1
National Aeronautics and Space Administration Introduction Cold pools and sub-grid organization offer a potential solution to the “entrainment dilemma,” an apparent tradeoff between realistic convective variability and biases in the mean state. Here we implement a cold pool (CP) parameterization based on Del Genio, et al. (2015) in the NASA GEOS AGCM run with Grell-Freitas convection. We examine two potential CP effects on deep convection: (1) Entrainment is made a decreasing function of cold pool area, and (2) source parcel moist static energy is drawn from the non- cold pool environment. Impact of a cold pool parameterization on the diurnal cycle and intraseasonal variability in the GEOS AGCM Nathan Arnold, Saulo Freitas, Georg Grell Precip, Land E-mail: [email protected] | Web: gmao.gsfc.nasa.gov Global Modeling & Assimilation O ffice A11O-2503 Cold pool parameterization Diurnal cycle Intraseasonal variability Summary Source parcel MSE perturbation and variable entrainment linked to cold pool area both produce a modest (~1 hr) delay in diurnal peak precipitation. Combined effects have a weak impact on MJO statistics. Variable entrainment shifts PW distribution to drier values, weaker precipitation, and strengthens relationship between precipitation rate and moisture tendency. MSE’ shifts distributions to wetter PW, stronger precip. Process metrics Downdrafts are generated by congestus and deep plumes from the Grell-Freitas convection scheme. New cold pools are initiated when downdraft ! v is at least 0.5 K colder than the environment. Cold pool area fraction, a cp , ! "# and q cp evolve prognostically based on additional downdraft input and a decay timescale of 4 hours. References Freitas, S. R., et al., 2018: Assessing the Grell-Freitas Convection Parameterization in the NASA GEOS Modeling System. J. Adv. Model. Earth Syst., 10(6): 1266–1289. Mapes, B. and R. Neale, 2011: Parameterizing Convective Organization to Escape the Entrainment Dilemma, J. Adv. Model. Earth Syst., 3. Del Genio, A., et al, 2015: Constraints on Cumulus Parameterization from Simulations of Observed MJO Events. J. Climate, 28, 6419-6442. 0 = env - env = - a cp cp 1 - a cp @ a cp @ t = m d g Δp - a cp Environmental properties are diagnosed, where ! ’ is the convective source air perturbation (similarly for q’). In “ENT” experiments, deep convective entrainment is scaled based on cold pool area. Precip, Ocean CP Area, Land CP Area, Ocean MSE pert, Land MSE pert, Ocean Diurnal cycle averaged 30S-30N over land and ocean. A high entrainment factor reduces diurnal cycle magnitude. Both approaches delay (~1 hour) the peak precipitation. Cold pool area and source air MSE perturbation peak in early evening, following maximum precipitation. CTRL CP: ENT-MSE CTRL CP: ENT-MSE CP: ENT-MSE CTRL Wavenumber- frequency spectra of OLR show a small increase in eastward variance. Lag-correlation diagrams of precip (shading) and U850 (contours) show possible extension of eastward propagation. CP Area, 90 th pctile CP Area, JJA mean MSE pert, 90 th pctile MSE pert, JJA mean = 4 hr kJ/kg CTRL GEOS AGCM with prescribed SST, no cold pools ENT10x Deep convection entrainment factor 10x, decreasing to 1x at CP area 0.15, no MSE perturbation ENT2x Convective entrainment factor 2x, decreasing to 0.2x at CP area 0.15, no MSE perturbation MSE2x Entrainment factor 1, with MSE perturbation doubled ENT -MSE Entrainment factor 2x decreasing to 0.2x at CP area 0.15, MSE perturbation 2x (top) PDFs of precip, precipitable water, and their relationship. (bot) Profiles of humidity tendency binned by precip rate, for three cases. g kg day -1 Frequency Frequency Precipitation (mm day -1 ) Precipitable Water (mm) Precipitable Water (mm) Precip rate (mm day -1 ) Daily 1 o PW Daily 1 o Precip Precip vs PW Precip rate (mm day -1 ) Precip rate (mm day -1 ) Pressure (hPa) Pressure (hPa) Pressure (hPa) Local Time (hr) Local Time (hr) J kg -1 mm d -1

Impact of a cold pool parameterization on the diurnal ...variability in the GEOS AGCM Nathan Arnold, Saulo Freitas, Georg Grell Precip, Land E-mail: [email protected] | Web: gmao.gsfc.nasa.gov

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Impact of a cold pool parameterization on the diurnal ...variability in the GEOS AGCM Nathan Arnold, Saulo Freitas, Georg Grell Precip, Land E-mail: nathan.arnold@nasa.gov | Web: gmao.gsfc.nasa.gov

National Aeronautics andSpace Administration

IntroductionCold pools and sub-grid organization offer a potential solution to the “entrainment dilemma,” an apparent tradeoff between realistic convective variability and biases in the mean state. Here we implement a cold pool (CP) parameterization based on Del Genio, et al. (2015) in the NASA GEOS AGCM run with Grell-Freitas convection. We examine two potential CP effects on deep convection: (1) Entrainment is made a decreasing function of cold pool area, and (2) source parcel moist static energy is drawn from the non-cold pool environment.

Impact of a cold pool parameterization on the diurnal cycle and intraseasonalvariability in the GEOS AGCM Nathan Arnold, Saulo Freitas, Georg Grell

Precip, Land

E-mail: [email protected] | Web: gmao.gsfc.nasa.gov

Global Modeling & Assimilation Office

A11O-2503

Cold pool parameterization

Diurnal cycle Intraseasonal variability

Summary• Source parcel MSE perturbation and variable entrainment

linked to cold pool area both produce a modest (~1 hr) delay in diurnal peak precipitation.

• Combined effects have a weak impact on MJO statistics.• Variable entrainment shifts PW distribution to drier values,

weaker precipitation, and strengthens relationship between precipitation rate and moisture tendency.

• MSE’ shifts distributions to wetter PW, stronger precip.

Process metrics

Downdrafts are generated by congestus and deep plumes from the Grell-Freitas convection scheme. New cold pools are initiated when downdraft !v is at least 0.5 K colder than the environment. Cold pool area fraction, acp, !"# and qcp evolve prognostically based on additional downdraft input and a decay timescale of 4 hours.

References• Freitas, S. R., et al., 2018: Assessing the Grell-Freitas Convection Parameterization in the

NASA GEOS Modeling System. J. Adv. Model. Earth Syst., 10(6): 1266–1289.• Mapes, B. and R. Neale, 2011: Parameterizing Convective Organization to Escape the

Entrainment Dilemma, J. Adv. Model. Earth Syst., 3.• Del Genio, A., et al, 2015: Constraints on Cumulus Parameterization from Simulations of

Observed MJO Events. J. Climate, 28, 6419-6442.

✓0 = ✓env � ✓✓env =✓ � acp✓cp1� acp

@acp@t

=mdg

�p� acp

Environmental properties are diagnosed,

where !’ is the convective source air perturbation (similarly for q’). In “ENT” experiments, deep convective entrainment is scaled based on cold pool area.

Precip, Ocean

CP Area, Land CP Area, Ocean

MSE pert, Land MSE pert, Ocean

Diurnal cycle averaged 30S-30N over land and ocean.

A high entrainment factor reduces diurnal cycle magnitude.

Both approaches delay (~1 hour) the peak precipitation.

Cold pool area and source air MSE perturbation peak in early evening, following maximum precipitation.

CTRL CP: ENT-MSE

CTRL CP: ENT-MSE

CP: ENT-MSECTRL

Wavenumber-frequency spectra of OLR show a small increase in eastward variance.

Lag-correlation diagrams of precip (shading) and U850 (contours) show possible extension of eastward propagation.

CP Area, 90th pctileCP Area, JJA mean

MSE pert, 90th pctileMSE pert, JJA mean

⌧ = 4 hr<latexit sha1_base64="RXqik7nR9xqfhH2BLHc6MY77Nwo=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5JIQUGEohePFewHNKFstpt26WYTdidqif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAIrsFxvq3Cyura+kZxs7S1vbO7Z5f3WzpOFWVNGotYdQKimeCSNYGDYJ1EMRIFgrWD0fXUb98zpXks72CcMD8iA8lDTgkYqWeXPSDpZc278IA9QjZUk55dcarODHiZuDmpoByNnv3l9WOaRkwCFUTrrusk4GdEAaeCTUpeqllC6IgMWNdQSSKm/Wx2+gQfG6WPw1iZkoBn6u+JjERaj6PAdEYEhnrRm4r/ed0UwnM/4zJJgUk6XxSmAkOMpzngPleMghgbQqji5lZMh0QRCiatkgnBXXx5mbROq65TdW9rlfpVHkcRHaIjdIJcdIbq6AY1UBNR9ICe0St6s56sF+vd+pi3Fqx85gD9gfX5AzYWk/Y=</latexit><latexit sha1_base64="RXqik7nR9xqfhH2BLHc6MY77Nwo=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5JIQUGEohePFewHNKFstpt26WYTdidqif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAIrsFxvq3Cyura+kZxs7S1vbO7Z5f3WzpOFWVNGotYdQKimeCSNYGDYJ1EMRIFgrWD0fXUb98zpXks72CcMD8iA8lDTgkYqWeXPSDpZc278IA9QjZUk55dcarODHiZuDmpoByNnv3l9WOaRkwCFUTrrusk4GdEAaeCTUpeqllC6IgMWNdQSSKm/Wx2+gQfG6WPw1iZkoBn6u+JjERaj6PAdEYEhnrRm4r/ed0UwnM/4zJJgUk6XxSmAkOMpzngPleMghgbQqji5lZMh0QRCiatkgnBXXx5mbROq65TdW9rlfpVHkcRHaIjdIJcdIbq6AY1UBNR9ICe0St6s56sF+vd+pi3Fqx85gD9gfX5AzYWk/Y=</latexit><latexit sha1_base64="RXqik7nR9xqfhH2BLHc6MY77Nwo=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5JIQUGEohePFewHNKFstpt26WYTdidqif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAIrsFxvq3Cyura+kZxs7S1vbO7Z5f3WzpOFWVNGotYdQKimeCSNYGDYJ1EMRIFgrWD0fXUb98zpXks72CcMD8iA8lDTgkYqWeXPSDpZc278IA9QjZUk55dcarODHiZuDmpoByNnv3l9WOaRkwCFUTrrusk4GdEAaeCTUpeqllC6IgMWNdQSSKm/Wx2+gQfG6WPw1iZkoBn6u+JjERaj6PAdEYEhnrRm4r/ed0UwnM/4zJJgUk6XxSmAkOMpzngPleMghgbQqji5lZMh0QRCiatkgnBXXx5mbROq65TdW9rlfpVHkcRHaIjdIJcdIbq6AY1UBNR9ICe0St6s56sF+vd+pi3Fqx85gD9gfX5AzYWk/Y=</latexit><latexit sha1_base64="RXqik7nR9xqfhH2BLHc6MY77Nwo=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSyCp5JIQUGEohePFewHNKFstpt26WYTdidqif0pXjwo4tVf4s1/47bNQVsfDDzem2FmXpAIrsFxvq3Cyura+kZxs7S1vbO7Z5f3WzpOFWVNGotYdQKimeCSNYGDYJ1EMRIFgrWD0fXUb98zpXks72CcMD8iA8lDTgkYqWeXPSDpZc278IA9QjZUk55dcarODHiZuDmpoByNnv3l9WOaRkwCFUTrrusk4GdEAaeCTUpeqllC6IgMWNdQSSKm/Wx2+gQfG6WPw1iZkoBn6u+JjERaj6PAdEYEhnrRm4r/ed0UwnM/4zJJgUk6XxSmAkOMpzngPleMghgbQqji5lZMh0QRCiatkgnBXXx5mbROq65TdW9rlfpVHkcRHaIjdIJcdIbq6AY1UBNR9ICe0St6s56sF+vd+pi3Fqx85gD9gfX5AzYWk/Y=</latexit>

kJ/kg

CTRL GEOS AGCM with prescribed SST, no cold poolsENT10x Deep convection entrainment factor 10x, decreasing to 1x at CP area 0.15, no MSE perturbation

ENT2x Convective entrainment factor 2x, decreasing to 0.2x at CP area 0.15, no MSE perturbation

MSE2x Entrainment factor 1, with MSE perturbation doubled

ENT-MSE Entrainment factor 2x decreasing to 0.2x at CP area 0.15, MSE perturbation 2x

(top) PDFs of precip, precipitable water, and their relationship.(bot) Profiles of humidity tendency binned by precip rate, for three cases.

g kg day-1

Freq

uenc

y

Freq

uenc

y

Prec

ipita

tion

(mm

day

-1)

Precipitable Water (mm)Precipitable Water (mm)Precip rate (mm day-1)

Daily 1o PWDaily 1o Precip Precip vs PW

Precip rate (mm day-1) Precip rate (mm day-1)

Pres

sure

(hPa

)

Pres

sure

(hPa

)

Pres

sure

(hPa

)

Local Time (hr) Local Time (hr)

J kg-1

mm d-1