24
Monte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal [email protected] Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung February 22, 2008 Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal [email protected] Department

Embed Size (px)

Citation preview

Page 1: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

IMPA Commodities Course :Numerical Methods

Sebastian [email protected]

Department of Statistics andMathematical Finance Program,

University of Toronto, Toronto, Canadahttp://www.utstat.utoronto.ca/sjaimung

February 22, 2008

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 2: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Table of contents

1 Monte Carlo MethodsBasic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

2 Trees

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 3: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Basic MC Methods

For option valuation, an expectation is the basic quantity

Vt = e−r(T−t) EQt [ϕ(FT (U))]

For value-at-risk calculations, quantiles are the object ofinterest

VaRp , max

{X : P

(∑i

aiVi > X

)> p

}− EP

[∑i

aiVi

]

For simulation, the price path {Ft1(U),Ft2(U), . . . } is required

In all cases Monte Carlo simulation can assist

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 4: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Basic MC Methods

Idea: simulate from the distribution of relevant quantity andcompute average

Example: Price a 1-year floating strike Asian option on the1.25-year forward contract with averaging occurring over thelast month of the contract using the Schwartz model

The payoff of this option is

ϕ =

(F1(1.25)−

20∑i=1

F1+(i−20)/251(1.25)

)+

Need to simulate the forward price for all days in final monthSimulate in one step the forward price at time 1− 20/251Simulate daily time-steps (∆t = 1/251) within monthCompute pay-off and discountAverage over many paths

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 5: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Brownian Bridges

Rather than simulating entire path, can simulate the path in aprogressive refinement manner

A Brownian bridge is a way of generating a Brownian pathconditional on the end points

Given X (0) = x0 and X (t) = xt generate X (s) for 0 < s < t.

The joint distribution of X (t),X (s) given X (0) is a bivariatenormal (

X (s)X (t)

)∣∣∣∣X0=x0

∼ N((

x0

x0

);

(s ss t

))Can then show that,

X (s)|X (0)=x0,X (t)=xt∼ N

(x0 +

s

t(xt − x0);σ2 (t − s)s

t

)Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 6: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Brownian Bridges

A Bridge refinement example: 4 refinement steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d)

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 7: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Brownian Bridges

Many Brownian Bridge paths: 6 refinement steps, 100 paths,X0 = 1, X1 = −1, σ = 0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−1.5

−1

−0.5

0

0.5

1

1.5

Time

Val

ue

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 8: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Brownian Bridges

To generate Brownian sample paths using a Brownian Bridge:1 generate random sample of X (t) given X (0):

X (t)|X (0)=x0∼ N (x0; t)

2 build bridge from X (0) = x0 to X (t) = xt

3 repeat from step 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−3

−2

−1

0

1

2

3

Time

Val

ue

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 9: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Mean-Reverting Bridges

For mean-reverting process

dXt = κ(θ − Xt) dt + σ dWt

The joint of Xt1 ,Xs given Xt0 is(Xs

Xt1

)∣∣∣∣Xt0

∼ N((

θ + e−κ (s−t0)(Xt0 − θ)

θ + e−κ (t−t0)(Xt0 − θ)

); Σ

)where

Σ =σ2

(1− e−2κ (s−t0) 1− e−2κ (s−t0)

1− e−2κ (s−t0) 1− e−2κ (t−t0)

)

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 10: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Mean-Reverting Bridges

Can then show that

Xs |Xt0 ,Xt1∼ N (m; v)

with

m = e−κ(s−t0)[X0 + θ(eκ (s−t0) − 1)

+e2κ (s−t0) − 1

e2κ (t−t0) − 1(e−κ(t1−t0) Xt1 − (Xt0 + θ(eκ (t1−t0) − 1)))

]

v =σ2

2κ(e2κ (t−s) − 1)

e2κ (s−t0) − 1

e2κ (t−t0) − 1

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 11: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Mean-Reverting Bridges

Many Mean-Reverting Bridge paths: 6 refinement steps, 100 paths,X0 = 1, X1 = −1, θ = 0, κ = 1, σ = 0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−1.5

−1

−0.5

0

0.5

1

1.5

Time

Val

ue

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 12: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Mean-Reverting Bridges

To generate Mean-Reverting sample paths using a Mean-RevertingBridge:

1 generate random sample of X (t) given X (0)2 build bridge from X (0) = x0 to X (t) = xt

3 repeat from step 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

Val

ue

6 refinement steps, 100 paths, X0 = 1, θ = 0, κ = 1, σ = 0.2Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 13: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Squares Monte Carlo

Carrier(1994) and Longstaff & Schwartz (2000) developedthe least-squares Monte Carlo method for valuing earlyexercise clauses.

Basic idea1 Generate sample paths forward in time2 Place payoff at end nodes3 Compute discounted value of option4 Estimate conditional expectation by projection onto basis

functions5 Determine optimal exercise point using basis functions6 Repeat from step 3

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 14: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Squares Monte Carlo

Example: American Put strike= 1, spot= 1, r = 0.05:

Asset prices

Path t=0 t=1 t=2 t=3

1 1 0.95 0.94 0.822 1 0.97 1.21 1.153 1 0.96 0.91 0.874 1 0.84 1.20 0.875 1 0.93 0.90 0.916 1 1.03 0.99 1.01

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 15: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Squares Monte Carlo

Example: American Put strike= 1, spot= 1, r = 0.05:

t=2 t=3asset prices payoff

0.94 0.181.21 0

0.91 0.131.20 0.13

0.90 0.090.99 0

Compute payoff at t = 3

Focus only on paths which are in the money at t = 2

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 16: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Square Monte Carlo

Compute discounted value of payoffs at time t = 2

t = 2 t=2 t=3discounted payoff asset prices payoff

0.17 0.94 0.180 1.21 0

0.12 0.91 0.130.12 1.20 0.13

0.08 0.90 0.090 0.99 0

Regress discounted payoff onto asset prices at t = 2 usingbasis functions (e.g. 1, S , S2):

V 2(S) = −55.04 + 117.7 S − 62.75 S2

Regression gives estimate of E[e−r∆tVt+dt |St ]Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 17: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Square Monte Carlo

Compare estimate discounted expectation with immediateexercise value

t = 2 t=2 t=2 t=2est. disc. exp. asset prices exercise value est. option price

0.1697 0.94 0.06 0.17- 1.21 0 0

0.1208 0.91 0.09 0.12- 1.20 0 0.12

0.0795 0.90 0.10 0.10 x0.0001 0.99 0.01 0.01 x

In this example last two branches are optimal to exerciseNotice that the realized value at node t = 2 are used whengoing backwards, not the estimate of the conditionalexpectation

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 18: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Square Monte Carlo

Continue working backwards to obtain estimated prices att = 1 and then t = 0

Example: American put strike = 1, term = 1, r = 5%,σ = 20%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

LS methodFST method

250 steps, 300,000 sample paths

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 19: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Basic MC MethodsMonte Carlo BridgesLeast Squares Monte Carlo

Least Square Monte Carlo

Example: American put strike = 1, term = 1, r = 5%, κ = 1,θ = 0, σ = 20%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.85

0.9

0.95

1

250 steps, 300,000 sample paths

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 20: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Tress

Binomial trees are not appropriate for commodities due tomean-reversion

Trinomial trees are used instead

Branching probabilities choosing to match mean and variance

EQt [Xt+∆t − Xt ] = (e−κ∆t − 1)Xt , M Xt

VQt [Xt+∆t − Xt ] =

σ2

2κ(1− e−2κ∆t) , V

Branch steps set to ∆X =√

3V

Tree is cut at high and low values to avoid negativeprobabilities

Top of tree Middle of tree Bottom of tree

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 21: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Tress

Zero mean-reversion level

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 22: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Tress

Middle of tree branching probabilities:

pu = 16 + j2M2+jM

2pm = 2

3 − j2M2

pd = 16 + j2M2−jM

2

Top and Bottom of tree branching probabilities:

Top Bottom

pu = 76 + j2M2+3jM

2 pu = 16 + j2M2−jM

2pm = −1

3 − j2M2 − 2jM pm = −13 − j2M2 + 2jM

pd = 16 + j2M2+jM

2 pd = 76 + j2M2−3jM

2

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 23: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Tress

Shifted mean-reversion level

For simple mean-reversion will shift via θ + (ln S0 − θ)e−κ t + Xt

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods

Page 24: IMPA Commodities Course : Numerical · PDF fileMonte Carlo Methods Trees IMPA Commodities Course : Numerical Methods Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department

Monte Carlo MethodsTrees

Tress

Comparison of LSM and Trinomial model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 165

70

75

80

85

90

95

100

LSMLSMLSMκ = 2

κ = 1

κ = 0

Sebastian Jaimungal [email protected] IMPA Commodities Course : Numerical Methods