IKW40T120

Embed Size (px)

DESCRIPTION

Inverter IGBT

Citation preview

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 1 Rev. 2.3 12.03.2013

    Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft,fast recovery anti-parallel Emitter Controlled HE diode

    Best in class TO247 Short circuit withstand time 10s Designed for :

    - Frequency Converters- Uninterrupted Power Supply

    TrenchStop and Fieldstop technology for 1200 V applicationsoffers :

    - very tight parameter distribution- high ruggedness, temperature stable behavior

    NPT technology offers easy parallel switching capability due topositive temperature coefficient in VCE(sat)

    Low EMI Low Gate Charge Very soft, fast recovery anti-parallel Emitter Controlled HE diode Qualified according to JEDEC1 for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/

    Type VCE IC VCE(sat),Tj=25C Tj,max Marking Code Package

    IKW40T120 1200V 40A 1.7V 150C K40T120 PG-TO-247-3

    Maximum Ratings

    Parameter Symbol Value Unit

    Collector-emitter voltage VC E 1200 VDC collector currentTC = 25CTC = 100C

    IC7540

    A

    Pulsed collector current, tp limited by Tjmax IC p u l s 105Turn off safe operating areaVCE 1200V, Tj 150C

    - 105

    Diode forward currentTC = 25CTC = 100C

    IF8040

    Diode pulsed current, tp limited by Tjmax IF p u l s 105Gate-emitter voltage VG E 20 V

    Short circuit withstand time2)

    VGE = 15V, VCC 1200V, Tj 150CtS C 10 s

    Power dissipationTC = 25C

    P t o t 270 W

    Operating junction temperature T j -40...+150 CStorage temperature T s t g -55...+150

    1 J-STD-020 and JESD-0222) Allowed number of short circuits: 1s.

    PG-TO-247-3

    G

    C

    E

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 2 Rev. 2.3 12.03.2013

    Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 3 Rev. 2.3 12.03.2013

    Thermal Resistance

    Parameter Symbol Conditions Max. Value Unit

    CharacteristicIGBT thermal resistance,junction case

    R t h J C 0.45 K/W

    Diode thermal resistance,junction case

    R t h J C D 0.81

    Thermal resistance,junction ambient

    R t h J A 40

    Electrical Characteristic, at Tj = 25 C, unless otherwise specified

    Parameter Symbol ConditionsValue

    Unitmin. typ. max.

    Static CharacteristicCollector-emitter breakdown voltage V ( B R ) C E S VG E=0V, IC=1.5mA 1200 - - VCollector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=40A

    T j=25CT j=125CT j=150C

    ---

    1.72.12.3

    2.3--

    Diode forward voltage VF VG E=0V, IF=40AT j=25CT j=125CT j=150C

    ---

    1.751.751.75

    2.3--

    Gate-emitter threshold voltage VG E ( t h ) IC=1.5mA,VC E=VG E 5.0 5.8 6.5Zero gate voltage collector current IC E S VC E=1200V ,

    VG E=0VT j=25CT j=150C

    --

    --

    0.44.0

    mA

    Gate-emitter leakage current IG E S VC E=0V,VG E=20V - - 600 nATransconductance g f s VC E=20V, IC=40A - 21 - SIntegrated gate resistor RG i n t 6

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 4 Rev. 2.3 12.03.2013

    Dynamic CharacteristicInput capacitance C i s s VC E=25V,

    VG E=0V,f=1MHz

    - 2500 - pFOutput capacitance Co s s - 130 -Reverse transfer capacitance C r s s - 110 -Gate charge QG a t e VC C=960V, IC=40A

    VG E=15V- 203 - nC

    Internal emitter inductancemeasured 5mm (0.197 in.) from case

    LE - 13 - nH

    Short circuit collector current1) IC ( S C ) VG E=15V, tS C10sVC C = 600V,T j = 25C

    - 210 - A

    Switching Characteristic, Inductive Load, at Tj=25 C

    Parameter Symbol ConditionsValue

    Unitmin. typ. max.

    IGBT CharacteristicTurn-on delay time td ( o n ) T j=25C,

    VC C=600V, IC=40A,VG E=0/15V,RG=15 ,L

    2 )=180nH,C

    2 )=39pFEnergy losses includetail and diodereverse recovery.

    - 48 - nsRise time t r - 34 -Turn-off delay time td ( o f f ) - 480 -Fall time t f - 70 -Turn-on energy Eo n - 3.3 - mJTurn-off energy Eo f f - 3.2 -Total switching energy E t s - 6.5 -Anti-Parallel Diode CharacteristicDiode reverse recovery time t r r T j=25C,

    VR=600V, IF=40A,diF /d t=800A/s

    - 240 - nsDiode reverse recovery charge Q r r - 3.8 CDiode peak reverse recovery current I r r m - 28 ADiode peak rate of fall of reverserecovery current during tb

    di r r /d t - 370 - A/s

    1) Allowed number of short circuits: 1s.2) Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E.

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 5 Rev. 2.3 12.03.2013

    Switching Characteristic, Inductive Load, at Tj=150 C

    Parameter Symbol ConditionsValue

    Unitmin. typ. max.

    IGBT CharacteristicTurn-on delay time td ( o n ) T j=150C

    VC C=600V, IC=40A,VG E=0/15V,RG= 15 ,L

    1 )=180nH,C

    1 )=39pFEnergy losses includetail and diodereverse recovery.

    - 52 - nsRise time t r - 40 -Turn-off delay time td ( o f f ) - 580 -Fall time t f - 120 -Turn-on energy Eo n - 5.0 - mJTurn-off energy Eo f f - 5.4 -Total switching energy E t s - 10.4 -Anti-Parallel Diode CharacteristicDiode reverse recovery time t r r T j=150C

    VR=600V, IF=40A,diF /d t=800A/s

    - 410 - nsDiode reverse recovery charge Q r r - 8.8 - CDiode peak reverse recovery current I r r m - 36 - ADiode peak rate of fall of reverserecovery current during tb

    di r r /d t - 330 A/s

    1) Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E.

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 6 Rev. 2.3 12.03.2013

    I C

    ,CO

    LLE

    CTO

    RC

    UR

    RE

    NT

    10Hz 100Hz 1kHz 10kHz 100kHz0A

    20A

    40A

    60A

    80A

    100A

    TC=110C

    TC=80C

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    1V 10V 100V 1000V0,1A

    1A

    10A

    100A

    DC

    10s

    tp=3s

    50s

    500s

    20ms

    150s

    f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGEFigure 1. Collector current as a function of

    switching frequency(Tj 150C, D = 0.5, VCE = 600V,VGE = 0/+15V, RG = 15)

    Figure 2. Safe operating area(D = 0, TC = 25C,Tj 150C;VGE=15V)

    Pto

    t,P

    OW

    ER

    DIS

    SIPA

    TIO

    N

    25C 50C 75C 100C 125C0W

    50W

    100W

    150W

    200W

    250W

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    25C 75C 125C0A

    10A

    20A

    30A

    40A

    50A

    60A

    70A

    TC, CASE TEMPERATURE TC, CASE TEMPERATUREFigure 3. Power dissipation as a function of

    case temperature(Tj 150C)

    Figure 4. Collector current as a function ofcase temperature(VGE 15V, Tj 150C)

    Ic

    Ic

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 7 Rev. 2.3 12.03.2013

    I C

    ,CO

    LLE

    CTO

    RC

    UR

    RE

    NT

    0V 1V 2V 3V 4V 5V 6V0A

    10A

    20A

    30A

    40A

    50A

    60A

    70A

    80A

    90A

    100A

    15V

    7V

    9V

    11V

    13V

    VGE=17V

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0V 1V 2V 3V 4V 5V 6V0A

    10A

    20A

    30A

    40A

    50A

    60A

    70A

    80A

    90A

    100A

    15V

    7V

    9V

    11V

    13V

    VGE=17V

    VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGEFigure 5. Typical output characteristic

    (Tj = 25C)Figure 6. Typical output characteristic

    (Tj = 150C)

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0V 2V 4V 6V 8V 10V 12V0A

    10A

    20A

    30A

    40A

    50A

    60A

    70A

    80A

    90A

    100A

    25CTJ=150C

    VC

    E(sa

    t),C

    OLL

    EC

    TOR

    -EM

    ITT

    SAT

    UR

    ATI

    ON

    VO

    LTA

    GE

    -50C 0C 50C 100C0,0V

    0,5V

    1,0V

    1,5V

    2,0V

    2,5V

    3,0V

    3,5V

    IC=40A

    IC=80A

    IC=25A

    IC=10A

    VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATUREFigure 7. Typical transfer characteristic

    (VCE=20V)Figure 8. Typical collector-emitter

    saturation voltage as a function ofjunction temperature(VGE = 15V)

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 8 Rev. 2.3 12.03.2013

    t,

    SW

    ITC

    HIN

    GTI

    MES

    0A 20A 40A 60A1ns

    10ns

    100ns

    tr

    td(on)

    tf

    td(off)

    t,S

    WIT

    CH

    ING

    TIM

    ES

    1 ns

    10 ns

    100 ns

    1000 ns

    tf

    tr

    td(off)

    td(on)

    IC, COLLECTOR CURRENT RG, GATE RESISTORFigure 9. Typical switching times as a

    function of collector current(inductive load, TJ=150C,VCE=600V, VGE=0/15V, RG=15, Dynamic test circuit in Figure E)

    Figure 10. Typical switching times as afunction of gate resistor(inductive load, TJ=150C,VCE=600V, VGE=0/15V, IC=40A,Dynamic test circuit in Figure E)

    t,S

    WIT

    CH

    ING

    TIM

    ES

    0C 50C 100C 150C10ns

    100ns

    tr

    tf

    td(on)

    td(off)

    VG

    E(th

    ),G

    ATE

    -EM

    ITT

    TRS

    HO

    LDV

    OLT

    AGE

    -50C 0C 50C 100C 150C0V

    1V

    2V

    3V

    4V

    5V

    6V

    7V

    min.

    typ.

    max.

    TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATUREFigure 11. Typical switching times as a

    function of junction temperature(inductive load, VCE=600V,VGE=0/15V, IC=40A, RG=15, Dynamic test circuit in Figure E)

    Figure 12. Gate-emitter threshold voltage asa function of junction temperature(IC = 1.5mA)

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 9 Rev. 2.3 12.03.2013

    E

    ,SW

    ITC

    HIN

    GE

    NE

    RG

    YLO

    SSE

    S

    10A 20A 30A 40A 50A 60A 70A0,0mJ

    5,0mJ

    10,0mJ

    15,0mJ

    20,0mJ

    25,0mJ

    Ets*

    Eoff

    *) Eon and Etsinclude lossesdue to diode recovery

    Eon*

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    0 mJ

    5 mJ

    10 mJ

    15 mJ Ets*

    Eon*

    *) Eon and Ets include lossesdue to diode recovery

    Eoff

    IC, COLLECTOR CURRENT RG, GATE RESISTORFigure 13. Typical switching energy losses

    as a function of collector current(inductive load, TJ=150C,VCE=600V, VGE=0/15V, RG=15, Dynamic test circuit in Figure E)

    Figure 14. Typical switching energy lossesas a function of gate resistor(inductive load, TJ=150C,VCE=600V, VGE=0/15V, IC=40A,Dynamic test circuit in Figure E)

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    50C 100C 150C0mJ

    5mJ

    10mJ

    15mJ

    Ets*

    Eon*

    *) Eon and Ets include lossesdue to diode recovery

    Eoff

    E,S

    WIT

    CH

    ING

    EN

    ER

    GY

    LOS

    SES

    400V 500V 600V 700V 800V0mJ

    5mJ

    10mJ

    15mJ

    Ets*

    Eon*

    *) Eon and Ets include lossesdue to diode recovery

    Eoff

    TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGEFigure 15. Typical switching energy losses

    as a function of junctiontemperature(inductive load, VCE=600V,VGE=0/15V, IC=40A, RG=15, Dynamic test circuit in Figure E)

    Figure 16. Typical switching energy lossesas a function of collector emittervoltage(inductive load, TJ=150C,VGE=0/15V, IC=40A, RG=15, Dynamic test circuit in Figure E)

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 10 Rev. 2.3 12.03.2013

    V

    GE,G

    ATE

    -EM

    ITTE

    RV

    OLT

    AG

    E

    0nC 50nC 100nC 150nC 200nC 250nC0V

    5V

    10V

    15V

    960V240V

    c,C

    AP

    AC

    ITA

    NC

    E

    0V 10V 20V10pF

    100pF

    1nF

    Crss

    Coss

    Ciss

    QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGEFigure 17. Typical gate charge

    (IC=40 A)Figure 18. Typical capacitance as a function

    of collector-emitter voltage(VGE=0V, f = 1 MHz)

    t SC,S

    HO

    RT

    CIR

    CU

    ITW

    ITH

    STA

    ND

    TIM

    E

    12V 14V 16V0s

    5s

    10s

    15s

    I C(s

    c),s

    hort

    circ

    uitC

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    12V 14V 16V 18V0A

    100A

    200A

    300A

    VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITTETR VOLTAGEFigure 19. Short circuit withstand time as a

    function of gate-emitter voltage(VCE=600V, start at TJ=25C)

    Figure 20. Typical short circuit collectorcurrent as a function of gate-emitter voltage(VCE 600V, Tj 150C)

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 11 Rev. 2.3 12.03.2013

    V C

    E,C

    OLL

    EC

    TOR

    -EM

    ITTE

    RV

    OLT

    AG

    E

    0V

    200V

    400V

    600V

    0A

    20A

    40A

    60A

    1.5us1us0.5us0us

    IC

    VCE

    I C,C

    OLL

    EC

    TOR

    CU

    RR

    EN

    T

    0V

    200V

    400V

    600V

    0A

    20A

    40A

    60A

    1.5us1us0.5us0us

    IC

    VCE

    t, TIME t, TIMEFigure 21. Typical turn on behavior

    (VGE=0/15V, RG=15, Tj = 150C,Dynamic test circuit in Figure E)

    Figure 22. Typical turn off behavior(VGE=15/0V, RG=15, Tj = 150C,Dynamic test circuit in Figure E)

    Z thJ

    C,T

    RA

    NS

    IEN

    TTH

    ER

    MA

    LR

    ESI

    STA

    NC

    E

    10s 100s 1ms 10ms 100ms10-3K/W

    10-2K/W

    10-1K/W

    single pulse0.010.02

    0.05

    0.1

    0.2

    D=0.5

    Z thJ

    C,T

    RA

    NS

    IEN

    TTH

    ER

    MA

    LR

    ESI

    STA

    NC

    E

    10s 100s 1ms 10ms 100ms10-3K/W

    10-2K/W

    10-1K/W

    single pulse0.010.02

    0.05

    0.1

    0.2

    D=0.5

    tP, PULSE WIDTH tP, PULSE WIDTHFigure 23. IGBT transient thermal resistance

    (D = tp / T)Figure 24. Diode transient thermal

    impedance as a function of pulsewidth(D=tP/T)

    R , ( K / W ) , ( s ) 0.159 1.10*10-1

    0.133 1.56*10-2

    0.120 1.35*10-3

    0.038 1.51*10-4

    C 1=1 /R 1

    R 1 R2

    C 2=2 /R 2

    R , ( K / W ) , ( s ) 0.228 1.01*10-1

    0.257 1.15*10-2

    0.238 1.30*10-3

    0.087 1.53*10-4

    C 1=1 /R 1

    R 1 R2

    C 2=2 /R 2

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 12 Rev. 2.3 12.03.2013

    t rr

    ,RE

    VE

    RSE

    RE

    CO

    VER

    YTI

    ME

    400A/s 600A/s 800A/s 1000A/s0ns

    100ns

    200ns

    300ns

    400ns

    500ns

    600ns

    TJ=25C

    TJ=150C

    Qrr,R

    EV

    ER

    SE

    RE

    CO

    VE

    RY

    CH

    ARG

    E

    400A/s 600A/s 800A/s 1000A/s0C

    2C

    4C

    6C

    8C

    TJ=25C

    TJ=150C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPEFigure 23. Typical reverse recovery time as

    a function of diode current slope(VR=600V, IF=40A,Dynamic test circuit in Figure E)

    Figure 24. Typical reverse recovery chargeas a function of diode currentslope(VR=600V, IF=40A,Dynamic test circuit in Figure E)

    I rr,R

    EV

    ER

    SE

    RE

    CO

    VE

    RY

    CU

    RR

    EN

    T

    400A/s 600A/s 800A/s 1000A/s0A

    5A

    10A

    15A

    20A

    25A

    30A

    35A

    40A

    TJ=25C

    TJ=150C

    dirr/d

    t,D

    IOD

    EP

    EAK

    RAT

    EO

    FFA

    LLO

    FR

    EVE

    RS

    ER

    EC

    OV

    ER

    YC

    UR

    RE

    NT

    400A/s 600A/s 800A/s 1000A/s-0A/s

    -100A/s

    -200A/s

    -300A/s

    -400A/sTJ=25C

    TJ=150C

    diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPEFigure 25. Typical reverse recovery current

    as a function of diode currentslope(VR=600V, IF=40A,Dynamic test circuit in Figure E)

    Figure 26. Typical diode peak rate of fall ofreverse recovery current as afunction of diode current slope(VR=600V, IF=40A,Dynamic test circuit in Figure E)

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 13 Rev. 2.3 12.03.2013

    I F

    ,FO

    RW

    AR

    DC

    UR

    RE

    NT

    0V 1V 2V0A

    20A

    40A

    60A

    80A

    100A

    150C

    TJ=25C

    VF,

    FOR

    WA

    RD

    VO

    LTAG

    E

    -50C 0C 50C 100C0,0V

    0,5V

    1,0V

    1,5V

    2,0V

    40A

    25A

    IF=80A

    10A

    VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATUREFigure 27. Typical diode forward current as

    a function of forward voltageFigure 28. Typical diode forward voltage as a

    function of junction temperature

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 14 Rev. 2.3 12.03.2013

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 15 Rev. 2.3 12.03.2013

    Ir r m

    90% Ir r m

    10% Ir r m

    di /dtF

    tr r

    IF

    i,v

    tQS QF

    tS

    tF

    VR

    di /dtr r

    Q =Q Qr r S F

    +t =t tr r S F

    +

    Figure C. Definition of diodesswitching characteristics

    p(t)1 2 n

    T (t)j

    11

    22

    nn

    TC

    r r

    r

    r

    rr

    Figure D. Thermal equivalentcircuit

    Figure E. Dynamic test circuitLeakage inductance L =180nHand Stray capacity C =39pF.

    Figure A. Definition of switching times

    Figure B. Definition of switching losses

  • IKW40T120TrenchStop Series

    IFAG IPV TD VLS 16 Rev. 2.3 12.03.2013

    Published byInfineon Technologies AG81726 Munich, Germany 2013 Infineon Technologies AGAll Rights Reserved.

    Legal Disclaimer

    The information given in this document shall in no event be regarded as a guarantee of conditions orcharacteristics. With respect to any examples or hints given herein, any typical values stated herein and/orany information regarding the application of the device, Infineon Technologies hereby disclaims any and allwarranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectualproperty rights of any third party.

    InformationFor further information on technology, delivery terms and conditions and prices, please contact the nearestInfineon Technologies Office (www.infineon.com).

    Warnings

    Due to technical requirements, components may contain dangerous substances. For information on thetypes in question, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices orsystems and/or automotive, aviation and aerospace applications or systems only with the express writtenapproval of Infineon Technologies, if a failure of such components can reasonably be expected to cause thefailure of that life-support, automotive, aviation and aerospace device or system or to affect the safety oreffectiveness of that device or system. Life support devices or systems are intended to be implanted in thehuman body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonableto assume that the health of the user or other persons may be endangered.