44
Identification of resistance genes against Plasmopara viticola in Vitis vinifera cultivars for breeding program Dr. De Lorenzis Gabriella Dr. Toffolatti Silvia Laura Maryam Sargolzaei 2 nd YEAR - XXXIII CYCLE – A.A. 2018/2019 Prof. Dr. Failla Osvaldo

Identification of resistance genes against Plasmopara viticola in … · 2020. 10. 13. · Identification of resistance genes against Plasmopara viticola in Vitis vinifera cultivars

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Identification of resistance genes against Plasmopara viticola in Vitis

    vinifera cultivars for breeding program

    Dr. De Lorenzis Gabriella

    Dr. Toffolatti Silvia Laura

    Maryam Sargolzaei

    2nd YEAR - XXXIII CYCLE – A.A. 2018/2019

    Prof. Dr. Failla Osvaldo

  • Biotic and abiotic stresses threat its productivity

    are

    the causal agent of downy mildew.

    infects all the green parts

    Introduction: Grapevine Main Diseases Grapevine downy mildew, caused by the obligate biotrophicoomycetePlasmoparaviticola

  • Introduction: Grapevine Main Diseases

  • Introduction: Plasmopora viticola

    Seeds

    Buds and Crowns

  • 1. pre-formed constructive barriers (structural barriers)

    ✓ Strong cell wall

    ✓ A prominent wax layer

    ✓ Dense hairiness

    ✓ Antimicrobial toxins

    2. Specifically induced defense pathway

    ✓ Induced defense pathway

    ✓ Triggered immunity (PTI)

    ✓ R-(resistance)-genes

    Code receptors to recognize and bind to effectors

    Effectors of P. viticola have recently been described on RNA and genomic sequence level but their function remains to be shown

    Introduction: Plant strategies to cope with pathoges:

  • Agronomic effortsand

    fungicides spraying

    Introduction

    Approachto reduce

    the need for fungicides

    Resistance sources

    identification

    Enhance the effectiveness of crop breeding

  • Mgaloblishvili (Vitis vinifera),

    Introduction:

  • (signal transduction)

    Limitation of P. viticolagrowth and sporulation

    Resistance response

    The key genes in each level of plant fungi interaction:

    Cytochrome P45087A3(terpene biosynthesis)MLP-like protein 34 (pathogen related protein biosynthesis)Endo-1,3;1,4-beta-D-glucanase (antifungal recognition)Rust resistance kinase Lr10 (fungal recognition)Ethylene-responsive transcription factor 1B (signal transduction)

    Introduction: Putative Resistance Representation Scheme in Mgloblishvili

  • Introduction: Morphological/ Microscpical Study of P. viticola colonization in leaf

    SV = substomatal vesicle; M = mycelium; Ha = haustorium; S = sporangiophore; CA = callose deposition..

  • 1. To characterize 2 functional genes via genome editing to identify genes function

    2. To biochemical study of leaf tissue response to pathogen

    3. To identify loci related to resistance by QTL analysis

  • Characterization of two functional genes via genome editing

    to identify genes function

  • Plant Propagation:

    Methodology: In vitro culture

    Somatic embryogenic culture:

    Callus induction media

    ➢ Bud initiation medium

    ➢ Nb2 medium

    Greenhouse propagated plants (Shoot samples) MS Medium

    Bud Open budMicroscope

    1 2 3 4 5

    Callosity 0% 25% 50% 75% 100%

    1 2 3

    Color white Bej Black

    Consistancy Friable Optimal Aqueous

  • Methodology: Reference genes: Rust Resistance Kinase & Ethylen responce genes

    https://www.ncbi.nlm.nih.gov/gene/?term=XM_002263215.4

    >XM_002263215.4 PREDICTED: Vitis vinifera rust resistance kinase Lr10 (LOC100244615), mRNA

    >XM_002267534.4 PREDICTED: Vitis vinifera LEAF RUST 10 DISEASE-RESISTANCE LOCUS RECEPTOR-LIKE PROTEIN KINASE-like 2.2 (LOC100262212), mRNA

    Ethylene response gene

    Rust Resistance kinase

    https://www.ncbi.nlm.nih.gov/gene/?term=XM_002263215.4

  • Single plasmidAll-in-one vector

    Cas protein Target-specific gRNA

    Bacterial chromosome

    plasmid

    Co-cultivation

    Knock out the genes

    Ultimate Outcome

    Methodology : Perspective for Future Work

    CRISPR-P 2.0. online servicehttp://cbi.hzau.edu.cn/cgi-bin/CRISPR

    CR

    ISP

    R(C

    luste

    red

    Re

    gu

    larly

    Inte

    rsp

    ace

    dS

    ho

    rtP

    alin

    dro

    mic

    Re

    pe

    ats

    )

    CLONING1. Vector linearization2. Blunting reaction3. Adding T to the carrier4. Ligation5. Transformation of E. coli for heat shock6. Plasmid DNA extraction7. Sequencing

    http://cbi.hzau.edu.cn/cgi-bin/CRISPR

  • Leaf Gro

    wth

    An

    alysis by D

    un

    can test

    Leaf

    Nu

    mb

    er A

    nal

    ysis

    by

    On

    e w

    ay A

    NO

    VA

    Result : MS Media selection for each variety

    Mgloblishvili

    Pinot Noir

    Bianca

    Icy

  • Result : Acclimatization

    Hydroponic chamber

    MS mediaWell rooted plantlet

    Greenhouse

    L22

  • Mgloblishvili Bianca Pinot Noir

    Result : Embryogenic cells propagation

    Data collection

    R Studio v 1.1.463 analysis

    In Progress

  • Characterization of Terpen accumulation in leaves

    inoculated with Plasmopora viticola

  • Methodology :SPME-GC-MS analysis, Expression study

    Bianca

    Mgaloblishvili

    GC-MS analysisVolatiles quantitative data

    Statistical analysisSampels quantification

    SPME conditions (fibber: DVB/CAR/PDMS 50/30 µm)• Incubation: 30 min at 80°C• Extraction: 60 min at 80°C• Desorption: 20 min

    ✓ 3 genotypes✓ 3 biological repeat✓ 4 time points:

    • T0: 0• T1: 1 dpi• T2: 2 dpi• T3: 3 dpi

    Real time quantitative PCR

    Gene nameGenBank

    Accession

    Calculated

    primer

    efficiency

    Forward primer sequence Reverse primer sequence

    VvGwECar2 A HM807374.1 1.813 TGCCTCAGCTGTTGAATGCT TGAGGACGGTCATCGGAACA

    VvGwaBer HM807376.2 1.560 CCTAGCATTTGGGGCAATAC CCGTTGAACTGCATCGATAA

    VvCSaFar HM807379.1 1.824 GGGTGCACGTTGCTTCTAGT TGGCATCAGCACTGGTGTAG

    VvCSbOciM B HM807387 1.913 GGAACATCACTGGATGAGTTGA ATCTCCATGCTGATACATGCAC

    VvTer AY572987.1 1.837 AGAGTCTCCATTCCCTGAAACA GGGCTCAACGAGTAATGACAA

    VvPNGer HM807399.1 1.986 ATCTTCCTTTGTCGCTCCTT CCGCATGTGGAGATAGAGTT

  • , 11-Feb-2019 + 18:56:47Grape leaf 100 mg - terpenes

    3.01 8.01 13.01 18.01 23.01 28.01 33.01 38.01 43.01Time0

    100

    %

    110219_4 Scan EI+ TIC

    1.16e911.30

    3.24

    6.85

    25.16

    19.20 24.25

    27.21

    29.04

    , 13-Feb-2019 + 23:07:08Grape leaf 100 mg - terpenes non inoculato

    3.01 8.01 13.01 18.01 23.01 28.01 33.01 38.01 43.01Time0

    100

    %

    130219_5 Scan EI+ TIC

    1.25e911.22

    6.87

    3.26

    24.86

    16.66

    21.8619.66

    27.17

    25.13

    28.97

    27.25 29.04

    Violet: Mgloblishvili, resistant variety

    not-inoculated inoculated

    Results :

    Total 502 identified volatile compounds (VOCs)

    32 selected VOCs

    Typical substance classes

    • Alkanes• Alkenes• Aldehydes• Ketones• Aromatic compounds • Terpenes

    Scatter Plot

    In Progress

  • Identifying

    the loci related to resistance by

    QTL analysis

  • Plant material collection

    • 95 individual of green house propagated self-pollinated ‘’Mgaloblishvili’’

    • Wooden cutting and propagation in climate chamber for at least 4 weeks

    Molecular analysis

    • DNA extraction

    • QTL external service

    ➢ to identify genomic regions associated with resistance responce

    ➢ Chip array 18K SNP for grape are available

    phenotypical study

    • leaf disc assay

    • Microscopically study 7 dpi

    Methodology : QTL identification

    In Progress

  • PhD Secondement

    Institute for Grapevine Breeding Geilweilerhof(Coordinate: 49.218368, 8.047236)

    Prof. Dr. Eva Zyprian

  • Identification and characterization of the Plasmopora viticola secretome by de novo transcriptome analysis

    Maryam Sargolzaei*, Sarah Fröbel and Eva Zyprian#

    Julius Kühn-Institut – Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding

    Geilweilerhof, 76833 Siebeldingen, Germany

    *Current address: Department of Agriculture and Environmental Science, University of Milan, Milan, Italy

  • Introduction: Plasmopora Viticola

    https://www.ncbi.nlm.nih.gov/genome/genomes/11018

    https://www.ncbi.nlm.nih.gov/genome/genomes/11018

  • 2008-059-121 (Rpv10/Rpv3)(GF.GA-52-42x ‘Solaris’)

    2008-059-020 (Rpv-/Rpv-) 2011-003-013 (Rpv10/Rpv10)(self-pollination of ‘Solaris’)

    Methodology: Plant samples

    1. Plant Sample

    2. Plant-Pathogen Inoculation

    3. RNA sequencing NGC Illumina technology_HiSeq 2500 technology

    • Library preparation• Deep sequencing• Data analysis

  • Methodology: Gene Prediction

    EffectorP

    ApoplastP

    SignalP

    AGUSTUS

    NGC Sequencing

    Bioinformatic Analysis

    Secretome Prediction

  • Methodology: Gene Prediction

    Map Reads to Vitis vinifera Reference genomePN40024 (12Xv2Vv_Genome_edit)

    Molecular Biology Tools

    NGS Core Tools

    Trim Sequences

    Not mapped Reads

    Map Reads to Plasmopara viticola genome (MTPI01.1_AGUSTUS-v331)

    Selection (RPKM>2)

    Mapped Reads

    Map Reads to Plasmopara_viticola_INRA-PV221.assembly.PBv1

    Annotated

    Un-Annotated

    3rd Package

    2nd Package1st Package

    Pv_augustus-v331_model_organism

  • Methodology: Gene Identification & DEG & Pathogen development in host

    Solaris (Rpv10/Rpv3)Gutedel (Rpv-/Rpv-) Rondo (Rpv10/Rpv-)

    Zarya Severa × St. Laurent

    1. Plant samples

    2. Leaf disc inoculation

    3. RNA extraction

    4. RT-qPCR

    5. Microscopically study

  • 1. S

    amp

    ling

    2. S

    po

    re c

    olle

    ctio

    n

    3. L

    eaf

    dis

    c in

    ocu

    lati

    on

    Sp.

    6 hpi

    24 hpi

    7 dpi

    Fluorescent microscopy

    RNA extraction

    Methodology: Spore Collection and Leaf Disc Assay (P. viticola development screening)

    Natural diseased leaves

    HealthyPropagated in Greenhouse_JKI

    Spores in all cells /Cells no. x Chamber depth (0.1 mm) x Dillution (1) = spores. µ-3

  • Results: Map to P. viticola genome (MTPI01.1-v331)

    ✓ Row reads trimming: 99.8%✓ Map to Vitis vinifera reference genome: 88-90% of reads✓ Map to Plasmopara viticola genome: 8-14% of reads

  • C

    A

    B

    A: Apoplastic effectors B: Signal C: Effector Other Total

    0 hpi 6 hpi 0 hpi 6 hpi 0 hpi 6 hpi 0 hpi 6 hpi 0 hpi 6 hpi

    2008-059-02_ Rpv-_Rpv- 8 156 5 224 3 349 25 2148 41 2877

    2008-059-121-Rpv10_Rpv3 6 197 10 279 4 436 5 3230 19 4142

    2011-003-013_Rpv10_Rpv10 5 201 4 246 2 362 27 2362 38 3171

    A

    BC

    6 hpi0 hpi

    Results: Genes Identification and putatie characterization using BLAST algorithm

  • Results: Common Regions between P. viticola genome, annotated by RNA-Seq reads, ROI selected by LGRM Algorithm

  • Results: GOI analysis

    ORF finding

    Motif analysis

    GOI identification

    Submission no. genes activity QC Accession Proteins2264165 Avirulent 63% XM_009537882 Effectors2265656 Hypothethical avirulent protein 32% XM_008901824.1 Effectors2265660 Dehydrogenase, plasmopora trasmembrane protein 51% XM_024721234.1 Signal2265662 Cellulose synthase 92% GQ258973.1 Apoplast Effector2265665 Ras GTPase-activating-like protein and signalling protein 57% XM_002905745.1 Effector2265671 Regulator G protein signaling 61% XM_002898161.1 SignalDEG analysis

  • Genotype Gene

    ID

    6 hpi 24 hpi

    Expression change

    2008-059-020 sus 2264165 11,571 up 16,151 up2265656 4,457 up 11,614 up2265660 14,512 up 5,681 down2265662 30,071 up 240,599 up2265665 0,682 inconsiderable 0,375 inconsiderable2265671 0,537 inconsiderable 0,027 inconsiderable

    2011-003-013

    Rpv10/Rpv10

    2264165 6,034 up 1,940 down2265656 2,007 up 0,810 down2265660 3,474 up 2,330 down2265662 72,491 up 35,777 down2265665 0,098 inconsiderable 0,092 inconsiderable2265671 0,164 inconsiderable 0,060 inconsiderable

    2008-059-121 Rpv10/Rpv3 2264165 13,397 up 1,856 down2265656 2,853 up 1,112 down2265660 4,769 up 0,685 inconsiderable2265662 498,056 up 10,125 down2265665 0,407 up 0,094 inconsiderable2265671 0,140 inconsiderable 0,014 inconsiderable

    DEG analysis

    Results: GOI analysis

    ✓ WS21-Pv and UBC-Pv reference✓ Calculated as 2-ΔΔCT

    0,000

    5,000

    10,000

    15,000

    20,000

    25,000

    30,000

    a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e

    Gutedel (-/-) Rondo (Rpv10/-) Solaris(Rpv10/Rpv3)

    2008-059-020sus

    2011-003-013Rpv10/Rpv10

    SolarisRpv10/Rpv3

    6 hpi 24 hpi

    Exp

    ress

    ion

    FC

    -200

    -100

    0

    100

    200

    300

    400

    500

    600

    700

    Gutedel (-/-) Rondo (Rpv10/-) Solaris(Rpv10/Rpv3)

    Gutedel (-/-) Rondo (Rpv10/-) Solaris(Rpv10/Rpv3)

    6 24

  • Results: P. viticola development in leaf tissue

    A: Gutedel (Rpv–/Rpv–) B: Rondo (Rpv10/-) C: Solaris (Rpv10/Rpv3)

    Mycellium (M) Sporangiophores (S)

    Fluorescent microscopy

    H

    H

    H

    H

    H

    H

    M M

    M

  • Conclusion

    The results can lead to

    • a better understanding of the pathogenicity mechanism of P. viticola

    • provide insight into improvement of the resistance strategies against pathogen

    Further investigation is needed to study the effectors, apoplast and signaling proteins in pathogen, to characterize them in detail

  • Emas

    cula

    tio

    nP

    olli

    nat

    ion

    Cross breeding

    Dr. Oliver Trapp

  • See

    ds

    pla

    nta

    tio

    n

    Mo

    lecu

    lar

    anal

    ysis

    Cross breeding

  • Supplementary Data

  • Introduction: Plasmopora Viticola

    https://www.ncbi.nlm.nih.gov/genome/genomes/11018

    https://www.ncbi.nlm.nih.gov/genome/genomes/11018

  • Introduction: Plant-Pathogen Interaction

    SA

    JA ETAuxin BR

    plant plasma membrane

    Pathogen Effectors:

    Apoplastic Area:

    First compartment when Pathogen-host

    interaction occur

  • ET signaling

    Pathogen effectors

    Effectores recognition

    Ultimately defence

    mechanism activation

    ETI

    Rust resistance Nucleus

    Ethylen-responsive transcription

    ACS

    ACC

    ET

    specifically recognizing effectors of the fungus

    Resulting weakening of fungal cell walls

    Introduction: