderately stocked

lakes; HS: heavily stocked lakes.

Reserve Lake Mean individual

SI admixture (</-value) ± standard deviation

Portneuf Rivard (RIV) Veillette (VEI) Arcand (ARC) Circulaire (CIR) Average Belles de Jour (BEL) Amanites (AMA) Methot (MET) Average

Mastigouche Chamberlain (CHA) Petit St-Bernard (PET) Mercure (MER) Gelinotte (GEL) Average

MS MS MS MS MS HS HS HS HS MS MS MS MS MS

0.024 ± 0.035 0.012 ±0.018 0.023 ± 0.066 0.034 ± 0.066 0.023 ±0.046 0.519 ±0.453 0.520 ± 0.463 0.315 ±0.325 0.451 ±0 414 0.385 ± 0.236 0.184 ±0.295 0.367 ±0.401 0.777 ± 0.227 0.428 ±0.290

Brochard (BRO) HS 0.738 ± 0.219 Deux etapes (DEU) HS 0.350 ± 0.272 Hollis (HOL) HS 0.323 ± 0.235 Pitou (PIT) HS 0.383 ± 0.226 Average HS 0.449 ±0.238

44

Page 59: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

The apparent increase in genetic diversity with stocking intensity we report here has to be

taken with caution. Indeed, our results revealed that such diversity is partly due to the

contribution of new private alleles of domestic origin as indicated by the sharing of private

alleles between individuals of hatcheries and stocked lakes. In fact, additional analyses

revealed that the correlation between the most common alleles of hatchery fish (having a

frequency of 0.10 or higher) and those found in HS lakes was higher (0.71) than those in MS

lakes (0.25) and NS lakes (0.42). Partial correlations (taking into account the similarity

between each sample) showed a positive value (0.69) between hatchery and HS lakes, while

MS lakes and NS lakes showed negative relationships with hatchery alleles (-0.30 and -0.10

respectively). This further supports our suggestion that genetic diversity in stocked lakes has

been modified largely due to stocking activities. We suggest that such results are likely

explained by a combination of factors, including differential effect of genetic drift and by

differences in origins between domestic and wild populations.

It has been suggested that alleles of domestic origin, favored in captivity, may be deleterious

and recessive when fish are returned in the natural environment (Frankham 2008). As a result,

several studies reported that hatchery fish have lower fitness in natural environment than wild

fish (reviewed in Araki et al. 2008; reviewed in Hansen et al. 2009). Araki et al. (2008)

showed for example that when selection (in captivity and in the wild) and heritability are

strong, and if selection acts on a single trait (e.g. growth rate) a rapid fitness decline can be

observed. Others suggested, using a meta-analysis approach, that domestic fish lose almost 20

% of their fitness per generation (reviewed in Araki et al. 2007a). As for brook charr, few

studies specifically aimed at assessing the differences in genetic diversity or fitness among

groups of different origins. Fraser (1981) showed that domestic brook charr were caught only

in the first year following stocking whereas recoveries of hybrids and wild strains were spread

over the 3-4 following years, suggesting a lower survival of domestic brook charr in natural

environment. Lower rate of survival could be explained in parts by intraspecific and

interspecific competition. Indeed, the absence of competitors during hatchery rearing relaxes

natural selection for competitive abilities. For example, the recovery of stocked brook charr

was four times higher in lakes with no competitors than in lakes containing both white sucker

45

Page 60: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

{Catostomus commersoni) and native brook charr (Lachance & Magnan 1990). Unfortunately,

we have no data on survival of brook charr depending on stocking intensity in the present

study system. The assessment of differential survival in the current context would surely

represent a promising avenue for future research.

Our results showed that genetic differentiation among heavily stocked lakes is 3 to 16 times

lower than in un-stocked lakes (FST = 0.050 vs 0.199 and 0.013 vs 0.268 for the Portneuf and

the Mastigouche reserve respectively). The effect of stocking intensity on the genetic structure

of wild fish populations has been assessed in a few other studies (Araguas et al. 2004;

Karaiskou et al. 2009). For example, on the west coast of Denmark, after the drastic decline of

brown trout {Salmo trutta) wild populations in the 1960-70s, intensive stocking of

domesticated brown trout took place until 1996. However, according to Hansen (2006), these

stocking continue with the permanent brood stock of introgressed Skjern River trout. By

comparing old scale samples (1945-56) from the wild populations prior to stocking to

contemporary samples, Hansen (2002) showed a strong genetic contribution from

domesticated brown trout, with a few remaining presumed non introgressed wild trout in the

Skjern River. More specifically, Hansen et al (2006) showed that the level of genetic

differentiation between contemporary samples (introgressed populations) (mean FST = 0.028,

SD 0.014) was about half as strong as between historical samples (wild populations) (mean

FST = 0.045, SD 0.016), thus also pointing to a relative homogenization of the population

structure due to stocking. Similarly, a study on the supplementation of lake trout {Sahelinus

namaycush) populations in Southern Ontario (Canada) with exogenous individuals from

hatchery strains of the Great Lakes region showed a homogenization of the population

structure of some stocked lakes (Halbinsen & Wilson 2009). More specifically, lakes with

evidence of introgression exhibited a homogenization of the genetic structure among

populations (Halbinsen & Wilson (2009). Another study conducted on coho salmon

{Oncorhynchus kisutch) in Puget Sound (Washington, USA) showed a decrease of the level of

genetic differentiation decreased with the number of fish hatchery released within rivers

(Eldridge & Naish 2007).

46

Page 61: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

The level of genetic differentiation among un-stocked lakes (FST = 0.199 and 0.268 for the

Portneuf and the Mastigouche reserve respectively) were consistent with reported level of

differentiation for natural population of brook charr (FST =0.159-0.201) from the nearby La

Mauricie National Park (Quebec, Canada) (Angers & Bernatchez 1998). IBD analyses

confirmed that such patterns of differentiation were present only in un-stocked lakes of both

reserves reflecting drift and possible local adaptation of these populations. IBD patterns

disappeared when including all lakes in the analyses, in which case hydrographical

connections and the number of stocking events better explained the observed differentiation

patterns in each reserve (Table 3), thus reemphasizing the importance of stocking in modifying

the genetic population structure in this system. A previous study on brook charr populations

from Gros Morne National Park in Newfoundland, Canada showed no relationships between

genetic divergence of populations and contemporary waterway distance (Poissant et al. 2005).

Instead, the authors showed that the level of genetic divergence among populations in their

system was strongly correlated with inferred historical landscape features (Poissant et al.

2005). The authors suggested that the patterns of genetic diversity found within these

populations were the results of small distance migrations during colonization and

differentiation through drift. In other freshwater fish species, geographical and hydrographic

connections have been shown to be main determinants of population structure. For example,

Crispo et al. (2006) showed among natural populations of Trinidadian guppies {Poecilia

reticulata) that geographical distance, associated with waterfalls, increased genetic divergence

and reduced dispersal and long-term gene flow. As well, Olsen et al. (2008) showed in

different populations of western Alaska chum salmon {Oncorhynchus keta) that gene flow was

reduced with the increasing complexity of hydrographic connections.

Overall, our admixture analyses revealed that the mean individual admixture level increased

significantly with the number of stocking events performed at a given location. This

corroborates the results of Hansen & Mensberg (2009) who showed that two rivers with

different stocking intensities presented different levels of introgression. In details, the Skjern

River (945 000 stocked individuals) supported a large number of admixed individuals (71%),

whereas the majority of individuals of the Storaa River (around 100 000 individuals) were

47

Page 62: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

non-admixed (79%). In contrast, a study by Taylor et al. (2007), on the effects of stocking

non-native rainbow trout {Oncorhynchus mykiss) into the Athabasca River (Alberta, Canada)

revealed little detectable genetic introgression between hatchery and wild fish.

While this study did not aim to specifically address this issue, our results also suggested that

the outcome of stocking might be slightly variable depending on the number of hatcheries and

on the origin of fish used. For example, the heterozygosity values for the moderately and

heavily stocked lakes were greater in the Mastigouche Reserve than the Portneuf Reserve and

Fis values of the heavily stocked lakes of the Portneuf Reserve were higher than in the

Mastigouche Reserve. These observations are potentially due to the fact that fishes used for

stocking in the Portneuf Reserve are pure domestic, which are not completely homogenized

with their wild counterparts, thus generating a deficit in heterozygotes. For the Mastigouche

Reserve, hybrids (crosses between domestic females and wild-origin males) from three

hatcheries are used for stocking, which is likely to generate an excess of heterozygotes.

Admixture results also suggest that at high stocking intensity, domestic individuals

substantially contribute to the local genetic pool (e.g. HS lakes in Portneuf). Moreover, our

observation of a more pronounced level of admixture in MS lakes from Mastigouche than MS

lakes from Portneuf raises the possibility that stocking hybrids may have accelerated

introgression rate relative to domestic stocking at moderate stocking intensity (but see also

Griffiths et al. 2009). On the other hand, we should emphasize that, MS lakes of the Portneuf

reserve have not been stocked on average since 18.1 (± 14.0) years, whereas lakes in

Mastigouche reserve are still stocked on average every 3.7 (± 3.3) years. Taylor et al. (2007)

suggested that one potential factor explaining low level of admixture they observed in rainbow

trout was the long lapse of time since the most recent introduction of hatchery fish in their

system (30-80 years). They also argued that in most stocked localities natural selection could

have potentially eliminates hatchery genotypes (Taylor et al. 2007). This further suggests that

when stocking stops, the genetic integrity of native populations may at least partly be restored

(see also Ruzzante et al. 2004; Eldridge & Naish 2007). Indeed, in our study system the extent

of genetic differentiation of MS lakes of the Portneuf Reserve is closer to that of NS lakes,

whereas it is closer to that of HS lakes in the Mastigouche Reserve (Figure 2).

48

Page 63: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Another possibility for the low rate of introgression being detected in MS lakes of Portneuf is

that the hatchery samples we analyzed are not representative, genetically, of the hatchery fish

that were stocked in Portneuf lakes more than 30 years ago. Such difference would have

impeded our current discrimination of hatchery and indigenous fish. However, even though we

have limited information on the actual strain of fish being stocked over the period preceding

the current study, this possibility seems unlikely since the most common domestic strains used

for stocking in Quebec are very similar genetically to each other relative to their wild

counterparts (Martin et al. 2007; see also Taylor et al. 2007).

To our knowledge, this study represents the first large-scale analyses of the consequences of

stocking on patterns of genetic diversity and genetic structure of populations of brook charr.

Brook charr is the most important species used to support recreational fishing in Quebec and is

widespread throughout Eastern Canada. Thus, this study has several implications for the

conservation of exploited fish populations and the management of stocking practices.

Currently, regulations concerning stocking and exploitation of brook charr in lakes exist, but

implementations of the importance of maintaining the genetic diversity of populations of this

species are limited. Our results suggest that stocking may lead to a loss of local adaptation and

eventually a net loss in biodiversity, although this remains to be corroborated by the analysis

of variation at potential "adaptive genes". Our results thus imply that the management of all

non stocked lakes and their fish populations should be treated as independent units, to

maintain the maximum of genetic diversity, and thus the local adaptations. However, lakes

with hydrographical connections and naturally migrating fish could be considered as a same

unit given the importance of this factor in shaping the observed level of genetic differentiation.

Stocking activities could arguably be maintained in the heavily stocked lakes since these lakes

are already severely impacted by such activities. For the moderately stocked lakes, we suggest

to avoid stocking in lakes which have not been stocked for a long time as the level of genetic

structuring in such lakes approaches that of the un-stocked lakes. Quite clearly, future

management plans must take into account the preservation of the genetic diversity and

structure of populations of wild brook charr.

49

Page 64: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

In summary, this study clearly showed that the loss of genetic integrity of wild brook charr

populations, both in terms of genetic diversity and population structure, is strongly associated

with the extent of stocking intensity. Admittedly however, these results do not allow to

decipher the dynamics of introgression which will require a more detailed study of patterns of

introgressive hybridization observed in each population and a statistical assessment of the

effects of variation in abiotic and biotic factors that characterized each lake. We are currently

conducting such investigation.

Acknowledgments

We are grateful to Fabien Lamaze, Bruno Mayot, Marc-Andre Poulin, Andreanne Lessard and

Melissa Lieutenant-Gosselin for their help with field sampling and laboratory analyses.

Thanks also to Eric Taylor and two anonymous reviewers for their constructive comments on

a previous version of this paper. We acknowledge the important contributions of the Ministere

des Ressources Naturelles et de la Faune du Quebec (MRNF), the Societe des Etablissement

de Plein-Air du Quebec (SEPAQ) and the Reseau Aquaculture Quebec (RAQ) to the project.

This research was financially supported by a strategic project grant from the Natural Sciences

and Engineering Research Council (NSERC) of Canada to LB and DG.

50

Page 65: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

CHAPITRE II

DETECTION DE

L'HYBRIDATION

EN MILIEU NATUREL

51

Page 66: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

An empirical assessment of software efficiency to detect introgression

under variable stocking scenarios in wild brook charr

{Sahelinus fontinalis) populations

Amandine D. Marie, Louis Bernatchez et Dany Garant

Description et contribution

L'idee de ce manuscrit m'est venue suite a mes differentes lectures. Devant choisir un logiciel

pour determiner le niveau d'introgression au sein des populations d'ombles de fontaine, les

nombreuses methodes disponibles et leurs divergences ont rendu le choix impossible. Apres

avoir selectionne deux logiciels qui, a date, ont permis d'obtenir les meilleurs resultats en

termes d'assignation des populations, la comparaison quantitative de leur efficacite et

exactitude a partir de simulations a ete effectuee. Par la suite, le niveau d'hybridation a ete

determine au sein des populations naturelles d'ombles de fontaine a partir du logiciel

preconise par les resultats issus des simulations. Ainsi, en plus d'aider a orienter les auteurs

dans le choix d'un logiciel pour les etudes d'hybridation, cet article montre egalement que le

niveau d'hybridation augmente avec l'intensite des ensemencements. Comme pour Particle

precedent, j'ai effectue la recolte des donnees ainsi que le travail de laboratoire. J'ai egalement

effectue les analyses et redige le manuscrit sous la direction de Dany Garant et Louis

Bernatchez. Leurs contributions a Particle s'est faite a travers des conseils pour les

statistiques et la revision du manuscrit.

52

Page 67: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

An empirical assessment of software efficiency to detect introgression

under variable stocking scenarios in wild brook charr

{Sahelinus fontinalis) populations

par

Amandine D. Marie1, Louis Bernatchez2 et Dany Garant1

accepte avec revisions a Conservation Genetics.

1 Departement de biologie, Universite Sherbrooke, Sherbrooke, QC, JIK 2R1, Canada

2 IBIS (Institut de Biologie Integrative et des Systemes), Pavilion Charles-Eugene-Marchand,

Universite Laval, Quebec, QC, G1V 0A6, Canada

* Corresponding author: Dany Garant

Departement de Biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Qc,

JIK 2R1 Canada. Tel. 819 821 8000 ext. 63198, Fax: 819 821 8049.

Email: [email protected]

53

Page 68: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Abstract

Stocking wild populations with domesticated fish is a common practice that promotes variable

levels of introgression depending on the stocking intensity. The detection of hybridization and

introgression has recently benefited from the application of Bayesian techniques implemented

in various software. However, few studies have assessed their efficiency under various

scenarios of stocking in the wild. The objective of this study is to assess quantitatively the

effects of using two of the most widely distributed software, STRUCTURE and NEWHYBRIDS,

on the level of introgression detected in wild brook charr {Sahelinus fontinalis) subjected to

variable stocking intensities. We first found differences in the efficiency of software

assignments based on simulated individuals, with STRUCTURE performing better than

NEWHYBRIDS, independently of the amount of hybrids present in samples (10% or 67%).

However, NEWHYBRIDS showed higher assignments accuracy than STRUCTURE for the same

sets of individuals. Thus, our results suggest that these software should be used in combination

to assess the effects of stocking. Indeed, STRUCTURE is particularly relevant to evaluate the

presence of hybrids in wild populations, whereas NEWHYBRIDS might be preferred to

accurately assess the number of hybrids present in a sample. When applied to wild

populations, STRUCTURE assigned more individuals than NEWHYBRIDS to the wild category.

Moreover, the proportions of assigned domestic and hybrid individuals were higher in more

intensively stocked lakes, whereas the opposite trend was observed for wild individuals.

Key words: admixture, brook charr, microsatellites, NEWHYBRIDS, stocking, STRUCTURE.

54

Page 69: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Introduction

Introductions and supplementations from exogenous individuals in wild populations are

common practices throughout the world. In many cases, introductions are accidental (i.e.

escape of domesticated farm fish, reviewed in Weir and Grant 2005). But in other instances,

such practices have very diverse objectives such as increasing the size of endangered natural

populations (Biebach and Keller 2009) or supplementing populations that are subject to

harvesting (Grandjean et al. 2009). Yet, it is now widely recognized that introductions of

exogenous individuals could represent a threat for natural populations, for example through

hybridization and loss of genetic integrity (Hindar et al. 1991; Ayres et al. 1999; Kidd et al.

2009; Marie et al. 2010). It is therefore imperative to accurately document these effects in wild

populations.

In fish, hybridization has been intensively studied at the intraspecific level, and especially in

salmonids species (Guyomard 1997; Hansen et al. 2001; Halbisen and Wilson 2009).

Salmonids have a considerable economical and recreational value and stocking of natural

populations is commonly performed with domesticated exogenous individuals. Hybridization

between wild and domestic individuals could result in the modification of the genetic integrity

of populations and the loss of local adaptation (Englbrecht et al. 2002; Marie et al. 2010;

reviewed in Fraser et al. 2008), which is a major issue for the management of those

populations.

The detection of hybridization and introgression has benefited from the application of

microsatellite markers and the development of modern analytical approaches for individual-

based multi-locus analyses, such as population assignment and clustering methods (Pritchard

et al. 2000; Hansen et al. 2001; Anderson and Thompson 2002; Susnik et al. 2004; Vaha and

Primmer 2006). In general, to accurately document introgression, a relatively large number of

loci (i.e. microsatellite markers) as well as a substantial level of genetic differentiation

between hybridizing populations (i.e. FST) is recommended (reviewed in Vaha and Primmer

2006). Among the various analytical methods available, Bayesian techniques have generally

55

Page 70: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

proven to be more efficient than likelihood based approaches (Vaha and Primmer 2006).

However, software implementing Bayesian approach, in particular STRUCTURE (Pritchard et

al. 2000) and NEWHYBRIDS (Anderson and Thompson 2002) differ in the method they rely on

for assignments. For example, the widely used software STRUCTURE assigns the probability of

an individual to have a recent ancestry in two or more populations. On the other hand, the

software NEWHYBRIDS evaluates the probability of one individual belonging to a hybrid or

parental classes. Moreover, the efficiency (defined as the number of correctly identified

individuals for a category over the actual number of individuals belonging to that category in

the sample) and the accuracy (the number of correctly identified individuals for a category

over the actual number of individuals assigned to that category) of these software can differ

greatly depending on the population context (see Vaha and Primmer 2006 for details). Thus,

several studies compared the global efficiency of different Bayesian methods to detect the

level of admixture (Vaha and Primmer 2006; Burgarella et al. 2009; Sanz et al. 2009) as well

as the importance of choosing an appropriate threshold probability to discriminate pure vs.

introgressed individuals (Burgarella et al. 2009). However, these were essentially qualitative

in nature, and although Sanz et al. (2009) demonstrated the impacts of variable stocking

intensity, the information provided on the stocking history of each lake was binary (e.g.

presence/absence) with some degree of uncertainty.

The goal of this study is to quantitatively assess the impacts of employing different assignment

software on the level of introgressive hybridization being detected under well documented

variable stocking scenarios in the brook charr {Sahelinus fontinalis). We have recently shown

that stocking intensity could greatly affect the genetic integrity and genetic structure of brook

charr populations (Marie et al. 2010). We thus quantitatively compared the efficiency and

accuracy of the software STRUCTURE and NEWHYBRIDS in detecting hybrids using simulated

genotypes from stocked individuals of domestic and wild origin. We then specifically

evaluated the level of admixture within seven lakes with different stocking histories and then

compared the effects of different stocking practices and software on the resulting level of

hybridization being detected.

56

Page 71: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Materials and Methods

Sampling procedures

Sampling was conducted in the Portneuf wildlife Reserve in Quebec, Canada (47°09'N,

72°17'W; Fig. 1) in June 2007 and July 2008 (see Marie et al. 2010 for details of sampling

procedures). We selected lakes from two categories of stocking intensity: four moderately

stocked and three heavily stocked (Fig. 1). A moderately stocked lake underwent stocking in

less than 50 % of years over the past 15 years (from 1992 to 2007). On average, such type of

lake was stocked with 5819 ± 3427 fish (mean ± SD) per year. A heavily stocked lake

underwent stocking events in more than 50% of the past 15 years (from 1992 to 2007) with on

average 14926 ± 12930 stocked fish per lake per year respectively (see Marie et al. 2010 for

details). We also sampled brook charr in four un-stocked lakes (Fig. 1) to determine the wild

genetic composition of brook charr in the reserve (see below). Finally, a sample of 51

domesticated brook charr was obtained from the nearby Jacques-Cartier Hatchery (Quebec,

Canada). Lakes in the Portneuf Reserve have been stocked exclusively using fish from this

hatchery, which allowed us to accurately determine the genetic composition of the parental

group of domestic origin (see below). Tissue samples (adipose fins) were preserved in 95 %

ethanol until DNA extraction.

DNA extraction and microsatellite analyses

DNA was extracted from fin clips (5 mm2) using the salting out method of Aljanabi and

Martinez (1997). A total of 866 brook charr from the reserve as well as all individuals from

the hatchery were genotyped using nine microsatellite loci: sfoC129, sfoC113, sfoC88,

sfoB52, sfoD75, sfoC24, sfoC86, SC0218, sfoDlOO as detailed in Marie et al. (2010). PCR

products were visualized using an AB 3130 capillary DNA sequencer (Applied Biosystems)

and allele size was established using the software Genemapper version 4.0 (Applied

Biosystems).

57

Page 72: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

7r3<rw rrara rnow wow

Figure 1. Geographical locations of lakes within the Portneuf wildlife Reserve in Quebec,

Canada. BEL: Belles-de-Jour Lake; AMA: Amanites Lake; MET: Methot Lake; RIV: Rivard

Lake; VEI: Veillette Lake; ARC: Arcand Lake; CIR: Circulaire Lake; CAR: Caribou Lake;

LAN: Langoumois Lake; SOR: Sorbier Lake; MAI: Main de Fer Lake

Selection of wild and domestic individuals for assignment tests

First, we selected wild and domestic individuals for each lake independently with both

STRUCTURE (henceforth ST) and NEWHYBRIDS (NH) to simulate individuals of different

background (Fig. 2). Namely, each run of each software included individuals from the stocked

58

Page 73: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

lake of interest (both years pooled) and individuals of the potential parental sources (Fig. 2).

We considered wild individuals from four un-stocked lakes (N = 316) of the Portneuf Reserve

and domestic individuals from the Jacques-Cartier Hatchery (N = 51) as potential parental

sources.

We estimated the individual admixture proportions (^-values) and their posterior probability

intervals for each individual in each stocked lake using ST. First, we assumed that fish caught

in a stocked lake should be assigned to two distinct genetic groups {K = 2; i.e. wild and

domestic individuals). However, wild and domestic individuals did not constantly cluster

separately, likely due to a relatively limited genetic divergence between them. Increasing the

number of groups to K = 3 allowed us to obtain a clearer discrimination between wild and

domestic individuals (at least one group for each individual category), and thus to select

individuals of each category for our simulations. In each analysis, we used the admixture

model with correlated allele frequency with 250,000 steps of the Markov-Chain preceded by a

burnin-period of 100,000 steps.

We also performed the assessment of individual probability of belonging to a given group

using NH. We ran the analysis by specifying the genotype frequency category of wild and

domestic individuals (i.e. wild and domestic individuals each forming a group). Each run of

the Markov-Chain consisted in a burnin-period of 100,000 iterations followed by 250,000

iterations and no prior species information was assumed. Individuals belonging to a category

with a threshold > 70% were considered correctly assigned (following Gunnell et al. 2008 and

Gagnaire et al. 2009).

We selected source individuals for genotypes simulations based on the recommendations from

two previous studies. Nielsen et al. (2003) recommended using between 30 and 50 individuals

for each simulation to reduce biases. Also, Vaha and Primmer (2006) suggested a #-value

threshold < 0.1 (estimated using ST) to define parental populations and to obtain both a good

efficiency and accuracy to detect hybrids in each lake. For analyses using ST, we thus kept 36

domestic fish from the hatchery and 9 wild individuals from each of our four un-stocked lakes

59

Page 74: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

(N = 36) and used ^-values < 0.05 as a threshold to be more stringent in our choice of

individuals representing parental populations. To be consistent in our analysis, we also

selected 36 individuals of each parental category to run the analyses with NH. The selection of

individuals in this case was performed according to their probability of belonging to a given

category (i.e. between 98% and 100% for wild and domestic individuals, data not shown). FST

between groups were calculated with FSTAT (version 2.9.3.2; Goudet 1995) using the 36

individuals selected for each parental simulation of each software. Moreover, we calculated

the FST for all individuals with a g-values threshold of 0.05, estimated using ST and compared

it (Wilcoxon matched pair test) with the FST of the 36 individuals selected for each parental

population to assess the consequence of using different selection methods.

Selection of parental individuals

Simulations

Assignments

Lake Individuals* Wild and Domestic Individualsof Reference

I STRUCTURE

#

HYBRIDLAB

/ \

STRUCTURE

(ST-ST)

NEWHYBRIDS

(ST-NH)

4r NEWHYBRIDS

I HYBRIDLAB

/

STRUCTURE

(NH-ST)

\

NEWHYBRIDS

(NH-NH)

Figure 2. Summary of the different steps used for individual assignments. See text for a

detailed explanation. ST: STRUCTURE; NH: NEWHYBRIDS; ST-ST: selection of parental

individuals with ST and assignments with ST; ST-NH: selection of parental individuals with

ST and assignments with NH; NH-ST: selection of parental individuals with NH and

assignments with ST; NH-NH: selection of parental individuals with NH and assignments with

NH

60

Page 75: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Simulations of different categories of individuals

To assess the relative performance of each software to detect hybrids, we simulated

individuals using HYBRIDLAB 1.0 (Nielsen et al. 2001). Six groups of individuals (pure

wild, pure domestic, Fi hybrids, F2 hybrids and reciprocal backcrosses: Fl*wild parents and

Fl*domestic parents) were simulated for each lake using the 36 individuals selected with ST

and NH (Fig. 2). We performed two sets of simulations to compare the global efficiency of

each software with different proportions of hybrids. First, we generated group 1800 genotypes

for each parental group (SWI for simulated wild individuals and SDI for simulated domestic

individuals) and 100 genotypes of each of the four hybrid groups (FI and F2 hybrids, Fl*wild

parents (BWP) and Fl*domestic parents (BDP) backcrosses), where hybrids represented 10%

of all simulated individuals. Then, we generated group that comprised a higher proportion

(67%) of hybrids (1000 genotypes for each parental and hybrid group) to assess the effect of

having variable hybrids proportion in samples on the software assignments capability.

Admixture analyses from simulated individuals

Admixture analyses were carried out with each software using the same settings as above.

However, here we used a ^-values threshold of 0.1 with ST which allowed us to define hybrid

individuals as those having ^-values > 0.1 and < 0.9. For NH, we used a threshold > 0.7 to

consider the correctly assigned hybrids to their respective category. We were especially

interested in assessing the effect of software used for the selection of individuals and then

admixture analyses on the resulting difference in hybrid detection capability (for example

comparing the performance of a ST-ST combination to a NH-ST combination - see Fig. 2).

We first applied a r-test to compare the hybrid detection capability between samples with 10%

and 67% of hybrids. We then compared the efficiency and the accuracy of ST and NH, both

from the standpoint of selecting individuals for simulations and for quantifying admixture, as

well for assessing the effect of stocking intensity using simulated individual assignments. We

used an ANOVA (GenStat version 12; VSN intl.) with software (ST-ST, ST-NH, NH-ST, NH-

NH), stocking intensity (MS or HS), category of individuals (domestic, wild or hybrid), and

61

Page 76: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

their interactions as factors to assess differences in both efficiency and accuracy. Post-hoc

Tukey tests were performed when factors were deemed significant in the ANOVA.

Admixture analyses using wild-caught samples

Finally, we used ST and NH to assess the proportions of admixture in the seven lakes sampled.

We used the same setting as above for each software assuming a K = 2 with ST and specifying

the genotype frequency category of domestic individuals with NH. We also included domestic

individuals (from the hatchery) in the analyses when assigning individuals of each lake to a

given category. We used an ANOVA to assess the effects of the software, stocking intensity

and their interactions on the assignment of each category of individuals (wild, hybrid and

domestic).

Results

Pairwise FST between wild and domestic individuals selected for simulations

STRUCTURE

The average FST value between the 36 most extreme selected (based on ^-values) wild and

domestic individuals was 0.244 ± 0.006 {P < 0.05; Table 1). In comparison, the average FST

value between individuals with a g-value < 0.05 (from 267 to 276 wild individuals depending

on lake) and g-value > 0.95 (from 37 to 45 domestic individuals depending on the lake) was

reduced to 0.193 ± 0.004 {P < 0.05; Table 1). This difference was significant (Z = 2.37, P =

0.018).

NEWHYBRIDS

The average FST value between wild and domestic individuals selected was 0.233 ± 0.036 {P <

0.05; Table 1). A total of 95.6 % of wild individuals (302 ± 1.2 individuals) and 98.3% of

domestic individuals (50 ±1.1 individuals) were defined as belonging respectively to the wild

62

Page 77: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

and domestic category (data not shown). This level of differentiation was similar to that

obtained using 36 individuals with ST (Z = 0.25, P = 0.80). However, this FST value was

greater than the level of differentiation obtained using individuals with a q-\a\ue < 0.05 in ST

(Z = 2.20, P = 0.028).

Table 1. Pairwise genetic differentiation (FST) between wild and domestic individuals for each

lake obtained using STRUCTURE (for the first 36 individuals selected and for all individuals

with a ̂ -values > 0.95) and NEWHYBRIDS (for the first 36 individuals selected). The averages

and the standard errors are given for all lakes.

Lake

Heavily stocked lakes Belles-de-Jour Amanites Methot

Average Standard error

Moderately stocked lakes Rivard Veillette Arcand Circulaire

Average Standard error

Global average Standard error

STRUCTURE

The first 36 individuals

0.254 0.246 0.237

0.246 0.009

0.247 0.242 0.243 0.240

0.243 0.003

0.244 0.006

Individuals with a g-value

>0.95

0.202 0.192 0.190

0.194 0.007

0.190 0.191 0.192 0.195

0.192 0.002

0.193 0.004

NEWHYBRIDS

The first 36 individuals

0.257 0.242 0.243

0 247 0.008

0.249 0.153 0.241 0.246

0 223 0.046

0.233 0.036

Page 78: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Assignments of simulated individuals

Individuals selected using STRUCTURE

Using ST, over 99% of SWI and SDI were on average respectively assigned to their category

when the sample comprised 10% of hybrids (Table 2a). Individuals that were incorrectly

assigned as SWI or SDI had respectively ^-values > 0.1 and ^-values < 0.9. FI hybrids were

always correctly assigned as being hybrids (99.4% ±0.1 on average; data not shown). In

contrast, the other types of hybrids overlapped with the parental categories (higher overlap for

backcrosses with an average of 29.6% ± 2.3; data not shown). Compared to samples including

67% of hybrids, we found a significant difference for assignments of SDI {P < 0.001), which

was lower in samples with more hybrids (Table 2b). Moreover, significant differences

appeared between hybrids that overlapped with parental categories, with lower overlap in

samples including 67% of hybrids {P < 0.001; data not shown).

With 10% of hybrids present in the sample, on average over 99% of SWI and SDI were

correctly assigned to their respective category using NH (Table 2a). However, the percentage

of correct assignment of hybrids to their respective category was generally smaller (from 10%

for BDP to 76% for FI; data not shown). Although the global assignment of hybrids was

relatively low (59.2% ± 9.2; Table 2a), almost every FI hybrids were assigned to the hybrids

categories, whereas some individuals of other hybrid categories overlapped with the parental

classes (data not shown). Compared to the assignments comprising 67% of hybrids,

assignments of SDI {P < 0.001) and BDP (P = 0.005) were significantly different (correct

assignment of SDI lower in samples with 67% of hybrids, Table 2b; and opposite trend for

BDP, data not shown). Moreover, the proportion of BDP overlapping with the parental

categories was significantly lower in samples with 67% of hybrids than in samples with 10%

ofhybrids(F = 0.004).

64

Page 79: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 2. Percentage of simulated wild, hybrid and domestic individuals that were assigned respectively to the wild, hybrid and

domestic category with STRUCTURE (ST) and NEWHYBRIDS (NH), using individuals selected using either STRUCTURE or

NEWHYBRIDS for samples including a) 10% of hybrids and b) 67% of hybrids. The means and standard errors are given for all

lakes. SWI: simulated wild individuals; SDI: simulated domestic individuals.

a)

Lake

Heavily stocked lakes

Belles-de-Jour

Amanites

Methot

Average

Standard error

Moderately stocked lakes

Rivard

Veillette

Arcand

Circulaire

Average

Standard error

Global average

Standard error

Individuals

SWI

ST NH

100.0 100.0

100.0 100.0

100.0 100 0

1000 1000

00 00

100.0 100.0

100.0 99.9

100.0 100.0

99.6 99.5

99 9 99 9

02 02

99 9 99 9

02 02

selected with Si

Hybrids

ST NH

85.3 66 5

87.0 55.3

82 8 63.8

85 0 619

21 58

83.3 58.0

85 0 56.3

86.8 58 0

74.3 40.0

82 4 55 7

5 6 114

83 5 59 2

44 92

rRUCTURE

SDI

ST NH

99.6 99.6

99.4 99 8

99.7 99 4

99 6 99 6

02 02

99 7 99 7

99 6 99 7

99.7 99 8

99 2 99.3

99 6 99 6

02 02

99 6 99 6

02 02

Individuals selected with NEWHYBRIDS

SWI Hybrids SDI

ST NH ST NH ST NH

99.9 100.0

100.0 100.0

100.0 100.0

100 0 100 0

01 00

100.0 100.0

96.7 98.7

100.0 100.0

100.0 100.0

99 2 99 7

17 07

99 5 99 8

12 05

84.0 59.5

80.8 60 5

86.3 65.8

83 7 619

28 34

84.0 54 5

63.3 21 8

87.0 64.0

85.0 67 3

79 8 56 5

14 12 3

93 8 60 5

10 101

99.8 99.9

99.4 99.4

99.4 99 4

99 5 99 6

02 03

99.6 99.7

97 6 98.9

99 8 99.7

99.6 99.7

99 2 99 5

10 04

99 3 99 5

08 03

Page 80: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Lake

Heavily stocked lakes

Belles-de-Jour

Amanites

Methot

Average

Standard error

Moderately stocked lakes

Rivard

Veillette

Arcand

Circulaire

Average

Standard error

Global average

Standard error

Individuals

SWI

ST NH

100.0 99.9

99 4 99.6

99.5 99.7

99 6 99 7

03 02

99.6 99.4

98.5 98.8

99 0 99.1

82.2 97.9

94 8 98 8

84 06

96 9 99 2

65 07

selected with ST

Hybrids

ST NH

93.8 64.8

93.5 63.5

94 0 63 4

93 8 63.9

0 3 0.8

92.8 61.1

93.6 57.0

93.8 65.2

92.9 39 4

93 3 55 7

05 114

93 5 59 2

05 92

RUCTURE

SDI

ST NH

89.6 93 2

90.6 94.5

88.6 94.6

89 6 94 1

10 08

92 8 94.7

89.4 92.6

92.7 94.7

791 95.7

88 5 94 4

65 13

89 0 94 3

46 10

Individuals selected with NEWHYBRIDS

SWI Hybrids SDI

ST NH ST NH ST NH

100 0 99.9

99.0 99 2

99.4 99.6

99 5 99 6

05 04

97 5 98 7

615 98 8

99 8 99 8

82.4 97.9

85 3 98 8

176 08

914 991

14 6 0 7

93.7 64.9

93.8 64.8

93.4 67.7

93 6 65 8

02 16

93.8 61.9

95 9 57.0

93 0 67.8

92.9 39.3

93 9 565

14 12 3

93 8 60 5

10 101

89.9 93.2

91 1 94.7

90.6 93 8

90 5 93 9

06 08

89 2 94.4

62.7 92 6

92.0 94.4

79.0 95.7

80 7 94 3

13 3 13

84 9 94 1

10 7 10

Page 81: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Individuals selected using NEWHYBRIDS

Using ST, on average over 99% of SWI and SDI were assigned to the domestic category

(Table 2a). Some of the incorrectly assigned hybrids also overlapped with the parental

categories (higher overlap for backcrosses with an average of 31.7% ±1.3; data not shown).

Compared to the samples including 67% of hybrids, the Mest revealed significant differences

for assignments of SDI (P = 0.009), with on average less correctly assigned individuals in

samples including 67% of hybrids (84.9% ± 10.7; Table 2b). Moreover, results showed

significant differences between hybrid individuals overlapping with the parental categories

(lower proportion of overlap in samples including 67% of hybrids; P < 0.001; data not shown).

With NH, over 99% of SWI and SDI on average were correctly assigned to their respective

category, whereas the proportion of hybrids assigned to the hybrid category was lower (60.5%

± 10.1; Table 2a). Simulated hybrids were again assigned in lower proportion to their

respective class (from 18% for BDP to 76% for FI; data not shown). Moreover, some hybrid

individuals overlapped with the parental classes (from 2% for FI to 10% for backcrosses; data

not shown). Our comparisons with samples including 67% of hybrids showed no significant

differences between assignments, except for the SDI for which assignments appeared lower

(94.1% ± 1.0; Table 2b) in samples with 67% of hybrids; P < 0.001).

Comparisons of assignment methods

As our results revealed that the clear identification of F2 hybrids and backcrosses was

somewhat problematic (misidentification in their respective category and overlap with the

parental populations), we pooled hybrids (FI, F2 and backcrosses assigned to the hybrid

categories) in a same hybrid category for subsequent analyses.

Efficiency

The results of analyses including 10% of hybrids showed a significant difference in the

assignment efficiency according to the category of individuals {P < 0.001; Table 3b). The

Tukey test showed that the proportions of assigned wild and domestic individuals (on average

67

Page 82: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

99.8% ± 0.7 and 99.5% ± 0.4 respectively) were higher than hybrid individuals (on average

69.5% ± 16.3; P < 0.001). Moreover, our analyses showed a significant effect of software on

assignment efficiency (P < 0.001; Table 3). Indeed, post-hoc analyses revealed significantly

higher efficiency in four cases: ST-ST > ST-NH (on average 94.3% ± 8.2 and 85.5% ±21.2

respectively; P < 0.001); ST-ST > NH-NH (on average 94.3% ± 8.2 and 85.2% ± 22.7

respectively; P < 0.001); NH-ST > ST-NH (on average 93.4% ± 9.8 and 85.5% ± 21.2

respectively; P < 0.001); NH-ST > NH-NH (on average 93.4% ± 9.8 and 85.2% ± 22.7

respectively; P < 0.001). Others comparisons did not show significant differences {P > 0.96).

Our results thus suggest that ST is more effective than NH at quantifying admixture when a

small proportion of hybrids (10%) are present in the sample. A significant interaction between

software and the category of individuals was also revealed {P < 0.001). More specifically,

using ST to assign individuals, the proportions of assigned hybrids (on average 82.5% ± 6.4)

was higher {P < 0.001) than using NH (on average 56.5% ± 12.2), whereas no difference

between the software combinations appeared for the assignments of wild and domestic

individuals (all P > 0.99). Similar results concerning the assignment efficiency were obtained

with 67% of hybrids in the sample (data not shown). Thus, our results generally suggest that

the software performance is driven by the hybrid individuals.

Accuracy

In samples with 10% of hybrids, the assignment accuracy differed only between software {P =

0.045; Table 3) and the only post-hoc significant {P = 0.035) comparison was found between

ST-NH (on average 99.1% ± 1.1) and NH-ST (on average 96.3% ± 6.0). Contrastingly, in

samples including 67% of hybrids, the accuracy of assignments differed significantly between

individual categories {P < 0.001; Table 3). The accuracy was significantly higher for hybrids

(94.7% ± 5.8) than wild individuals (87.0% ± 10.2; P < 0.001) and domestic individuals

(80.6% ± 7.1; P < 0.001). Moreover, the accuracy of wild individuals was also higher than

domestic individuals {P = 0.001). Our results revealed also significant differences between

software (P < 0.001; Table 3). The accuracy of assignments was higher for NH-NH (on

average 91.5% ± 9.4) than ST-ST (84.9% ± 6.4; P = 0.011) and NH-ST (81.8% ± 10.3; P <

0.001). The assignment accuracy of ST-NH (on average 91.5% ± 9.1) was also higher than

68

Page 83: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

ST-ST (84.9% ± 6.4; P = 0.011) and NH-ST (81.8% ± 10.3; P < 0.001). Other comparisons

between software did not differ significantly (all P > 0.56). Thus, our analyses suggest that

NH accuracy is greater than ST when assigning individuals. Moreover, the accuracy of

assignment also increased significantly with stocking intensity {P < 0.001; Table 3). For the

highly stocked lakes, the software accuracy was of 90.2% ± 6.5 while it dropped to 85.4% ±

11.2 for moderately stocked lakes.

Assignments using wild-caught samples

ANOVA results showed a significant difference between software in terms of number of wild

individuals assigned (see Table 4). The number of wild individuals assigned was significantly

higher when using ST (74.2% ± 27.8) than with NH (57.2% ± 42.9) (Table 5). Moreover, the

proportion of wild individuals assigned decreased significantly with stocking intensity {P <

0.001; Table 4). Using ST, the moderately stocked lakes exhibited a proportion of 96.4% ±3.0

of wild fish whereas the heavily stocked lakes included 44.6% ±3.5 of wild fish (Table 5).

With NH, wild fish represented 89.4% ± 6.8 of individuals in the moderately stocked lakes

and 14.4% ± 24.9 in the heavily stocked lakes (Table 5). However, the number domestic and

hybrid individuals increased significantly with the stocking intensity (P < 0.001 and P = 0.010

respectively for the domestic and hybrid individuals; Table 4). The moderately stocked lakes

showed no domestic individuals and on average 5.7% ± 4.6 hybrid individuals (Table 5). The

heavily stocked lakes exhibited on average 38.0% ± 15.0 domestic individuals and 27.3% ±

19.5 hybrid individuals (Table 5).

69

Page 84: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 3. Effects of software, stocking intensity, individuals category (wild, hybrid or

domestic) and their interaction on the efficiency (number of correctly assigned individuals for

a category over the actual number of individuals of that category in the sample) and accuracy

(number of correctly identified individuals for a category over the actual number of

individuals assigned to that category) of assignment of simulated individuals for samples

including a) 10% of hybrids and b) 67% of hybrids. Results from the final model including

significant terms are presented (from ANOVAs with the corresponding F-statistic).

a)

Efficiency Software Individuals category Software*Individuals category

Accuracy

F-statistic

7.13 117.08 16.01

F-statistic

d.f.

3 2 6

d.f.

P-value

< 0.001 < 0.001 < 0.001

P-value

Software 2.81 0.045

b)

Efficiency Software Individuals category Software* Individuals category

Accuracy Software

Individuals category Stocking intensity

F-statistic

2.79 20.63 28.22

F-statistic

12.51 35.07 11.89

d.f.

1 2 6

d.f.

1 2 1

P-value

0.046 < 0.001 < 0.001

P-value

< 0.001

< 0.001 < 0.001

70

Page 85: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 4. Effects of software, stocking intensity and their interaction on categorical assignment

of wild, hybrids and domestic individuals sampled from lakes in the Portneuf reserve Quebec,

Canada. Results from ANOVAs are presented with the corresponding F-statistic.

Wild individuals F-statistic d.f. P-value Software 5.82 1 0.035 Stocking intensity 80.00 1 < 0.001 Software*Stocking intensity 3.22 1 0.103

Hybrid individuals F-statistic d.f. P-value Software 1.46 1 0.252 Stocking intensity 9.38 1 0.010 Software*Stocking intensity 0.47 1 0.507

Domestic individuals F-statistic d.f. P-value Software 0.23 1 0.638 Stocking intensity 52.92 1 < 0.001 Software*Stocking intensity 0.29 1 0.601

71

Page 86: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 5. Number of assigned individuals and categorical assignments of individuals (wild,

hybrid and domestic individuals in percentage) of each lake obtained with a) STRUCTURE {q-

values > 0.9 or < 0.1) and b) NEWHYBRIDS (threshold of 0.7). The mean percentage of

assignments and standard error are given for the heavily and moderately stocked lakes.

a)

Lake

Heavily stocked lakes Belles-de-Jour

Amanites Methot

Average Standard error

Moderately stocked lakes

Rivard Veillette Arcand

Circulaire

Average

Standard error

Global average Standard error

Number of individuals

81 88 101

90

46

101 56

77

70

78.6

Wild individuals

43.2

42.0 48.5

44.6 3.5

97.8 99.0 96.4

92.2

96.4 3.0

74.2 27.8

Categorical assignment

Hybrid individuals

9.9 13.6 37.6

20.4 15.0

2.2

1.0 3.6

7.8

3.7 3.0

10.8 12.6

Domestic individuals

46.9

44.3 13.8

35.0 18.4

0

0 0

0

0 0

15.0 21.5

72

Page 87: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

b)

Lake

Heavily stocked lakes Belles-de-Jour Amanites Methot

Average Standard error

Moderately stocked lakes Rivard Veillette Arcand Circulaire

Average Standard error

Global average Standard error

Number of individuals

81 88 101

90

46 101 56 77

70

78.6

Wild individuals

0 43.2

0

14.4 24.9

84.8 99.0 89.3 84.4

89.4 6.8

57.2 42.9

Categorical assignment

Hybrid individuals Domestic individuals

44.4 6.8 51.5

34.2 24.0

13 0

8.9 9.1

7.8 5.5

19.1 20.2

53.1 44.3 25.7

41.0 14.0

0 0 0 0

0 0

17.6 23.4

Discussion

This study aimed to quantitatively assess the impacts of employing different assignment

software on the level of introgressive hybridization being detected under variable stocking

practices in the brook charr. Our analyses revealed that the software STRUCTURE (ST) has a

higher efficiency in assigning individuals than NEWHYBRIDS (NH), both when samples

contained a low (10%) or high (67%) proportion of hybrids. This difference in efficiency was

mainly related to the much higher assignment of hybrids individuals when using ST than with

NH. However, our results also suggested that NH was more accurate than ST in assigning

73

Page 88: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

individuals, especially when the proportion of hybrids in the sample was high. Interestingly,

under this same scenario, the assignment accuracy increased with the stocking intensity in the

sample. Finally, when applied to wild populations, ST assigned more individuals than NH to

the wild category. As expected, the proportion of individuals assigned to the domestic and

hybrid categories increased with the stocking intensity, whereas the opposite trend was

observed for wild individuals.

Selection of individuals for simulations

Our results revealed the importance of choosing a strict threshold when using ST in order to

meet the criteria suggested by Vaha and Primmer (2006). Indeed, these authors recommended

a minimal level of genetic divergence (FST) between parental populations of 0.21 and 0.12

using respectively 12 and 21 microsatellite loci to detect hybrids. Here, with nine loci and

using only individuals with gr-value < 0.05, we achieved a FST of 0.24 using ST and 0.23 using

NH. Our results thus suggest that even with the typical number of loci (6-10) used in previous

studies (see Sanz et al. 2009), sufficient resolution could be achieved when performing

admixture analyses.

Detection of simulated hybrids

Analyses performed with 10% or 67% of simulated hybrids showed that both software could

adequately detect FI hybrids, but that the power of detection of the subsequent generations

(F2 hybrids and backcrosses) was much more limited. With each software, F2 and backcrosses

hybrids overlapped with the parental populations and the proportion of overlap was higher

with lower proportion of hybrids in the sample (see also Vaha and Primmer 2006). In general,

the overlap was higher for backcrosses, which can be potentially attributed to the repeated

backcrosses of admixed individuals with individuals of parental populations (Oliveira et al.

2008). Similar results were found in others studies (Vaha and Primmer 2006; Oliveira et al.

2008; reviewed in Randi 2008; Burgarella et al. 2009; Sanz et al. 2009), and it is likely that the

power in the detection of F2 and backcross hybrids could be raised by increasing the number

of loci, given the genetically proximity of the parental populations, as suggested by several

studies (Vaha and Primmer 2006; Oliveira et al. 2008; Randi 2008; Burgarella et al. 2009).

74

Page 89: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

However, it is noteworthy that Albert et al. (2006) were not able to tell apart F2 from BC

hybrids between American {Anguilla rostrata) and European ell {A. anguilla) even when using

373 AFLP markers. Moreover, the extent of misclassification of hybrids may be also reduced

by using a more severe threshold to increase the accuracy at the expense of efficiency (Vaha

and Primmer 2006; Burgarella et al. 2009).

Efficiency and accuracy of software

Our quantitative assessment of software efficiency revealed significant differences among

software combinations. More specifically, we found that ST showed a higher efficiency than

NH, especially when assigning hybrid simulated individuals, both under scenarios of low and

high proportion of hybrids. Burgarella et al. (2009) previously showed that when a low

proportion of hybrids were present in their sample (2%), the efficiency of ST was higher than

NH. Also, Vaha and Primmer (2006) showed that both software possessed a similar efficiency

when the proportion of hybrids was around 10% in the sample but that NH efficiency

decreased more rapidly than ST when the proportion of hybrids was smaller (1%). Thus, our

results, in combination with previous published evidences, suggest that ST should generally

show a greater efficiency and be less prone to fluctuations in the number of hybrids present in

the sample. We also found that NH was more accurate than ST to assign simulated

individuals, as suggested previously (Vaha and Primmer 2006; Burgarella et al. 2009).

Thus, ultimately the choice of the software to detect hybrids will clearly depend on the main

objective of the study. The high efficiency of ST should be appealing for conservation studies

aiming to assess the presence of hybrids in wild populations, especially given the difficulty to

predict a priori the proportion of expected hybrids in such samples (see Marie et al. 2010, for

example). Alternatively, the use NH should be favored in studies where hybridization is

known to occur and where the main aim is to accurately assess the number of hybrids present

in a subset of individuals (see Adams et al. 2007, for example).

75

Page 90: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Effect of stocking intensity on the efficiency and the accuracy of software

We found no effect of stocking intensity on the software's assignment efficiency. Previous

studies showed qualitatively that the efficiency of software may be influenced by the

proportion of hybrids in the sample but in equivocal fashion. For example, Vaha and Primmer

(2006) showed that the efficiency of software decreased when fewer hybrids were present. At

the opposite, Sanz et al. (2009) showed that the efficiency of the assignment method was

reduced with greater levels of introgression in the samples.

Our analyses, however, revealed a significant effect of stocking intensity on the assignment

accuracy in the sample including 67% of hybrids. The accuracy was higher in heavily stocked

lakes than in moderately stocked lakes, suggesting that a greater resolution is achieved with

more introgression in the sample. Our study represents the first quantitative assessment of the

assignment accuracy with different proportions of hybrids in samples and thus further studies

are required to conclude on the generality of our findings.

Assessment of introgression in wild populations

Our admixture analyses revealed that the assigned proportions of wild, hybrid and domestic

individuals were significantly influenced by the stocking intensity at a given location. More

specifically, and as expected, our results showed that the proportion of wild individuals was

significantly higher in moderately stocked lakes than in heavily stocked lakes, whereas the

opposite trend appeared for the domestic and hybrid individuals. Thus, these results confirm

the genetic impact of the stocking practices on wild populations, with a greater potential of

introgressive hybridization in heavily stocked lakes rather than moderately stocked lakes.

Similar conclusions were reported by Marie et al. (2010), who showed that the mean

individual admixture of brook charr in lakes of two wildlife reserves in Quebec (Canada)

increased significantly with the number of stocking events performed in these lakes. Hansen

and Mensberg (2009) also showed that rivers that were more intensely stocked with brown

trout {Salmo trutta) showed higher levels of introgression.

Based on our results from simulated individuals, we expected that ST would perform better

than NH in terms of assignment efficiency since stocking in our lakes result in the presence of

76

Page 91: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

hybrids in our sample. Yet, the only difference in individual's assignment was found for wild

individuals for which the number of individuals assigned was higher with ST than NH. This

was especially evident in heavily stocked lakes where ST assigned on average three times as

many wild individuals than NH (Table 5). Such difference, reflecting a possible trade-off

between efficiency and accuracy, is a little worrying as it could greatly impact interpretations

on the consequences of stocking. Indeed, if ST was the software used to conduct admixture

analyses, one could conclude that wild individuals are still common under conditions of

intense stocking. Yet, if the analyses were performed with NH only, the main conclusion

would be totally opposite: that intense stocking reduce the number of wild individuals

detected. Thus, in order to efficiently understand the effect of stocking it might be necessary to

use these two software in combination: using first ST to detect the presence of hybrids and

then NH to assess the number of hybrids. Other studies also showed differences between

simulations and real case scenarios. Sanz et al. (2009), for example, compared the efficiency

of four Bayesian assignment methods to detect the level of admixture in stocked populations

of brown trout in Spain. From simulated individuals, the authors showed that any combination

of markers and methods gave qualitatively similar conclusions, whereas ST seemed to be the

best choice to detect admixture in wild populations. Thus, even though simulations can help to

choose the software with the best performances, our study and that of Sanz et al. (2009)

suggest that results obtained under real contexts can sometimes provide inconsistent results.

Conclusion

When aiming at assessing the level of introgression between genetically related parental

populations of the same species (e.g. wild and domestic populations), the choice of an

appropriate threshold to select individuals for simulations appeared to be of importance to

respect the recommendations of Vaha and Primmer (2006) and should thus be tested a priori.

Our results confirmed previously published evidences that a high number of microsatellite loci

is required in order to go beyond the detection of FI hybrids (Vaha and Primmer 2006;

Oliveira et al. 2008; Burgarella et al. 2009; Sanz et al. 2009). Analyses of efficiency suggested

that ST should be used when performing admixture analyses independently of the expected

proportion of hybrids in the sample. Moreover, it appeared that NH had a higher accuracy,

77

Page 92: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

which increased with stocking intensity. Our results also confirmed the genetic impact of the

stocking practices on wild populations, with a greater introgressive hybridization in lakes

subjected to intensive stocking. Yet, the differences detected among software in terms of

number of wild individuals assigned suggest that simulations and real case scenarios might

provide contrasted results.

Acknowledgments

We are grateful to Fabien Lamaze, Bruno Mayot, Marc-Andre Poulin, Andreanne Lessard and

Melissa Lieutenant-Gosselin for their help with field sampling and laboratory analyses. We

acknowledge the important contributions of the Ministere des Ressources Naturelles et de la

Faune du Quebec (MRNF), the Societe des Etablissement de Plein-Air du Quebec (SEPAQ)

and the Reseau Aquaculture Quebec (RAQ) to the project. This research was financially

supported by a strategic project grant from the Natural Sciences and Engineering Research

Council (NSERC) of Canada to LB and DG.

78

Page 93: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

CHAPITRE III

DETERMINANTS

ENVIRONNEMENTAUX

DE L'HYBRIDATION

79

Page 94: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Environmental determinants of hybridization

in stocked brook charr {Sahelinus fontinalis) populations

Amandine D. Marie, Louis Bernatchez et Dany Garant

Description et contribution

Ce manuscrit traite de l'effet des facteurs environnementaux, couples a l'intensite des

ensemencements, sur le niveau d'hybridation observe dans des populations naturelles

d'ombles de fontaine. Ainsi, pour la premiere fois, il est montre que certains facteurs

environnementaux (i.e. morphologie et physico-chimie des lacs), en plus des ensemencements,

permettent de predire le niveau d'hybridation genere par ces derniers. Comme pour les articles

precedents, j 'ai effectue la recolte des donnees, le travail de laboratoire, les analyses et redige

le manuscrit. Les Professeurs Garant et Bernatchez ont supervise l'ensemble du travail et

revise les differentes versions du manuscrit.

80

Page 95: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Environmental determinants of hybridization

in stocked brook charr {Sahelinus fontinalis) populations

par

Amandine D. Marie1, Louis Bernatchez2 et Dany Garant1

sera soumis sou peu a Evolutionary Applications.

1 Departement de biologie, Universite Sherbrooke, Sherbrooke, QC, JIK 2R1, Canada

2 IBIS (Institut de Biologie Integrative et des Systemes), Pavilion Charles-Eugene-Marchand,

Universite Laval, Quebec, QC, G1V 0A6, Canada

* Corresponding author: Dany Garant

Departement de Biologie, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Qc,

JIK 2R1 Canada. Tel. 819 821 8000 ext. 63198, Fax: 819 821 8049.

Email: Dany.GarantfoiUSherbrooke.ca

81

Page 96: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Abstract

Stocking is a common practice throughout the world that may increase hybridization between

wild and domesticated populations. Stocking intensity alone does not always fully explain the

observed patterns of hybridization, suggesting that the intensity of hybridization may be

modulated by environmental factors. Despite this, very few studies have attempt to decipher

the role that environmental factors may play in promoting or hindering hybridization under

natural conditions. Using brook charr {Sahelinus fontinalis) as a model, the objective of this

study was to assess the relative effect of environmental factors and stocking intensity on the

level of hybridization observed in wild populations. A total of 1196 fish from 15 lacustrine

populations of 2 wildlife reserves in Quebec, Canada were genotyped using 9 microsatellite

markers. The level of hybridization significantly increased with: i) the number of stocking

events (effect size of 0.506 ± 0.123; P = 0.001), ii) a reduction in both surface area and

maximum depth of lakes (effect size of -0.544 ± 0.117; P < 0.001), iii) a reduction of

dissolved oxygen and iv) an increase of temperature and pH (effect size of 0.840 ± 0.108; P <

0.001). Thus, increased levels of hybridization were associated with a reduction of lacustrine

habitat availability and quality and were even more important than the effects of stocking.

These results represent the first demonstration that the effects of stocking on the genetic

integrity of wild populations may be predictable based on knowledge of environmental

features.

Key words: hybridization, salmonids, microsatellites, stocking, conservation, management.

82

Page 97: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Introduction

Major threats to biodiversity come from human activities through habitat loss, fragmentation,

pollution, land cover change, overexploitation and the introduction of invasive species

(International Union for Conservation of Nature 2009). The general outcomes of these

different practices are the degradation of ecosystems (International Union for Conservation of

Nature 2009) and the erosion of genetic diversity and evolutionary potential (Frankham et al.

2005), which often lead to the extinction of wild populations and ultimately species (Dulvy et

al. 2003; Laurance and Useche 3009). Hybridization is one of the main processes impacting

the genetic make-up of wild species in both plants, mainly through physical disturbances (i.e.

roadsides and building construction sites; Levin et al. 1996; Lamont et al. 2003; Pansarin and

Amaral 2007), and animals, mostly due to deliberate or accidental introductions of exogenous

individuals (Hindar et al. 1991; Oliveira et al. 2008; Marie et al. 2010). Yet, the consequences

of hybridization are complex and controversial (Allendorf et al. 2001). Although introgressive

hybridization may contribute to diversification and adaptability (e.g. adaptive traits) (reviewed

in Mallet 2005), it is more often associated with deleterious effects, ultimately leading to

species extinction (Rhymer and Simberloff 1996).

In fish, and especially in salmonids, introductions of domesticated individuals into wild

populations are common practices throughout the world. Since salmonids have a considerable

economical and recreational value, stocking of populations is often required to sustain sport

fisheries. Hybridization, which is particularly frequent in fishes (Hubbs 1955), is the greatest

genetic risk associated with these practices and represents a major issue for the management of

such populations (Allendorf et al. 2001). The outcomes of stocking reported in salmonid taxa

range from hybridization without introgression to complete admixture of native populations

(Allendorf et al. 2001; Hansen 2002). The extent of hybridization partly depends on the level

of the genetic differences between wild and domestic individuals (Naish et al. 2008). Even

with little genetic differences, deleterious effects have been reported in natural populations

through, for example, loss of local adaptations and modification of population's genetic

83

Page 98: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

integrity (Reisenbichler and Rubin 1999; Englbrecht et al. 2002; Miller et al. 2004; Hansen et

al. 2009; Marie et al. 2010; reviewed in Fraser 2008).

Most studies performed to date have been devoted to documenting the consequences of

various stocking practices on resulting hybridization (Halbisen and Wilson 2009; Hansen and

Mensberg 2009; Marie et al. 2010). For instance, the number of stocking events (Marie et al.

2010) or the number of fish released (Hansen and Mensberg 2009) have been shown to be

positively correlated with the level of hybridization detected in stocked populations. In

contrast, very few studies have attempt to decipher the role that environmental factors may

play in promoting hybridization under wild conditions. As a notable exception, Heath et al.

(2010) showed that a combination of factors (e.g. logging activity, urban infrastructure

development, stocking) influenced the level of hybridization observed among coastal cutthroat

{Oncorhynchus clarki clarki) and rainbow trout {Oncorhynchus mykiss) populations on

Vancouver Island. However, to our knowledge, no study has assessed the relative impact of

environmental factors and stocking in determining the hybridization levels at the intraspecific

level.

This contrasts with the increasing number of studies assessing the effects of environmental

variables on population genetic structure through landscape genetic approaches (Sork and

Waits 2010), including several examples in fishes (Angers et al. 1999; Leclerc et al. 2008;

Launey et al. 2010). Moreover, the paucity of studies assessing the environmental

determinants of hybridization is somewhat surprising given that the modelling approaches

used in landscape genetics are directly applicable to the detection of the factors shaping

hybridization.

In this context, the main objective of this study is to assess the relative effects of

environmental factors on the level of hybridization using brook charr {Sahelinus fontinalis)

populations in 15 lakes of 2 wildlife reserves in Quebec, Canada, as a model. We have

recently shown that intensive stocking greatly modifies both the extent of within- and inter-

population genetic of those populations (Marie et al. 2010). Here, we specifically quantified

84

Page 99: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

the relative influence of environmental factors (biotic, physicochemical and morphometric),

retained according to the knowledge of the biology of brook charr, in addition to stocking

intensity on the level of hybridization observed in stocked lakes.

Materials and Methods

Sampling procedures

Sampling was conducted in the Portneuf and the Mastigouche wildlife Reserves in Quebec,

Canada (47°09'N, 72°17'W and 46°40'N, 73°30'W; Fig. 1) in June 2007 and July 2008 (see

Marie et al. 2010 for details of sampling procedures). 7 and 8 lakes were chosen based on their

well documented stocking histories since 1971 in the Portneuf and the Mastigouche Reserve,

respectively. The number of stocking events performed in those lakes since 1971 was used as

a predictive variable in statistical models (see below). Domestic brook charr (n = 51) were

obtained from a domestic strain maintained at the nearby Jacques-Cartier Hatchery (Quebec,

Canada) which is used for stocking in the Portneuf Reserve. We also obtained domestic-wild

FI hybrid brook charr (n = 40) from the three hatcheries (Alleghanys, Truites de Mauricie and

Lac-des-Ecorces, Quebec, Canada) used for stocking in the Mastigouche Reserve (see Marie

et al. 2010 for details). Tissue samples (adipose fins) were preserved in 95 % ethanol until

DNA extraction.

Environmental variables

Descriptors of the biotic, physicochemical and morphometric environment to evaluate their

relative effects on the level of hybridization observed in each lake were chosen based on

current understanding of the factors important for brook charr (Power 1980; Spoor 1990;

Venne and Magnan 1995; Warren et al. 2010). For each lake, the temperature (°C), dissolved

oxygen (mg/L) and pH were measured at one meter below the water surface and at

approximatively 40 m from the shore. Four measurements of each parameter were done in

June and July 2007-2008 for each lake. Data were then averaged for each parameter of each

85

Page 100: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

a)

Legend Aj Neavify stoheti iafees

^ M<xf#atl¥«c<Jiedis»!a$

j,s-es«(ve Po*6i8irf tests

b)

Figure 1. Geographical locations of lakes within the two wildlife reserves: (a) Portneuf, and

(b) Mastigouche, in Quebec, Canada. See Table 1 for abbreviations of lake names.

86

Page 101: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

lake. The temperature and dissolved oxygen were obtained using a waterproof dissolved

oxygen meter kit (OXI 330i WTW) and the pH using a pHTestr 20 (Eutech Instruments). Data

of surface area (ha) and maximum depth (m) of each lake was obtained from the Ministere des

Ressources Naturelles et de la Faune du Quebec (MRNF). The presence of potential

competitor species (presence or absence of white sucker {Catostomus commersoni) and/or

creek chub {Semotilus atromaculatus) was also taken into account (Magnan 1988; Bourke et

al. 1999). All variables are detailed in Table 1.

Genetic analyses

DNA was extracted from fin clips (25 mm2) using the salting out method of Aljanabi and

Martinez (1997). A total of 549 and 647 brook charr originating from the Portneuf and the

Mastigouche Reserve, respectively, as well as all individuals from the hatcheries were

genotyped using 9 microsatellite loci: sfoC129, sfoC113, sfoC88, sfoB52, sfoD75, sfoC24,

sfoC86, SC0218, sfoDlOO as detailed in Marie et al. (2010). PCR products were visualized

using an ABI 3130 capillary DNA sequencer (Applied Biosystems) and allele size was

established using the software Genemapper version 4.0 (Applied Biosystems). The individual

admixture proportions (g-values) and their posterior probability intervals were estimated for

each individual in each lake using STRUCTURE v.2.2 (Pritchard et al. 2000). We assumed that

fish from stocked lakes should be assigned to two distinct genetic groups {K = 2; i.e. wild and

domestic individuals). An admixture model with correlated allele frequency was used for each

analysis with 250 000 steps of the Markov-Chain that were preceded by a burnin-period of

100 000 steps.

Statistical analyses

To facilitate the assessment of environmental effects on the level of hybridization, a principal

component analysis (PCA) was used for reducing and obtaining indexes resuming

environmental data by category (e.g. morphometrical and physicochemical). First, data were

centered on their mean to facilitate comparisons. Then, two PCA were performed separately,

87

Page 102: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 1. Characteristics of the lakes in each reserve including the latitude, the longitude, the mean level of hybridization {q-

value), number of stocking events since 1971 (NS), and the environmental factors (surface area (SA), maximum depth (MD),

temperature (T), dissolved oxygen (DO), pH, competition (Co)). 0 for competition: absence of competitors; 1 for competition:

presence of competitors.

Reserve Lakes Latitude Longitude g-value±SD NS SA (ha) MD (m) T (°C) DO (mg/L) pH Co

Portneuf Belles-de-Jour (BEL) 47°05'43"N 72°17'41"W 0.52 ±0.45 23 7.5 16.1 19.6 8.8 6.9 0 Amanites (AMA) 47o06,30nN 72°22'43"W 0.52 ±0.46 20 10.2 12.9 20.1 8.7 6.9 1 Methot (MET) 47°10'20"N 72°19'33"W 0.32 ±0.33 15 8.9 11.0 20.6 8.7 6.5 0 Rivard (RIV) 47°10'19"N 72°01'56"W 0.02 ±0.04 8 5.4 7.9 17.5 9.4 5.8 0 Veillette (VEI) 47°09'44"N 72°01'24"W 0.01 ± 0.02 8 37.4 19.6 17.6 8.7 6 0 Arcand(ARC) 47°14'45"N 72°23'33"W 0.02 ±0.07 1 15.1 18.7 17.3 8.2 6.3 1 Circulaire (CIR) 47°07'50"N 72°05'U"W 0.03 ± 0.07 1 1.4 1.0 17.3 8.9 5.7 1

Mastigouche Brochard (BRO) 46°36,41"N 73°20'39"W 0.74 ±0.22 17 15.5 12.6 21.9 8.1 6.1 0 Deux etapes (DEU) 46°32'33MN 73°23,53"W 0.35 ± 0.27 19 12.3 22.0 21.5 8.3 6.1 0 Hollis(HOL) 46°32'16"N 73°24'30"W 0.32 ±0.24 18 16.7 15.8 21.6 8.2 6.5 0 Pitou(PIT) 46°32,48"N 73024'17"W 0.38 ±0.23 19 8.0 16.9 20.7 7.6 5.9 1 Chamberlain (CHA) 46°31'13"N 73°19'53"W 0.39 ±0.24 9 18.4 5.0 21.2 8.2 6.4 1 Petit St-Bernard (PET) 46°33'58,,N 73°17'38"W 0.18 ±0.30 4 14.3 13.7 21.3 8.3 6.5 1 Mercure(MER) 46°41'53"N 73°34'08"W 0.37 ±0.40 2 3.1 11.5 20.7 8.3 6.3 1 Gelinotte (GEL) 46°50'42MN 73°21'47"W 0.78 ±0.23 5 4.7 7.0 20.4 7.6 5.7 0

« %

Page 103: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

using a correlation matrix approach, to obtain 1) a morphometrical index (henceforth called

SD), which includes surface area and maximum depth as well as 2) a physicochemical index

(TOP) that describes temperature, dissolved oxygen and pH. Although we retained the

principal component scores of the first axis for both analyses, which explained the majority of

variance in data, the principal component scores of the second axis of each index were also

included in the model (see below). For the SD index, only the eigenvalue of the first axis was

> 1, whereas the first 2 axis > 1 for the TOP index (Table 2).

A generalized linear mixed model was used with a quasibinomial error structure (controlling

for under dispersion; logit link function) to assess the effects of reserve of origin (factor),

stocking intensity (continuous) and environmental variables (TOP and SD indexes as

continuous variables, as well as the presence of competitors coded as a factor) on the

individual level of admixture. Lakes were included as a random effect in the model and the

significance of fixed effects was assessed from their Wald statistic when dropping them from

the full model. Only significant terms were retained in our final model. Analyses were

performed with GenStat (versionl2; VSN intl.). Finally, from the linear mixed model used for

graphical representations (Fig. 2), predicted levels of hybridization were assessed in three

hypothetical lakes with various characteristics in terms of morphometry (i.e. surface area and

maximum depth), physicochemical characteristics (i.e. temperature, dissolved oxygen and pH)

as well as stocking history.

Results

Results of admixture analyses are summarized in Table 1. The mean admixture levels (mean

^-values) were of 0.207 ± 0.239 and 0.438 ± 0.207 for the Portneuf and the Mastigouche

Reserves, respectively. Loading coefficients, eigenvalues and percentages of variation

obtained from the PCA of the SD and TOP indexes are summarized in Table 2. The PCA first

axis explained 74.4 % and 53.4 % of the total morphometric and physicochemical variation,

respectively. Surface area and maximum depth of the SD index were positively correlated. For

89

Page 104: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

the TOP index, temperature and pH were positively correlated but were both negatively

correlated with dissolved oxygen. The loading coefficient of temperature and dissolved

oxygen were much higher than that of pH, which suggests that the first axis of the PCA is

mostly representative of the former two variables. Moreover, the percentage of variation of the

second axis of the PCA (37.1%) was less important than the first axis, and this second axis

was principally represented by pH.

Table 2. Loading coefficients, eigenvalues and percentages of variation obtained from the

PCA analyses of the SD and TOP indexes.

Environmental variables PCI PC2 PC3

SD index Maximum depth Surface area

Eigenvalue Variation (%)

TOP index Temperature Dissolved oxygen pH

Eigenvalue Variation {%)

0.71 0.71

1.49 74.39

0.73 -0.62 0.29

1.60 53.41

0.71 -0.71

0.51 25.61

0.09 0.51 0.85

1.11 37.12

--

.

-

0.67 0.60 -0.43

0.28 9.47

90

Page 105: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

The fixed effects retained in the final model explained 36.8% of the observed variance in

hybridization. Part of this variance was first explained by the number of stocking events which

caused a significant increase in the level of hybridization (Table 3; Fig 2a). Secondly, both

environmental indexes significantly predicted the level of hybridization detected in lakes.

Thus, hybridization increased significantly with a smaller morphometric (SD) index, meaning

that decreasing surface area and maximum depth both resulted in higher value of hybridization

(Table 3; Fig 2b). The level of hybridization was also positively associated with the

physicochemical (TOP) index (Table 3). Hybridization thus increased with reduction in

dissolved oxygen (see Table 2), as well as with higher temperature and pH values (see Table

2) (Fig 2c). Reserve of origin (P = 0.26), the presence of competitors {P = 0.20) and the SD {P

= 0.79) and TOP (P = 0.71) indexes issued from the second axis of the PCA did not have a

significant effect on the level of hybridization. Finally, levels of hybridization predicted for

the three hypothetical lakes corroborated results issued from the model (Table 3). The level of

hybridization predicted for the first lake was low comparatively to the third lake, whereas the

second lake exhibited approximatively an intermediate level of predicted hybridization (Table

4).

Discussion

This study assessed the relative influence of environmental factors and stocking intensity on

the level of hybridization detected in brook charr populations. Our analyses confirmed that

hybridization increases with the number of stocking events in these populations. Importantly,

we also show that the morphometry and physicochemistry of lakes has as much, or even more,

influence the levels of hybridization and can to some extant predict the level of hybridization

observed in these populations. More specifically, the level of hybridization decreased with

greater availability of habitats, whereas it increased with these physicochemical environmental

conditions of the lakes that may be limiting for brook charr.

91

Page 106: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 3. Final model showing significant effects of the number of stocking events and

environmental factors on the level of hybridization detected in brook charr populations.

Results obtained from final general linear mixed models (with quasi binomial error structure)

are presented with corresponding Wald statistic for each fixed term when fitted last in model.

Significant random effects (lakes) are also presented with their standard error.

Fixed effects Wald statistic d.f .P-value Estimate SE Number of stocking events 16.79 1 0.001 0.506 0.123 SD 21.85 1 < 0.001 -0.544 0.117 TOP 61.02 1 < 0.001 0.840 0.108

Random effects Estimate SE Lakes 0.138 0.067 Residual 0.215 0.009

Stocking effects

We previously showed that stocking intensity was an important determinant of the extent of

admixture between wild and domestic brook charr (Marie et al. 2010). Here, stocking intensity

remained a significant determinant of hybridization, even when accounting for other

environmental effects. More specifically, hybridization increased linearly with the number of

stocking events performed in lakes (see Fig 2a). For instance, the level of hybridization

predicted of a lake with two stocking events was 0.2 % ± 2.1, whereas that predicted for a lake

with 20 stocking events should be 70.9 % ± 2.1 (Table 4). The effect of stocking intensity on

hybridization was also underlined in previous studies in salmonids. For example, Hansen and

Mensberg (2009) showed that the levels of hybridization increased in rivers that were more

intensively stocked with brown trout {Salmo trutta). Another study on the supplementation of

lake trout {Sahelinus namaycush) populations in Southern Ontario (Canada) with exogenous

individuals also showed that stocking intensity of domestic individuals explained the pattern

of hybridization observed in stocked lakes (Halbisen and Wilson 2009). Yet, these authors

92

Page 107: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

a*

Predicted level of hybridization o o o o o o o

O M (g Iii t U <» NI

i i i i I 1 1

M -

r

i—•—i i—#—i

i • i

M M

^

i—•—i I—•—!

>0

65

Predicted level of hybridization o o o o o o

o M w ^J ^ w i>

3

o

o

pt <ra

3

o

o k/l

I • 1 I • 1

I • 1 I » 1

-•—I

I • I

I • 1 I • 1 I • 1 I 1 1

- • 1

Page 108: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

c)

8 O

KS N

"O "C X> >> JS

U-i

o 0

ft • a -4^t

o -T3 o S i

P-t

0.6

0.5

0 4

OH

0J

0.1

0

-0.1

-0.2

irt j i l l

-1 0

TOP index

Figure 2. Predicted hybridization values, obtained from the linear mixed model including all

factors, for a) the number of stocking events, b) the SD index and c) the TOP index of each

lake. Units of the x axis of each are values issued from PCA the analyses. Units of the y axis

represent the level of hybridization predicted according to one factor (i.e. the number of

stocking events) taking into account both other factors (SD and TOP indexes). Standard error

bars represent the confidence intervals on the mean.

observed that some stocked lakes possessed a genetic profile characteristic of wild populations

whereas others were characteristic of hatchery fish (Halbisen and Wilson 2009). Thus,

Halbisen and Wilson (2009) suggested that factors (e.g. ecological, anthropogenic), in addition

to stocking intensity, probably play a role in the pattern of hybridization observed in stocked

lakes.

94

Page 109: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Environmental effects

Admittedly, without further experimental investigation, we can only speculate at present on

the causal links between variation in environmental parameters and the extent of hybridization

we observed in each lake. Thus, the following interpretation should be taken as what we

consider the best hypothetical explanations, given current knowledge on the biology of brook

charr.

We first found that hybridization was more pronounced in smaller and shallower lakes. For

instance, results showed that the level of hybridization predicted for a small lake (e.g. 4 ha and

8 m of depth, Lake 3) should be around 70 9 % ± 2.1, whereas that predicted for a larger lake

(e.g. 20 ha and 18 m of depth, Lake 1) should be around 0.2 % ± 2.1 (Table 4). Moreover,

predictions of the model also showed that an increase of about half in terms of surface area

and maximum depth (e.g. lake of 7.5 ha and 16 m depth, Lake 2) should halve the level of

hybridization (Table 4). Similarly, Heath et al. (2010) also observed that hybridization among

coastal cutthroat {Oncorhynchus clarki clarki) and rainbow trout {Oncorhynchus mykiss)

populations was higher in smaller watersheds. Indeed, smaller areas are more likely to exhibit

homogeneous environmental conditions compared to larger ones (Kohn and Walsh 1994). It is

thus expected that the spatial distribution of habitats was more continuous and restricted in

small lakes (Moyle and Cech 2004), perhaps favouring encounter and mating among

individuals. In contrast, the higher environmental heterogeneity of large lakes can result in

higher diversity and availability in habitats for species, especially along shoreline habitats

(Moyle and Cech 2004). Thus, shoreline habitats characteristics (e.g. spawning sites) may be

more isolated from one another in larger lakes, again possibly limiting encounters and mating

among individuals (Ridgway and Blanchfield 1998). Population abundance could also

potentially influence the level of hybridization. However, there is apparently no clear

correspondence between fish population abundance and habitat size area (Grant et al. 1998;

Imre et al. 2004). Thus, rather than abundance, it seems more likely that here, habitat

distribution and availability may have played a more important role in determining the extent

of hybridization than population size per se.

95

Page 110: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Table 4. Level of hybridization predicted for three hypothetical lakes exhibiting various

abiotic characteristics and stocking history. Results obtained from the linear mixed model,

which has been used for the graphical representations (Fig 2), to get levels of hybridization

predicted.

Number of stocking events Surface area (ha) Maximum depth (m) Temperature (°C) Dissolved oxygen (mg/L) pH

Level of hybridization predicted (%)

Lake 1 (large lake with

un-limiting physicochemical characteristics)

2 20 18 19 9.1 6.1

0.18 ±2.06

Lake 2 (intermediate

morphometrical and physicochemical characteristics)

11 7.5 16 20 8.7 6.5

33.91 ±0.91

Lake 3 (small lake with

limiting physicochemical characteristics)

20 4 8

21 7.6 6.8

70.94 ±2.12

Physical and chemical characteristics appeared to be the most important factors explaining

levels of hybridization in our model as the TOP index had the largest effect size (0.84 ± 0.11;

Table 3). Thus, results first revealed that an increase of temperature favoured hybridization.

Brook charr is typically known as being a cold water species with a temperature preference

around 16°C (Coutant 1977), although its typical habitat can range from 0°C to 20°C

depending on season (Power 1980). The average summer temperature of lakes we studied

(20°C ± 1.7) is thus in the upper limit of tolerance of brook charr. Consequently, as

temperature increases, brook charr may become more constrained in their use of water within

lakes (e.g. behavioural thermoregulation above 20°C, Biro 1998), which could promote the

96

Page 111: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

chance of encounter among individuals because of the scarcity of available cool water habitats

in lakes. The same is true of dissolved oxygen, as the negative relationship we documented

with the level of hybridization suggests that more limiting physiological conditions (lower

dissolved oxygen) favoured hybridization. For brook charr, optimal oxygen levels vary

between 5 mg/L and 9 mg/L (Spoor 1990). Admittedly however, the conditions found in our

lakes were not particularly severe with an average dissolved oxygen of lakes of 8.40 mg/L ±

0.49 (Table 1).

Finally, its positive relationship with the level of hybridization suggested that an increase in

pH promoted hybridization, although it showed weaker loading value in the PCA relative to

temperature and oxygen. Thus, although the pH values of the study lakes are not among the

most severe (6.23 ± 0.39; Table 1), all the studied lakes exhibit acid pH levels (range from 5.7

to 6.9, Table 1), which are typical of brook charr habitats in the Laurentian Shield (Baker et al.

1996; Warren et al. 2010). Thus, brook charr of these areas can be considered as a tolerant

species to natural acidity. However, hatcheries in Quebec are almost all in areas surrounding

the plain of the St. Lawrence River and on the south bank of the St. Lawrence River, where

water is typically alkaline (Laflamme 1995). Assuming that a hundred years of exposure to

this environment in the domestic fish imposed some selection leading to a better adaptation to

alkaline waters, we can hypothesize that domestic individuals may do better (e.g. survival,

reproduction) when stocked in the more alkaline lakes, which could explain the positive effect

of pH on the level of hybridization.

Therefore, results of the TOP index suggest that the level of hybridization predicted will be

higher in lakes with limiting physicochemical characteristics (i.e. level of hybridization

predicted of 70.9 % ± 2.1 for a temperature around 21°C, dissolved oxygen around 7.6 mg/L

and pH around 6.8, Table 4) than lakes with lower temperature and pH as well as higher

dissolved oxygen (Table 4). For example, the proportion of the level of hybridization

predicted should be 0.2 % ± 2.1 following a decrease around 2°C and an increase of dissolved

oxygen around 1.5 mg/L and pH around 0.7 (Table 4).

97

Page 112: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

The absence of significant effect of competitors such as white sucker {Catostomus

commersoni) and creek chub {Semotilus atromaculatus) on the level of hybridization contrasts

with results of other studies, which reported negative effects of competitive interactions

between brook charr and these species (Magnan 1988; Bourke et al. 1999). However, the

studies did not document the impact of the presence of these species on the reproductive

success of brook charr but rather on the shift of food habits (Magnan 1988; Bourke et al. 1999)

and phenotypic traits associated (Magnan 1988). Thus, it could be that white sucker and creek

chub do not interfere with the reproductive success of brook charr. Moreover, the probability

that these species impact on the reproduction between wild and domestic brook charr could be

further reduced by the fact that domestic salmonids are typically aggressive and therefore

perhaps little influenced by the presence of other species (Berejikian et al. 1996; Einum and

Fleming 1997; Biro et al. 2004; Blanchet et al. 2008).

Limitations of the study

Potential limitations should be considered when interpreting the results of this study. Firstly,

the number of lakes that could be included in the study was relatively low, which may limit

the predictive power of the model. Indeed, availability of accurate data required for this study

has reduced the number of lakes available into both reserves. Secondly, a greater range of

hybridization levels would probably strengthen the predictive power of model, describing

better the effect of environmental factors and the number of stocking on the level of

hybridization. Indeed, the level of hybridization observed in this study was relatively

homogeneous with half of the lakes (8 on 16) exhibiting a level of hybridization between 0.32

and 0.52 and four lakes around zero (Table 1). Thirdly, the interpretation of the TOP index

effect must be done carefully. Temperature and dissolved oxygen have been recorded in lakes

twice per year (June and July) and that for two years. Thus, although the dissolved oxygen

values are high (8.40 mg/L ± 0.49; Table 1), they may not reflect the minimum values reached

later during the summer, whereas those of temperature will peak generally in July (Macan

1974). Finally, the model could have been improved by the inclusion of additional factors (e.g.

number, size and distribution of spawning areas available, food production, age structure of

the populations, effective size of population etc.), would such data have been available.

98

Page 113: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Conclusion

Our results and those of Heath et al. (2010) suggest that it is important to consider

environmental factors when assessing the determinants of hybridization in wild populations.

Indeed, these studies indicate that genetic effects of stocking may be at least partially

predictable based on the knowledge of environmental factors. Results of such studies should

improve stocking procedures in brook charr and other species alike. For example, these could

allow managers to manage stocking decisions according to the probability of genetic

contamination caused by stocking. Thus, stocking recommendations could vary according to

different criteria as, for example, i) no stocking in lakes having viable wild brook charr

populations that have not been affected by stocking or ii) stocking possible in lakes where

current populations are likely to already being genetically perturbated, given the history of

stocking and environmental characteristics. Moreover, knowledge of stocking history and

environmental factors could permit to better predict if naturally populations of given lakes are

more or less likely to have been introgressed due to past stocking (Table 4) without the need

of performing genetic analyses for every single lake, which would simply be infeasible in

many contexts. Thus, the application of our findings should help better preserve the genetic

integrity of wild brook charr populations and could also serve as a model for the management

of other salmonids species which are genetically impacted by stocking, both in North America

and Europe (Hansen and Mensberg 2009; Halbisen and Wilson 2009; Miller et al. 2004).

Acknowledgments

We are grateful to Fabien Lamaze, Bruno Mayot, Marc-Andre Poulin, Andreanne Lessard and

Melissa Lieutenant-Gosselin for their help with field sampling and laboratory analyses. This

research was financially supported primarily by a strategic project grant from the Natural

Sciences and Engineering Research Council (NSERC) of Canada to LB and DG. We also

acknowledge the important contributions of the Ministere des Ressources Naturelles et de la

Faune du Quebec (MRNF), the Societe des Etablissement de Plein-Air du Quebec (SEPAQ)

and the Reseau Aquaculture Quebec (RAQ) to the project.

99

Page 114: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

CONCLUSION

100

Page 115: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

CONCLUSION

Au cours de mon projet de doctorat, les impacts genetiques des ensemencements d'ombles de

fontaine ont ete mis en evidence au sein de lacs en milieu naturel. L'impact de l'intensite des

ensemencements sur la diversite et la structure genetique des populations naturelles a tout

d'abord ete evalue. Puis, afin de determiner precisement le niveau d'hybridation, l'efficacite et

la exactitude de deux des logiciels les plus utilises actuellement pour les assignations de

populations ont ete comparees quantitativement. Enfin, apres avoir estime le niveau

d'hybridation au sein des populations naturelles, l'effet des facteurs environnementaux et du

nombre d'ensemencements sur celui-ci ont ete evalues.

Les resultats ont montre que l'augmentation de diversite genetique des populations d'ombles

de fontaine, due a l'apport de nouveaux alleles des poissons domestiques, est fortement liee a

l'intensite des ensemencements. En effet, bien que l'on ait observe une augmentation de la

richesse allelique ainsi que de l'heterozygotie moyenne observee avec l'intensite des

ensemencements, cette augmentation apparente est en realite due a l'apport de nouveaux

alleles des poissons domestiques. Par consequent, avec les ensemencements, on assiste a une

dilution des pools genetiques, propre a chaque lac, avec des alleles etrangers. De plus, les

analyses ont egalement montre une homogeneisation de la structure genetique des populations

avec l'intensite des ensemencements, meme si au depart on avait une grande variability

genetique au sein des lacs non ensemences. Les ensemencements entrainent done un

effritement de la diversite inter-lac. Les analyses portant sur la comparaison quantitative de

l'efficacite globale des logiciels STRUCTURE et NEWHYBRIDS ont montre la necessite d'avoir

un nombre important de locus afin d'assigner precisement les hybrides de deuxieme

generation ou plus a leur classe propre. De plus, les simulations ont montre que STRUCTURE

avait une plus grande efficacite et NEWHYBRIDS une plus grande exactitude. Ces resultats

suggerent ainsi que STRUCTURE devrait etre utilise lorsque l'on cherche a mettre en evidence

101

Page 116: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

des phenomenes d'hybridation au sein de populations, tandis que NEWHYBRIDS devrait etre

utilise lorsque l'on souhaite determiner la proportion d'hybrides au sein d'une population deja

connue pour son hybridation. Enfin, 1'influence du nombre d'ensemencements ainsi que de

certains facteurs environnementaux sur les patrons d'hybridation observes ont ete mis en

evidence. Ainsi, le niveau d'hybridation augmente avec le nombre d'ensemencements et

lorsque les conditions physico-chimiques des lacs deviennent potentiellement Hmitantes.

Cependant, le niveau d'hybridation semble apparemment diminuer avec I'augmentation de la

disponibilite d'habitats (i.e. relativement a la superficie et profondeur des lacs).

L'originalite et la contribution de ce projet se traduisent a differents niveaux. Tout d'abord,

pour la premiere fois, la diversite genetique et la structure genetique des populations d'ombles

de fontaine ont ete etudiees en milieu naturel, a large echelle, avec un historique des

ensemencements precis. D'autre part, l'etude sur la comparaison de l'efficacite globale de

STRUCTURE et NEWHYBRIDS permet dorenavant d'avoir une idee plus precise sur quel

logiciel employe lorsque l'on souhaite realiser des etudes portant sur l'hybridation. Enfin,

l'etude sur l'effet des facteurs environnementaux sur le niveau d'hybridation observe est la

premiere de ce genre en contexte intraspecifique. Cette etude montre que les niveaux

d'hybridation causes par les ensemencements au sein de populations naturelles peuvent etre en

partie predits sur la base de facteurs environnementaux connus du milieu.

Mon doctorat constitue ainsi une approche inedite visant a documenter et predire d'une

maniere etayee et rigoureuse les impacts genetiques des ensemencements d'ombles de

fontaine. Mes resultats devraient ainsi contribuer a 1'amelioration des actions proposees au

sein des nouvelles lignes directrices sur les ensemencements de poissons, sous la

responsabilite du gouvernement quebecois. Plus precisement, mes resultats permettent, dans

une optique de conservation des populations indigenes d'ombles de fontaine, de poursuivre les

pratiques d'ensemencements, mais en definissant des categories de plans d'eau selon un

critere de probability de contamination genetique causes par les ensemencements, tout en

102

Page 117: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

considerant les facteurs environnementaux du milieu. Le type d'ensemencements a prescrire

pourrait done varier selon differents criteres comme, par exemple, i) aucun ensemencement

dans les plans d'eau supportant des populations indigenes d'ombles de fontaine n'ayant pas

ete affectees par les ensemencements ou bien, ii) ensemencements possibles dans les lacs ou

les populations actuelles sont fortement perturbees genetiquement (i.e. presence d'individus

domestiques uniquement), iii) limiter les ensemencements dans les lacs ayant deja ete

ensemences mais predits par le modele comme n'ayant vraisemblablement peu soufferts de

l'hybridation vu les conditions environnementales. Cependant, le type d'ensemencements a

prescrire dependrait egalement de la probabilite d'hybridation du milieu considere, lequel

serait base sur I'historique des ensemencements et les conditions environnementales du milieu

(e.g. morphometrie du lac et conditions physico-chimiques). Ainsi, les ensemencements

devraient etre favorises au sein des lacs ou la probabilite d'hybridation est faible, autrement dit

ou les caracteristiques environnementales sont inadequates pour favoriser l'hybridation (e.g.

grande superficie et profondeur maximale, faible temperature et pH, forte teneur en oxygene

dissous). De plus, le modele final issu de ce projet permet maintenant de predire partiellement

le niveau d'hybridation sur la base des donnees environnementales et des historiques

d'ensemencements disponibles sans pour autant avoir recours a l'utilisation de la genetique

(e.g. genotypage des individus), ce qui constitue un avantage etant donne le cofit attribuable

aux analyses genetiques. Par consequent, ce modele devrait pouvoir etre applicable dans de

nombreux contextes.

Cependant, alors que ce projet est le premier du genre (i.e. historique des ensemencements

liable et prise en compte de l'influence des facteurs environnementaux sur le niveau

d'hybridation), differents points pourraient etre ameliores dans le cadre d'un projet eventuel

similaire. Tout d'abord, du point de vue des donnees disponibles, le nombre de lacs pris en

compte devrait etre augmente avec de plus larges differences en termes de caracteristiques

biotiques, abiotiques et historique des ensemencements, ce qui renforcerait le pouvoir predictif

du modele final. De plus, comme nous l'avons vu a travers le chapitre II, les logiciels actuels

n'etant pas aptes de detecter precisement les niveaux d'introgression au sein des populations

103

Page 118: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

(e.g. hybrides de seconde generations et backcrosses), I'augmentation du nombre de

marqueurs microsatellites utilises et le developpement d'un logiciel permettant de detecter

precisement le niveau d'introgression seraient essentiels afin d'obtenir des resultats plus precis

(e.g. nombre exact de generations hybrides). II serait ainsi envisageable de developper un

logiciel «hybride » possedant a la fois des caracteristiques du logiciel STRUCTURE (e.g.

estimation du nombre de populations) ainsi que certaines du logiciel NEWHYBRIDS (e.g.

capacite a classer les individus selon leur categorie respective). Enfin, concernant le

developpement du modele au sein du chapitre III, un plus large spectre du niveau

d'hybridation au sein des lacs et la prise en compte d'autres facteurs environnementaux (e.g.

nombre de sites de frai, disponibilite de nourriture, nombre d'emissaires et de tributaires)

contribueraient a accroitre le pouvoir predictif du modele. Celui-ci serait egalement augmente

en incluant des donnees physico-chimiques a long terme (e.g. saisonniere et annuelle) ainsi

que le succes (i.e. nombre de poissons captures divise par I'effort de peche) et le rendement

(i.e. biomasse de la recolte divisee par la superficie du lac) de peche pour l'ensemble des lacs.

Bien que certains impacts dus aux pratiques des ensemencements aient clairement ete

identifies a travers ce projet, il serait egalement tres utile d'evaluer les impacts ecologiques

generes par les ensemencements, comme 1'impact des ensemencements, en termes de diversite

et d'abondance, sur les reseaux trophiques inferieurs (e.g. zooplancton et phytoplancton). Le

projet pourrait egalement etre complete en regardant les differences morphologiques

potentielles entre individus sauvages et domestiques, et si elles existent, regarder leurs

relations avec les niveaux d'hybridation observes et les differentes caracteristiques

environnementales du milieu. L'age des poissons (obtenu par otolithometrie) pourrait

egalement servir i) a preciser les processus d'hybridation (i.e. en contribuant a ameliorer les

resultats issus des logiciels STRUCTURE et NEWHYBRIDS), ainsi que ii) de voir si l'age des

poissons depend des conditions environnementales du milieu et s'il influe sur les niveaux

d'hybridation observes.

104

Page 119: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

De plus, cette nouvelle approche presentee a travers ce projet pourrait servir de reference pour

d'autres contextes canadiens et ailleurs, puisque partout dans le monde, les ensemencements

demeurent une mesure de gestion privilegiee pour supporter l'offre de peche sportive et

maintenir l'activite economique qui y est associee. Ainsi, il serait pertinent d'etudier les

impacts genetiques et ecologiques des ensemencements d'ombles de fontaine dans les rivieres

du Quebec contenant des populations residentes d'ombles de fontaine. Ainsi, revaluation des

impacts genetiques, en termes de diversite et de structure genetique des populations, et

l'influence potentielle des facteurs environnementaux sur le niveau d'hybridation observe

permettraient tout d'abord de voir leurs importances relatives au sein du contexte

populationnel et de voir les eventuelles differences entre les systemes (e.g. lacs et rivieres).

D'autre part, le phenomene d'hybridation pouvant etre un processus naturel, il serait

interessant d'etudier les facteurs influant sur le niveau d'hybridation au niveau inter- (e.g.

truite arc-en-ciel) et intraspeciflque. Ces differents types de projets serviraient a accroitre nos

connaissances sur les processus favorisant l'hybridation en milieu naturel, et permettraient

d'ameliorer la gestion des populations sauvages en termes d'ensemencements et de

translocations d'especes. Bien entendu, les differents projets envisages pourraient porter sur

d'autres especes de salmonides d'interet en matiere d'ensemencements, telles que la truite

brune {Salmo trutta) en Europe, la truite arc-en-ciel {Oncorhynchus mykiss) en Amerique du

Nord ou bien encore le saumon Atlantique {Salmo salar).

105

Page 120: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

ANNEXES

106

Page 121: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Article I - Supplementary Table 1. Microsatellites loci details including the size range in base pairs (bp), the annealing

temperature in degrees Celsius (°C), the number of cycles used in the polymerase chain reaction (PCR), the GenBank accession

number and references.

Loci

sfoC129

sfoC24

sfoC86

sfoC113

sfoC88

SC0216

SC0218

sfoB52

sfoDlOO

sfoD75

Size range

(bp)

210-230

105-120

90-120

120-160

145-220

120-180

145-185

190-250

200-240

170-225

Annealing

temperature (°C)

60

58

58

56

54

58

56

60

58

58

Number

of cycles

35

25

25

35

35

30

35

35

25

35

GenBank

accession no

AY168195

AY168187

AY168191

AY168193

AY168192

AY788885

AY788887

AY168186

AY168199

AY168197

References

King et al. (unpublished)

King et al. (unpublished)

King et al. (unpublished)

King et al. (unpublished)

King et al. (unpublished)

Dehaan & Arden 2005

Dehaan & Arden 2005

King et al. (unpublished)

King et al. (unpublished)

King et al. (unpublished)

Page 122: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Article I - Supplementary Table 2. Pairwise FST (above diagonal) and associated P-value (below diagonal) for a) the Portneuf

reserve and b) the Mastigouche reserve. See Table 1 for lakes abbreviations. HAT: hatcheries individuals; NS: non-stocked lakes;

MS: moderately stocked lakes; HS: Heavily stocked lakes.

a)

HAT

BEL HS AMA

MET

RTV

wo VEI MS 4 „ „

ARC CIR CAR

LAN N S SOR

MAI

HAT

-

< 0.001 < 0.001

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

< 0.001

< 0.001

< 0.001

HS BEL AMA MET

0.027 0.078 0.058 0.064 0.025

< 0.001 - 0.061

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001

MS RIV VEI ARC CIR

0.179 0.179 0.259 0.244 0.118 0.131 0.185 0.157 0.118 0.127 0.224 0.197 0.076 0.081 0.138 0.114

0.018 0.226 0.208 < 0.001 - 0.212 0.212 < 0.001 < 0.001 - 0.151 < 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001 < 0.001

< 0.001 < 0.001 < 0.001 < 0.001

NS CAR LAN SOR MAI 0.174 0.234 0.228 0.245 0.127 0.174 0.170 0.206 0.165 0.165 0.159 0.247 0.085 0.119 0.120 0.185

0.198 0.219 0.234 0.341 0.181 0.205 0.225 0.300 0.030 0.259 0.242 0.271 0.139 0.178 0.160 0.285

0.197 0.186 0.204

< 0.001 - 0.004 0.312

< 0.001 0.518 - 0.291

< 0.001 < 0.001 < 0.001 -

Page 123: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

b)

HAT BRO DEU

H S HOL PIT

CHA DEM

MS PET MER GEL HEA CER

N S M O Y ARL

HAT -

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

HS BRO DEU HOL PIT

0.024 0.026 0.020 0.019 0.027 0.024 0.024

< 0.001 - -0.000 0.003 < 0.001 0.301 - 0.002 < 0.001 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

MS CHA DEM PET MER GEL

0.021 0.171 0.086 0.045 0.033 0.045 0.204 0.107 0.068 0.015 0.046 0.187 0.102 0.050 0.050 0.038 0.178 0.099 0.049 0.044 0.035 0.182 0.093 0.045 0.040

0.131 0.040 0.017 0.033 < 0.001 - 0.103 0.110 0.192 < 0.001 < 0.001 - 0.023 0.080 < 0.001 < 0.001 < 0.001 - 0.057 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

NS HEA CER MOY ARL

0.110 0.146 0.225 0.251 0.115 0.148 0.220 0.263 0.070 0.101 0.215 0.267 0.070 0.099 0.217 0.260 0.073 0.104 0.208 0.258 0.118 0.148 0.209 0.225 0.228 0.249 0.337 0.277 0.142 0.175 0.253 0.271 0.106 0.145 0.226 0.241 0.137 0.169 0.235 0.235

0.011 0.257 0.334 < 0.001 - 0.280 0.340 < 0.001 < 0.001 - 0.385 < 0.001 < 0.001 < 0.001

<-*

Page 124: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

BIBLIOGRAPHIE

110

Page 125: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Bibliographie

Adams, J.R., Lucash, C, Schutte, L., and Waits, L.P. (2007). Locating hybrid individuals in the red wolf {Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping. Mol. Ecol. 16, 1823-1834.

Albert, V., Jonsson, B., and Bernatchez, L. (2006). Natural hybrids in Atlantic eels {Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Mol. Ecol. 15, 1903-1916.

Aljanabi, S.M., and Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR- based techniques. Nucl. Acids Res. 25, 4692-4693.

Allendorf, F.W., and Luikart, G. (2007). Conservation and the genetics of populations. Blackwell Publishing, 642p.

Allendorf, F.W., Leary, R.F., Spruell, P., and Wenburg, J.K. (2001). The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613-622.

Anderson, E.C., and Thompson, E.A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217-1229.

Angers, B., and Bernatchez, L. (1998). Combined use of SMM and non-SMM methods to infer fine structure and evolutionary history of closely related brook charr {Sahelinus fontinalis, Salmonidae) populations from microsatellites. Mol. Biol. Evol. 15, 143-159.

Angers, B., Magnan, P., Plante, M., and Bernatchez, L. (1999). Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr {Sahelinus fontinalis). Mol. Ecol. 8, 1043-1053.

Aprahamian, M.W., Smith, K.M., McGinnity, P., McKelvey, S., and Taylor, J. (2003). Restocking of salmonids - opportunities and limitations. Fish. Res. 62, 211-227.

I l l

Page 126: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Araguas, R.M., Sanz, N., Pla, C, and Garcia-Marin, J.L. (2004). Breakdown of the brown trout evolutionary history due to hybridization between native and cultivated fish. J. Fish Biol. 65, 28-37.

Araki, H., Cooper, B., and Blouin, M.S. (2007a). Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100-103.

Araki, H., Ardren, W.R., Olsen, E., Cooper, B., and Blouin, M.S. (2007b). Reproductive success of captive-bred steelhead trout in the wild: evaluation of three hatchery programs in the hood river. Conserv. Biol. 21, 181-190.

Araki, H., Berejikian, B.A., Ford, M.J., and Blouin, M.S. (2008). Fitness of hatchery-reared salmonids in the wild. Evol. Appl. /, 342-355.

Araki, H., and Schmid, C. (2010). Is hatchery stocking a help or harm? Evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308, S2-S11.

Arroyo-Rodriguez, V., and Dias, P.A.D. (2010). Effects of habitat fragmentation and disturbance on howler monkeys: a review. Am. J. Primatol. 72, 1-16.

Ashford, B.D., and Danzmann, R.G. (2001). An examination of the post-planting success of hatchery brook charr possessing different mitochondrial DNA haplotypes. J. Fish Biol. 59, 544-554.

Ayres, D.R., Garcia-Rossi, D., Davis, H.G., and Strong, D.R. (1999). Extent and degree of hybridization between exotic {Spartina alterniflora) and native {S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). Mol. Ecol. 8, 1179-1186.

Baker, J.P., VanSickle, J., Gagen, C.J., DeWalle, D.R., Sharpe, W.E., Carline, R.F., Baldigo, B.P., Murdoch, P.S., Bath, D.W., Krester, W.A., et al. (1996). Episodic acidification of small streams in the northeastern United States: effects on fish populations. Ecol. Appl. 6, 422-437.

112

Page 127: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Baril, M., and Magnan, P. (2002). Seasonal timing and diel activity of lacustrine brook charr, Sahelinus fontinalis, spawning in a lake outlet. Env. Biol. Fish 64, 175-181.

Bartley, D.M., Rana, K., and Immink, A.J. (2001). The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fisher. 10, 325-337.

Berejikian, B.A., Mathews, S.B., and Quinn, T.P. (1996). Effects of hatchery and wild ancestry and rearing environments on the development of agonistic behaviour in steelhead trout {Oncorhynchus mykiss) fry. Can. J. Fish. Aqua. Sci. 53, 2004-2014.

Berejikian, B.A., Tezak, E.P., Schroder, S.L., Knudsen, CM., and Hard, J.J. (1997). Reproductive behavioural interactions between wild and captively reared coho salmon {Oncorhynchus kisutch). ICES J. Mar. Sci. 54, 1040-1050.

Bematchez, L., and Giroux, M. (2000). Les poisons d'eau douce du Quebec et leur repartition dans Test du Canada. Editions Broquet. 350 p.

Bertrand, M., Marcogliese, D.J., and Magnan, P. (2008). Trophic polymorphism in brook charr revealed by diet, parasites and morphometries. J. Fish Biol. 72, 555-572.

Biebach, I., and Keller, L.F. (2009). A strong genetic footprint of the re-introduction history of Alpine ibex {Capra ibex ibex). Mol. Ecol. 18, 5046-5058.

Biro, P.A. (1998). Staying cool: behavioural thermoregulation during summer by young-of-year brook trout in a lake. Trans. Am. Fish. Soc. 127, 212-222.

Biro, P.A., Abrahams, M.V., Post, J.R., and Parkinson, E.A. (2004). Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proc. R. Soc. Lond. B 271, 2233-2237.

Bishop, J.M., Leslie, A.J., Bourquin, S.L., and O'Ryan, C. (2009). Reduced effective population size in an overexploited population of the Nile crocodile {Crocodylus niloticus). Biol. Conserv. 142, 2335-2341.

113

Page 128: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Blanchet, S., Paez, D.J., Bematchez, L., and Dodson, J.J. (2008). An integrated comparison of captive-bred and wild Atlantic salmon {Salmo salar): Implications for supportive breeding programs. Biol. Conserv. 141, 1989-1999.

Bougas, B., Granier, S., Audet, C, and Bematchez, L. (2010). The transcriptional landscape of cross-specific hybrids and its possible link with growth in brook charr {Sahelinus fontinalis Mitchill). Genetics 186, 97-107.

Bourke, P., Magnan, P., and Rodriguez, M.A. (1999). Phenotypic responses of lacustrine brook charr in relation to the intensity of interspecific competition. Evol. Ecol. 13, 19-31.

Burgarella, C, Lorenzo, Z., Jabbour-Zahab, R., Lumaret, R., Guichoux, E., Petit, R.J., Soto, A., and Gil, L. (2009). Detection of hybrids in nature: application to oaks {Quercus suber and Q ilex). Heredity 102, 442-452.

Busack, C.A., and Currens, K.P. (1995). Genetic risks and hazards in hatchery operations; fundamental concepts and issues. Am. Fish. Sci. Symp. 75, 71-80.

Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J.P.W., Almond, R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C, Bruno, J., et al (2010). Global biodiversity : indicators of recent declines. Science 328, 1164-1168.

Castric, V., and Bematchez, L. (2003). The rise and fall of isolation by distance in the anadromous brook charr {Sahelinus fontinalis Mitchill). Genetics 163, 983-996.

Chevassus-Au-Louis, B. (2008). La biodiversite: un nouveau regard sur la biodiversity du vivant III. Fragilite : vers la « sixieme extinction »? Cah. Agr. 17, 303-313.

Collier, K.J., Bury, S., and Hibbs, M. (2002). A stable isotope study of linkages between stream and terrestrial food webs through spider predation. Freshwater Biol. 47, 1651-1659.

Coop, G.H., Bianco, P.G., Bogutskaya, N.G., Eros, T., Falka, I., and Ferreira, M.T. (2005). To be, or not to be, a non-native freshwater fish? J. Appl. Ichthyol. 21, 242-262.

114

Page 129: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Coutant, C.C. (1977). Compilation of temperature preference data. J. Fish. Res. Board Can. 34,739-745.

Crispo, E., and Chapman, L.J. (2008). Population genetic structure across dissolved oxygen regimes in an African cichlid fish. Mol. Ecol. 17, 2134-2148.

Crispo, E., Bentzen, P., Reznick, D.N., Kinnison, M.T., and Hendry, A.P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Mol. Ecol. 15, 49-62.

Delgado, A., and Moreira, F. (2010). Between-year variations in Little Bustard Tetrax tetrax population densities are influenced by agricultural intensification and rainfall. Ibis 152, 633-642.

Delibes, M., Clavero, M., Prenda, J., Blazquez, M.D., and Ferreras, P. (2010). Potential impact of an exotic mammal on rocky intertidal communities of northwestern Spain. Biol. Invasions 6, 213-219.

Dionne, M., Caron, F., Dodson, J.J., and Bematchez, L. (2008). Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol. Ecol. 17, 2382-2396.

Dulvy, N.K., Sadovy, Y., and Reynolds, J.D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries 4, 25-64.

Einum, S., and Fleming, LA. (1997). Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J. Fish Biol. 50, 634-651.

Einum, S., and Fleming, I. (2001). Implications of stocking: ecological interactions between wild and released salmonids. Nord. J. Freshwat. Res. 75, 56-70.

Eldridge, W.H., and Naish, K.A. (2007). Long-term effects of translocation and release numbers on fine-scale population structure among coho salmon {Oncorhynchus kisutch). Mol. Ecol. 76,2407-2421.

115

Page 130: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Englbrecht, C.C., Schliewen, U., and Tautz, D. (2002). The impact of stocking on the genetic integrity of Arctic charr {Sahelinus) populations from the Alpine region. Mol. Ecol. 77, 1017-1027.

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 7, 47-50.

Farrapeira, C.M.R. (2011). The introduction of the bryozoan Zoobotryon verticillatum (Delia Chiaje, 1822) in northeast of Brazil: a cause for concern. Biol. Inv. 13, 13-16.

Fenner, F. (2010). Deliberate introduction of the European rabbit, Oryctolagus cuniculus, into Australia. Rev. Sci. Tech. - Off. Inter. Epizoo. 29, 103-111.

Finnegan, A.K., and Stevens, J.R. (2008). Assessing the long-term genetic impact of historical stocking events on contemporary populations of Atlantic salmon {Salmo salar). Fish. Manag. Ecol. 15, 315-326.

Fleming, I.A., Jonsson, B. Gross, M.R., and Lamberg, A. (1996). An experimental study of the reproductive behaviour and success of farmed and wild Atlantic salmon. J. Appl. Ecol. 33, 893-905.

Fleming, I.A., Agustsson, T., Finstad, B., Johnsson, J.I., and Bjornsson, B.T. (2002). Effects of domestication on growth physiology and endocrinology of Atlantic salmon {Salmo salar). Can. J. Fish. Aqua. Sci. 59, 1323-1330.

Food and Agriculture Organization of the United Nations (FAO). (2004). Agriculture and Consumer Protection.

Ford, M.J. (2002). Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv. Biol. 16, 815-825.

Frankham, R. (1995). Conservation genetics. Ann. Rev. Genet. 29, 305-327.

Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10, 1500-1508.

116

Page 131: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Frankham, R. (2008). Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 77,325-333.

Frankham, R., Ballou, J.D., and Briscoe, D.A. (2005). A primer of Conservation genetics. Cambridge University Press, New-York, ed. 2nd 220p.

Fraser, D.J. (2008). How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol. Appl. 7, 535-586.

Fraser, J.M. (1981). Comparative survival and growth of planted wild, hybrid, and domestic strains of brook trout {Sahelinus fontinalis) in Ontario lakes. Can. J. Fish. Aqua. Sci. 38, 1672-1684.

Freeland, J.R., and Boag, P.T. (1999). The mitochondrial and nuclear genetic homogeneity of the phenotypically diverse Darwin's ground finches. Evolution 53, 1553-1563.

Gaggiotti, O.E., Bekkevold, D., Jorgensen, H.B.H., Foil, M., Carvalho, G.R., and Andre, C. and Ruzzante, D.E. (2009). Disentangling the effects of evolutionary, demographic, and environmental factors influencing genetic structure of natural populations: Atlantic herring as a case. Evolution 63, 2939-2951.

Gagnaire, P.A., Albert, V., Jonsson, B., and Bematchez, L. (2009). Natural selection influences AFLP intraspecific genetic variability and introgression patterns in Atlantic eels. Mol. Ecol. 18, 1678-1691.

Glaubitz, J.C. (2004). Convert: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 4, 309-310.

Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485-486.

Gozlan, R.E. (2008). Introduction of non-native freshwater fish: is it all bad? Fish and Fisheries 9, 106-115.

117

Page 132: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Grandjean, F., Veme, S., Cherbonnel, C, and Richard, A. (2009). Fine-scale genetic structure of Atlantic salmon {Salmo salar) using microsatellite markers: effects of restocking and natural recolonization. Fresh. Biol. 54, 417-433.

Grant, J.W.A., Steingrimsson, S.O., Keeley, E.R., and Cunjak, R.A. (1998). Implications of territory size for the measurement and prediction of salmonids abundance in streams. Can. J. Fish. Aqua. Sci. 55, 181-190.

Griffiths, A.M., Bright, D., and Stevens, J.R. (2009). Comparison of patterns of genetic variability in wild and supportively bred stocks of brown trout, Salmo trutta. Fish. Manag. Ecol. 16, 514-519.

Groom, M.J., Meffe, G.K., and Carroll, C.R. (2006). Principles of Conservation Biology. 3rd

ed. p. 173-252.

Gross, M.R. (1998). One species with two biologies: Atlantic salmon {Salmo salar) in the wild and in aquaculture. Can. J. Fish. Aqua. Sci. 55, 131-144.

Gunnarsson, U., Shaw, A.J., and Lonn, M. (2007). Local-scale genetic stmcture in the peatmoss Sphagnum fuscum. Mol. Ecol. 16, 305-312.

Gunnell, K., Tada, M.K., Hawthorne, F.A., Keeley, E.R., and Ptacek, M.B. (2008). Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout {Oncorhynchus clarkia bouvieri) and introduced rainbow trout {O. mykiss) in the South Fork of the Snake River watershed, Idaho. Conserv. Genet. 9, 49-64.

Guyomard, R. (1997). Consequences of fish introduction in the absence of reproductive isolation: interest and limits of the experimental approach. Bull. Fr. Peche Piscic. 344-45, 301-308.

Halbisen, M.A., and Wilson, C.C. (2009). Variable introgression from supplemental stocking in Southern Ontario populations of lake trout. Trans. Am. Fish. Soc. 137, 699-719.

118

Page 133: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Hansen, M.M., Nielsen, E.E., Bekkevold, D., and Mensberg, K-L.D. (2001). Admixture analysis and stocking impact assessment in brown trout {Salmo trutta), estimated with incomplete baseline data. Can. J. Fish. Aqua. Sci. 58, 1853-1860.

Hansen, M.M. (2002). Estimating the long-term effects of stocking domesticated trout into wild brown trout {Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Mol. Ecol. 77,1003-1015.

Hansen, M.M., Bekkevold, D., Jensen, L.F., Mensberg, K-L.D., and Nielsen, E.E. (2006). Genetic restoration of a stocked brown trout {Salmo trutta) population using microsatellite DNA analysis of historical and contemporary samples. J. Appl. Ecol. 43, 669-679.

Hansen, M.M., and Mensberg, K-L.D. (2009). Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: indigenous trout persist in introgressed populations. Biol. Let. J, 656-659.

Hansen, M.M., Fraser, D.J., Meier, K., and Mensberg, K-L.D. (2009). Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol. Ecol. 18, 2549-2562.

Hard, J.J., Berejikian, B.A., Tezak, E.P., Schroder, S.L., Knudsen, CM., and Parker, L.T. (2000). Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis. Env. Biol. Fishes 58, 61-73.

Hayes, J.P., Guffey, S.Z., Kriegler, F.J., McCracken, G.F., and Parker, CR. (1996). The Genetic Diversity of Native, Stocked, and Hybrid Populations of Brook Trout in the Southern Appalachians. Conserv. Biol. 10, 1403-1412.

Heath, D.D., Heath, J.W., Bryden, C.A., Johnson, R.M., and Fox, C.W. (2003). Rapid evolution of egg size in captive salmon. Science 299, 1738-1740.

Heath, D.D., Bettles, CM., and Roff, D. (2010). Environmental factors associated with reproductive barrier breakdown in sympatric trout populations on Vancouver Island. Evol. Appl. 3, 77-90.

119

Page 134: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Hedrick, P.W., and Fredrickson, R.J. (2008). Captive breeding and the reintroduction of Mexican and red wolves. Mol. Ecol. 17, 344-350.

Hindar, K., Ryman, N., and Utter, F. (1991). Genetic effects of cultured fish on natural fish populations. Can. J. Fish. Aqua. Sci. 48, 945-957.

Hubbs, CL. (1955). Hybridization between fish species in nature. Syst. Biol. 4, 1-20.

Huntingford, F.A. (2004). Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 65, 122-142.

Hutchings, J.A. (2005). Life history consequences of overexploitation to population recovery in Northwest Atlantic cod {Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 62, 824-832.

Hutchings, J.A., and Fraser, D.J. (2008). The nature of fisheries- and farming-induced evolution. Mol. Ecol. 17, 294-313.

Imre, I., Grant, J.W.A., and Keeley, E.R. (2004). The effect of food abundance on territory size and population density of juvenile steelhead trout {Oncorhynchus mykiss). Oecologia 138, 371-378.

International Union for Conservation of Nature. (2009). Resolutions and Recommendations. Gland, Switzerland: IUCN, 158 pp.

Johnson, J.R., Fitzpatrick, B.M., and Shaffer, H.B. (2010). Retention of low-fitness genotypes over six decades of admixture between native and introduced tiger salamanders. BMC Evol. Biol. 10, 147-160.

Kalinowski, S.T., Taper, M.L., and Marshall, T.C. (2007. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 76, 1099-1106.

120

Page 135: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Karaiskou, N., Triantafyllidis, A., Katsares, V., Abatzopoulos, T.J., and Triantaphyllidis, C. (2009). Microsatellite variability of wild and farmed populations of Sparus aurata. J. Fish Biol. 74, 1816-1825.

Kelley, J.L., Magurran, A.E., and Garcia, CM.. (2006). Captive breeding promotes aggression in an endangered Mexican fish. Biol. Conserv. 133, 169-177.

Kidd, A.G., Bowman, J, Lesbarreres, D., and Schulte-Hostedde, A.I. (2009). Hybridization between escaped domestic and wild American mink {Neovison vison). Mol. Ecol. 18, 1175-1186.

Kohn, D.D., and Walsh, D.M. (1994). Plant species richness - the effect of island size and habitat diversity. J. Ecol. 82, 367-377.

Koskinen, M.T., Hirvonen, H., Landry, P-A., and Primmer, CR. (2004). The benefits of increasing the number of microsatellites utilized in genetic population studies: an empirical perspective. Hereditas 141, 61-67.

Lachance, S., and Magnan, P. (1990). Performance of domestic, hybrid, and wild strains of brook trout, Sahelinus fontinalis, after stocking: the impact of intraspecific and interspecific competition. Can. J. Fish. Aqua. Sci. 47, 2278-2284.

Laflamme, D. (1995). Qualite des eaux du basin de la riviere Saint-Maurice, 1979 a 1992. Memoire depose au Ministere de 1'Environnement et de la Faune, province du Quebec, Montreal, 87 p. + annexes.

Lamont, B.B., He, T., Enright, N.J., Krauss, S.L., and Miller, B.P. (2003). Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J. Evol. Biol. 76, 551-557.

Largiader, C.R., and Scholl, A. (1995). Effects of stocking on the genetic diversity of brown trout populations of the Adriatic and Danubian drainages in Switzerland. J. Fish Biol. 47, 209-225.

121

Page 136: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Larsen, D.A., Beckman, B.R., Cooper, K.A., Barrett, D., Johnston, M., Swanson, P. and Dickhoff, W.W. (2004). Assessment of high rates of precocious male maturation in a spring Chinook salmon supplementation hatchery programme. Trans. Am. Fish. Soc. 133, 98-120.

Launey, S., Brunet, G., Guyomard, R., and Davaine, P. (2010). Role of introduction history and landscape in the range expansion of brown trout {Salmo trutta L.) in the Kerguelen Islands. J. Hered. 707, 270-283.

Laurance, W.F., and Useche, D.C. (2009). Environmental synergisms and extinctions of tropical species. Conserv. Biol. 23, 1427-1437.

Leary, R.F., Allendorf, F.W., and Forbes, S.H. (1993). Conservation genetics of bull trout in the Columbia and Klamath River drainages. Conserv. Biol. 7, 856-865.

Leclerc, E., Mailhot, Y., Mingelbier, M., and Bematchez, L. (2008). The landscape genetics of yellow perch {Percaflavescens) in a large fluvial ecosystem. Mol. Ecol. 77, 1702-1717.

Levin, D.A., Francisco-Ortega, J., and Jansen. R.K. (1996). Hybridization and the extinction of rare plant species. Conserv. Biol. 10, 10-16.

Luquet, E., Lena, J.P., David, P., Joly, P., Lengagne, T., Perrin, N., and Plenet, S. (2011). Consequences of genetic erosion on fitness and phenotypic plasticity in European tree frog populations {Hyla arborea). J. Evol. Biol. 24, 99-110.

Macan, T.T. (1974). Freshwater ecology. 2 ed. London: Longmans.

Machado-Schiaffino, G., Dopico, E., and Garcia-Vasquez, E. (2007). Genetic variation losses in Atlantic salmon stocks created for supportive breeding. Aquaculture 264, 59-65.

Maerz, J.C, Nuzzo, V.A., and Blossey, B. (2009). Declines in woodland salamander abundance associated with non-native earthworm and plant invasions. Conserv. Biol. 23, 975-981.

122

Page 137: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Magnan, P. (1988). Interactions between brook charr, Sahelinus fontinalis, and nonsalmonid species - ecological shift, morphological shift, and their impact on zooplankton communities. Can. J. Fish. Aqua. Sci. 45, 999-1009.

Magnan, P., Audet, C, Glemet, H, Legault, M., Rodriguez, M.A., and Taylor, E.B. (2002). Developments in the ecology, evolution, and behaviour of the chairs, genus Salvelinus: relevance for their management and conservation. Env. Biol. Fish 64, 9-14.

Mallet, J. (2005). Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229-237.

Marie, A.D., Bematchez, L., and Garant, D. (2010). Loss of genetic integrity correlates with stocking intensity in brook charr {Sahelinus fontinalis). Mol. Ecol. 19, 2025-2037.

Marshall, T.C, Slate, J., Kruuk, L.E.B., and Pemberton, J.M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639-655.

Martin, S., Savaria, J.Y., Audet, C, and Bematchez, L. (1997). Microsatellites reveal no evidence for inbreeding effects but low inter-stock genetic diversity among brook charr stocks used for reproduction in Quebec. Bull. Aquacult. Assoc. Can. 97, 21-23.

McGeoch, L., Gordon, I., and Schmitt, J. (2008). Impacts of land use, anthropogenic disturbance, and harvesting on an African medicinal liana. Biol. Conserv. 141, 2218-2229.

McGinnity, P., Prodohl, P., Fergusson, A., Hynes, R., Maoileidigh, N., Baker, N., Cotter, D., O'Hea, B., Cooke, D., Rogan, G., et al. (2003). Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc. R. Soc. Lond. B 270, 2443-2450.

McLean, J.E., Bentzen, P., and Quinn, T. (2003). Differential reproductive success of sympatric naturally spawning hatchery and wild steelhead trout {Oncorhynchus mykiss) through the adult stage. Can. J. Fish. Aqua. Sci. 60, 433-440.

Mesochina, P., Bedin, E., and Ostrowski, S. (2003). Reintroducing antelopes into arid areas: lessons leamt from the oryx in Saudi Arabia. Comptes Rend. Biol. 326, 158-165.

123

Page 138: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Miller, L.M., T. Close, T., and Kapuscinski, A.R. (2004). Lower fitness of hatchery and hybrid rainbow trout compared to naturalized populations in Lake Superior tributaries. Mol. Ecol. 13, 3379-3388.

Ministere des Ressources Naturelles et de la Faune du Quebec (2008) Lignes directrices sur les ensemencements de poissons. Secteur Faune Quebec, Direction de l'expertise sur la faune et ses habitats. Quebec. 41 p.

Mortelliti, A., Amori, G., Capizzi, D., Cervone, C, Fagiani, S., Pollini, B., and Boitani, L. (2011). Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. J. Appl. Ecol. 48, 153-162.

Moyle, P.B., and Cech, J.J. (2004). Fishes: an introduction to ichthyology. 5 ed. Uppersaddle River, NJ: Prentice Hall.

Myers, R.A., Baum, J.K., Sheperd, T.D., Powers, S.P., and Peterson, C.H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846-1850.

Naish, K.A., Taylor, J.E., Levin, P.S., Quinn, T.P., Winton, J.R., Huppert, D., and Hilbom, R. (2008). An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Adv. Mar. Biol. 53, 61-194.

Nielsen, E.E., Hansen, M.M., and Bach, L. (2001). Looking for a needle in a haystack: Discovery of indigenous salmon in heavily stocked populations. Conserv. Genet. 2, 219-232.

Nielsen, E.E., Hansen, M.M., Ruzzante, D.E., Meldrup, D., and Gronkjaer, P. (2003). Evidence of a hybrid-zone in Atlantic cod {Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol. Ecol. 12, 1497-1508.

Njim, M., Mkumbo, O.C, and van der Knaap, M. (2010). Some possible factors leading to decline in fish species in Lake Victoria. Aquat. Ecosys. Health Manag. 13, 3-10.

Noren, K., Dalen, L., Kvaloy, K., and Angerbjom, A. (2005). Detection of farm fox and hybrid genotypes among wild artic foxes in Scandinavia. Conserv. Genet. 6, 885-894.

124

Page 139: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Normandeau, E., Hutchings, J.A., Fraser, D.J., and Bematchez, L. (2009). Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evol. Appl. 2, 489-503.

Oliveira, R., Godinho, R., Randi, E., and Alves, P.C. (2008). Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats {Felis sihestris sihestris) in Iberian Peninsula? Phil. Trans. R. Soc. B 363, 2953-2961.

Olsen, J.B., Flannery, B.G., Beacham, T.D., Bromaghin, J.F., Crane, P.A., Lean, C.F., Dunmall, K.M., and Wenburg, J.K. (2008). The influence of hydrographic stmcture and seasonal run timing on genetic diversity and isolation-by-distance in chum salmon {Oncorhynchus keta). Can. J. Fish. Aquat. Sci. 65, 2026-2042.

Paganini, A., Kimmerer, W.J., and Stillman, J.H. (2010). Metabolic responses to environmental salinity in the invasive clam Corbula amurensis. Aqua. Biol. 77, 139-147.

Pansarin, E.R., and Amaral, M.C.E. (2007). Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization? Plant Biol. 10, 211-219.

Peres-Neto, P.R., and Magnan, P. (2004). The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia 140, 36-45.

Poissant, J., Knight, T.W., and Ferguson, M.M. (2005). Nonequilibrium conditions following landscape rearrangement: the relative contribution of past and current hydrological landscapes on the genetic stmcture of a stream-dwelling fish. Mol. Ecol. 14, 1321-1331.

Poteaux, C, Beaudou, D., and Berrebi, P. (1998). Temporal variations of genetic introgression in stocked brown trout populations. J. Fish. Biol. 53, 701-713.

Power, G. (1980). The brook charr, Sahelinus fontinalis. Pages 141-203 in E. K. Balon, ed. Charrs: salmonid fishes of the genus Sahelinus. Dr W. Junk, the Hague, the Netherlands.

125

Page 140: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Pritchard, J.K., Stephens, M., and Donnely, P. (2000). Inference of population structure using multilocus genotype data. Genetics 755, 945-959.

Proulx, R., and Magnan, P. (2004). Contribution of phenotypic plasticity and heredity to the trophic polymorphism of lacustrine brook charr {Sahelinus fontinalis). Evol. Ecol. Res. 6, 503-522.

Randi, E. (2008). Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 77, 285-293.

Reisenbichler, R.R., and Rubin, S.P. (1999). Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES J. Mar. Sci. 56, 459-466.

Rhymer, J.M., and Simberloff, D. (1996). Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83-109.

Ridgway, M.S., and Blanchfield, P.J. (1998). Brook trout spawning areas in lakes. Ecol. Fresh. Fish 7, 140-145.

Rieseberg, L.H., and Carney, S.E. (1998). Plant hybridization. New Phytol. 140, 599-624.

Roberge, C, Einum, S., Guderley, H, and Bematchez, L. (2006). Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon. Mol. Ecol. 75, 9-20.

Roberge, C, Normandeau, E., Einum, S., Guderley, H., and Bematchez, L. (2008). Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Mol. Ecol. 17, 314-324.

Rochette, S., Rivot, E., Morin, J., Mackinson, S. Riou, P. and Le Pape, O. (2010). Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe). J. Sea Res. 64, 34-44.

126

Page 141: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 745, 1219-1228.

Rousset, F. (2008). GENEPOP ' 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103-106.

Ruzzante, D.E., Hansen, M.M., Meldmp, D., and Ebert, K.M. (2004). Stocking impact and migration pattern in an anadromous brown trout {Salmo trutta) complex: where have all the stocked spawning sea trout gone? Mol. Ecol. 13, 1433-1445.

Saisa, M., Koljonen, M-L., and Tahtinen, J. (2003). Genetic changes in Atlantic salmon stocks since historical times and the effective population size of a long-term captive breeding programme. Consev. Genet. 4, 613-627.

Sanz, N., Araguas, R.M., Fernandez, R., Vera, M., and Garcia-Marin, J.L. (2009). Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conserv. Genet. 10, 225-236.

Sauvage, C, Derome, N., Normandeau, E., St-Cyr, J., Audet, C, and Bematchez L. (2010). Fast transcriptional responses to domestication in the brook charr Sahelinus fontinalis. Genetics 185, 105-112.

Shikano, T., Shimada, Y., and Suzuki, H. (2008). Comparison of genetic diversity at microsatellite loci and quantitative traits in hatchery populations of Japanese flounder Paralichthys olivaceus. J. Fish Biol. 72, 386-399.

Small, M.P., Currens, K., Johnson, T.H., Frye, A.E., and Von Bargen, J.F. (2009). Impacts of supplementation: genetic diversity in supplemented and unsupplemented populations of summer chum salmon {Oncorhynchus keta) in Puget Sound (Washington, USA). Can. J. Fish. Aquat. Sci. 66, 1216-1229.

Societe de Recherche et de Developpement en Aquaculture Continentale Inc., SORDAC. (2001). Plan strategique 2005-2008 - plan annuel 2006. p. 54.

127

Page 142: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Sork V.L., and Waits, L. (2010). Introduction: Contributions of landscape genetics -approaches, insights, and future potential. Mol. Ecol. 19, 3489-3495.

Spoor, W.A. (1990). Distribution of fingerling brook trout, Sahelinus fontinalis Mitchill, in dissolved oxygen concentration gradients. J. Fish Biol. 36, 363-373.

Stockwell, C.A., Hendry, A.P., and Kinnison, M.T. (2003). Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94-101.

Sundstrom, L.F., Peterson, E., Hojesjo, J., Johnsson, J.I., and Jarvi, T. (2004). Hatchery selection promotes boldness in newly hatched brown trout {Salmo trutta): implications for dominance. Behav. Ecol. 75, 192-198.

Susnik, S., Berrebi, P., Dove, P., Hansen, M.M., and Snoj, A. (2004). Genetic introgression between wild and stocked salmonids and the prospects for using molecular markers in population rehabilitation: the case of the Adriatic grayling {Thymallus thymallus L. 1785). Heredity 93, 273-282.

Tallent-Halsell, N., and Watt, M. (2009). The invasive Buddleja davidii (butterfly bush). Bot. Rev. 75, 292-325.

Taylor, E.B. (1991). A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98, 185-207.

Taylor, E.B., Tamkee, P., Sterling, G., and Hughson, W. (2007). Microsatellite DNA analysis of rainbow trout {Oncorhynchus mykiss) from western Alberta, Canada: native status and evolutionary distinctiveness of "Athabasca" rainbow trout. Conserv. Genet. 8, 1-15.

Taylor, S.S., Jamieson, E.G., and Armstrong D.P. (2005). Successful island reintroductions of New Zealand robins and saddlebacks with small numbers of founders. Anim. Conserv. 8, 415-420.

Tessier, N., Bematchez, L., and Wright, J.M. (1997). Population structure and impact of supportive breeding inferred from mitochondrial and microsatellite DNA analyses in land­locked Atlantic salmon Salmo salar L. Mol. Ecol. 6, 735-750.

128

Page 143: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Turgeon, J., Estoup, A., and Bematchez, L. (1999). Species Flock in the North American Great Lakes: Molecular Ecology of Lake Nipigon Ciscoes (Teleostei: Coregonidae: Coregonus). Evolution 53, 1857-1871.

Vaha, J.P., and Primmer, CR. (2006). Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 75, 63-72.

Venne, H, and Magnan, P. (1995). The impact of intraspecific and interspecific interactions on young-of-the-year brook charr, in temperate lakes. J. Fish Biol. 46, 669-686.

Verspoor, E. (1988). Reduced genetic variability in first-generation hatchery populations of Atlantic salmon {Salmo salar). Can. J. Fish. Aqua. Sci. 45, 1686-1690.

Wang, J.L., and Ryman, N. (2001). Genetic effects of multiple generations of supportive breeding. Conserv. Biol. 75, 1619-1631.

Wang, S.Z., Hard, J.J., and Utter, F. (2002). Genetic variation and fitness in salmonids. Conserv. Genet. 3, 321-333.

Waples, R.S., and Hendry, A,P. (2008). Evolutionary perspectives on salmonid conservation and management. Evol. Appl. 7, 183-188.

Waples, R.S. (1999). Dispelling some myths about hatcheries. Fisheries 24, 12-21.

Warren, D., Mineau, M., Ward, E., and Kraft, C. (2010). Relating fish biomass to habitat and chemistry in headwater streams of the northeastern United States. Env. Biol. Fish. 88, 51-62.

Warrilow, J.A., Josephson, D.C, Youngs, W.D., and Krueger, C.C. (1997). Differences in sexual maturity and fall emigration between diploid and triploid brook trout {Sahelinus fontinalis) in an Adirondack lake. J. Fish. Aquat. Sci. 54, 1808-1812.

129

Page 144: IMPACTS GENETIQUES DES ENSEMENCEMENTS D'OMBLES DE …

Watson, J., Tmeman, M., Tufet, M., Henderson, S., and Atkinson, R. (2010). Mapping terrestrial anthropogenic degradation on the inhabited islands of the Galapagos Archipelago. Oryx 44, 79-82.

Weber, E.D., and Fausch, K.D. (2003). Interactions between hatchery and wild salmonids in streams: differences in biology and evidence for competition. Can. J. Fish. Aqua. Sci. 60, 1018-1036.

Weir, B.S., and Cockerman, CC. (1984). Estimating F-statistics for the analysis of population stmcture. Evolution 38, 1358-1370.

Weir, L.K., and Grant, J.W.A. (2005). Effects of aquaculture on wild fish populations: a synthesis of data. Env. Rev. 13, 145-168.

Wiederholt, R., Femandez-Duque, E., Diefenbach, D.R., and Rudran, R. (2010). Modeling the impacts of hunting on the population dynamics of red howler monkeys (Alouatta seniculus). Ecol. Model. 227, 2482-2490.

Wijenayake, W.M.H.K., Jayasinghe, U.A.D., and Amarasinghe, U.S. (2005). Culture-based fisheries in non-perennial reservoirs in Sri-Lanka : production and relative performance of stocked species. Fish. Manag. Ecol. 72, 249-258.

World Wildlife Fund (WWF). (2001). Alerte du WWF: la mer n'est pas un self-service! Conference Mondiale sur les Oceans et Cotes, UN.

130