I1S1

Embed Size (px)

Citation preview

  • 7/30/2019 I1S1

    1/22

    MATH 105 921 Solutions to Integration Exercises

    MATH 105 921 Solutions to Integration Exercises

    1)

    s2 + 1

    s2 1 ds

    Solution: Performing polynomial long division, we have that:s2 + 1

    s2 1 ds =

    (1 +2

    s2 1) ds

    =

    ds +

    2

    s2 1 ds

    = s +

    2

    s2 1 ds

    Using partial fraction on the remaining integral, we get:

    2s2 1 =

    A

    s 1 +B

    s + 1=

    A(s + 1) + B(s 1)(s + 1)(s 1) =

    (A + B)s + (A B)s2 1

    Thus, A + B = 0 and A B = 2. Adding the two equations together yields 2A = 2,that is, A = 1, and B = 1. So, we have that:

    2

    s2 1 ds =

    1

    s 1 ds

    1

    s + 1ds

    Therefore,

    s2 + 1s2 1 ds = s +

    2s2 1 ds

    = s +

    1

    s 1 ds

    1

    s + 1ds

    = s + ln |s 1| ln |s + 1| + C

    2)

    04

    x

    1 + 2x dx

    Solution: Using direct substitution with u = 1 + 2x and du = 2dx, we may write

    Page 1 of 22

  • 7/30/2019 I1S1

    2/22

    MATH 105 921 Solutions to Integration Exercises

    x = 12(u 1). Moreover, when x = 4, u = 9, and when x = 0, u = 1. Thus,04

    x

    1 + 2x dx =

    19

    1

    4(u 1)u du

    =

    1

    9

    14

    (u3

    2 u 12 ) du

    = (1

    10u

    5

    2 16

    u3

    2 ) |19= (

    1

    10 1

    6) ( 243

    10 27

    6)

    =298

    15

    3)

    sin2 x cos2 x dx

    Solution: Using half-angle identities sin2 x = 1cos(2x)2

    and cos2 x = 1+cos(2x)2

    , we get:sin2 x cos2 x dx =

    1

    4(1 cos(2x))(1 + cos(2x)) dx

    =

    1

    4(1 cos2(2x)) dx

    = 14

    dx

    1

    4cos2(2x) dx

    =x

    4 1

    4

    cos2(2x) dx

    On the remaining integral, we apply the half-angle identity cos2(2x) = 1+cos(4x)2 , andobtain:

    cos2(2x) dx =

    1 + cos(4x)

    2dx =

    x

    2+

    1

    8sin(4x) + C

    Hence, sin2 x cos2 x dx =

    x

    4 1

    4(

    x

    2+

    1

    8sin(4x)) + C =

    x

    8 1

    32sin(4x) + C

    4)

    sin(

    w) dw

    Page 2 of 22

  • 7/30/2019 I1S1

    3/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Using direct substitution with t =

    w, and dt = 12w

    dw, that is, dw =

    2

    w dt = 2t dt, we get:

    sin(w) dw = 2t sin t dtUsing integration by part method with u = 2t and dv = sin t dt, so du = 2 dt andv = cos t, we get:

    2t sin t dt = 2t cos t +

    2cos t dt = 2t cos t + 2 sin t + C

    Therefore,

    sin(

    w) dw = 2w cos(w) + 2 sin(w) + C

    5)

    ln(x)

    xdx

    Solution: Using direct substitution with u = ln(x) and du = 1x

    dx, we get:

    ln(x)

    xdx =

    u du =

    u2

    2+ C

    ln(x)

    x

    dx =1

    2

    (ln(x))2 + C

    6)

    sin t cos(2t) dt

    Solution: Recall the double-angle formula that cos(2t) = 2 cos2 t 1, we get:sin t cos(2t) dt =

    sin t(2cos2 t 1) dt

    =

    2sin t cos2

    t dt sin t dt = 2sin t cos2 t dt + cos tOn the remaining integral, using direct substitution with u = cos t and du = sin t dt,we have that:

    2sin t cos2 t dt =

    2u2 du = 2

    3u3 + C = 2

    3cos3 t + C

    Page 3 of 22

  • 7/30/2019 I1S1

    4/22

    MATH 105 921 Solutions to Integration Exercises

    Therefore, sin t cos(2t) dt = 2

    3cos3 t + cos t + C

    7)

    x + 1

    4 + x2dx

    Solution: Observe that we may split the integral as follows:x + 1

    4 + x2dx =

    x

    4 + x2dx +

    1

    4 + x2dx

    On the first integral on the right hand side, we use direct substitution with u = 4+x2,

    and du = 2x dx. We get:x

    4 + x2dx =

    1

    2udu = ln |2u| + C = ln(8 + 2x2) + C

    On the second integral on the right hand side, we use inverse trigonometric substitu-

    tion with 2 tan t = x (or equivalently, t = arctanx

    2

    ), so 2 sec2 t dt = dx. Thus,

    1

    4 + x2dx =

    1

    4 + 4 tan2 t2sec2 t dt =

    2sec2 t

    4sec2 tdt

    =1

    2 dt =

    t

    2 + C =

    1

    2 arctanx

    2

    + C

    Therefore,x + 1

    4 + x2dx =

    x

    4 + x2dx +

    1

    4 + x2dx = ln(8 + 2x2) +

    1

    2arctan

    x2

    + C

    8)

    sin(tan )

    cos2 d

    Solution: Using direct substitution with u = tan and du = sec2

    d, we get:sin(tan )

    cos2 d =

    sec2 sin(tan ) d =

    sin u du = cos u + C

    sin(tan )

    cos2 d = cos(tan ) + C

    Page 4 of 22

  • 7/30/2019 I1S1

    5/22

    MATH 105 921 Solutions to Integration Exercises

    9)

    x

    3 2x x2 dx

    Solution: Completing the square, we get 3 2x x2 = 4 (x + 1)2. Using directsubstitution with u = x + 1 and du = dx, we get:

    x

    3 2x x2 dx =

    (u 1)

    4 u2 du =

    u

    4 u2 du

    4 u2 du

    For the first integral on the right hand side, using direct substitution with t = 4u2,and dt = 2u du, we get:

    u

    4 u2 du =1

    2

    t dt = 1

    3t3

    2 + C = 13

    (4 u2) 32 + C

    For the second integral on the right hand side, using inverse trigonometric substitution

    with 2 sin s = u, that is, s = arcsinu2

    , and 2 cos s ds = du, we get:4 u2 du =

    4 4sin2 s2cos s ds =

    4cos2 s ds

    =

    (2 + 2 cos(2s)) ds (using half-angle formula cos2 s =

    1 + cos(2s)

    2)

    = 2s + sin(2s) + C

    = 2s + 2 sin s cos s + C (using double-angle formula sin(2s) = 2 sin s cos s)

    = 2 arcsinu

    2

    + 2 sin(arcsin

    u2

    ) cos(arcsin

    u2

    ) + C

    = 2 arcsinu

    2

    + u

    4 u2

    2

    + C

    Therefore,x

    3 2x x2 dx =

    u

    4 u2 du

    4 u2 du

    = 13

    (4 u2) 32 2 arcsinu

    2

    u

    4 u2

    2

    + C

    x

    3 2x x2 dx = 13

    (4 (x + 1)2) 32 2 arcsinx + 1

    2 (x + 1)4 (x + 1)2

    2 10)

    3

    0

    sin3 zcos z dz

    Page 5 of 22

  • 7/30/2019 I1S1

    6/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Using direct substitution with u = sin z, and du = cos z dz, when z = 0,then u = 0, and when z = 3 , u =

    32 . We have that:

    3

    0

    sin3 zcos z dz = 3

    2

    0

    u3 du =u4

    4 |

    3

    2

    0=

    9

    64

    3

    0

    sin3 zcos z dz =9

    64

    11)

    1

    3x2 + 2x + 1dx

    Solution: Completing the square, we get that 3x2 + 2x + 1 = 3x + 13

    2

    +2

    3=

    2

    3

    9

    2

    x +

    1

    3

    2+ 1

    . Using direct substitution with u =

    32

    x +

    1

    3

    , and du =

    32

    dx, we get:

    1

    3x2 + 2x + 1dx =

    3

    2(92(x +13)

    2 + 1)dx =

    1

    2(u2 + 1)du =

    12

    arctan u + C

    1

    3x2 + 2x + 1dx =

    12

    arctan3

    2 x +1

    3+ C

    12)

    1

    et + 1dt

    Solution: Using direct substitution with u = et + 1 and du = et dt, so dt =1

    etdu =

    1

    u 1 du. Hence, we get:

    1

    et + 1dt =

    1

    u(u 1) du

    Using partial fraction, we get:

    1

    u(u 1) =A

    u+

    B

    u 1 =A(u 1) + Bu

    u(u 1) =(A + B)s + (A)

    u(u 1)

    Page 6 of 22

  • 7/30/2019 I1S1

    7/22

    MATH 105 921 Solutions to Integration Exercises

    Thus, A + B = 0 and A = 1. So, A = 1, and B = 1. Thus, we have that:1

    u(u 1) du =1

    udu +

    1

    u 1 du

    Therefore,1

    u(u 1) du =1

    udu +

    1

    u 1 du = ln |u| + ln |u 1| + C

    1

    et + 1dt = ln |et + 1| + ln |et| + C = ln |et + 1| + t + C

    13)

    e3a cos(3a) da

    Solution: Using direct substitution with t = 3a, and dt = 3 da, we get:e3a cos(3a) da =

    1

    3et cos t dt

    Using integration by parts with u = cos t, du = sin t dt, and dv = et dt, v = et, weget:

    1

    3et cos t dt =

    1

    3et cos t +

    1

    3 et sin t dt

    Using integration by parts again on the remaining integral with u1 = sin t, du1 =cos t dt, and dv1 = e

    t dt, v1 = et, we get:

    1

    3

    et sin t dt =

    1

    3sin tet 1

    3

    et cos t dt

    Thus, 1

    3et cos t dt =

    1

    3et cos t +

    1

    3sin tet 1

    3

    et cos t dt

    13 et cos t dt = 16 et cos t + 16 et sin t + CTherefore,

    e3a cos(3a) da =1

    6e3a cos(3a) +

    1

    6e3a sin(3a) + C

    Page 7 of 22

  • 7/30/2019 I1S1

    8/22

    MATH 105 921 Solutions to Integration Exercises

    14)

    x2

    1 + x6dx

    Solution: Using direct substitution with u = x3, and du = 3x2 dx, we get:

    x2

    1 + x6dx =

    1

    3(1 + u2)du = 1

    3arctan u + C = 1

    3arctan(x3) + C

    15)

    1

    t(ln t)2dt

    Solution: Using direct substitution with u = ln(t) and du = 1t

    dt, we get:

    1t(ln t)2 dt =

    1u2 du = 1u + C

    1

    t(ln t)2dt = 1

    ln t+ C

    16)

    xe2x

    (2x + 1)2dx

    Solution: Using integration by parts with u = xe2x, du = (e2x + 2xe2x) dx, anddv = (2x + 1)2 dx, v = 1

    2(2x+1), we get:

    xe2x

    (2x + 1)2dx = xe

    2x

    2(2x + 1)+

    e2x + 2xe2x

    2(2x + 1)dx

    On the remaining integral, using direct substitution with u = 2x + 1, and du = 2 dx,we get:

    e2x + 2xe2x

    2(2x + 1)dx =

    eu1 + (u 1)eu1

    4udu =

    1

    4eu1 du =

    1

    4eu1 + C =

    1

    4e2x + C

    Therefore, xe2x

    (2x + 1)2dx = xe

    2x

    2(2x + 1)+

    1

    4e2x + C =

    e2x

    4(2x + 1)+ C

    Page 8 of 22

  • 7/30/2019 I1S1

    9/22

    MATH 105 921 Solutions to Integration Exercises

    17)

    (tan x + cot x)2 dx

    Solution:

    (tan x + cot x)

    2

    dx =

    (tan2

    x + 2 tan x cot x + cot2

    x) dx

    =

    (sec2 x 1 + 2 + csc2 x 1) dx (using identities for tan2 x and c

    =

    (sec2 x + csc2 x) dx

    = tan x cot x + C

    18) tet2

    sin(t2) dt

    Solution: Using direct substitution with x = t2 and dx = 2t dt, we get:tet

    2

    sin(t2) dt =1

    2

    ex sin x dx

    Using integration by parts with u = sin x, du = cos x dx, and dv = ex dx, v = ex, weget:

    1

    2ex sin x dx =

    1

    2ex sin x 1

    2 ex cos x dx

    Using integration by parts again on the remaining integral with u1 = cos x, du1 = sin x dx, and dv1 = ex dx, v1 = ex, we get:

    1

    2

    ex cos x dx =

    1

    2ex cos x +

    1

    2

    ex sin x dx

    Thus, 1

    2ex sin x dx =

    1

    2ex sin x 1

    2ex cos x 1

    2

    ex sin x dx

    12 ex sin x dx = 14 ex sin x 14 ex cos x + CTherefore,

    tet2

    sin(t2) dt =1

    4et

    2

    sin(t2) 14

    et2

    cos(t2) + C

    Page 9 of 22

  • 7/30/2019 I1S1

    10/22

    MATH 105 921 Solutions to Integration Exercises

    19)

    2p 4p2 p dp

    Solution: Using partial fraction, we get:

    2p 4p(p 1) = Ap + Bp 1 = A(p 1) + Bpp(p 1) = (A + B)p + (A)p(p 1)

    Thus, A + B = 2 and A = 4. So, A = 4, and B = 2. We have that:2p 4

    p(p 1) dp =

    4

    pdp

    2

    p 1 dp

    2p 4p(p 1) dp = 4 ln |p| 2 ln |p 1| + C

    20)

    4

    3

    1(3x 7)2 dx

    Solution: Using direct substitution with u = 3x 7, and du = 3 dx, when x = 3,then u = 2, and when x = 4, u = 5. We have that:4

    3

    1

    (3x 7)2 dx =52

    1

    3u2du =

    13u

    |52= 1

    15+

    1

    6=

    1

    10

    4

    3

    1

    (3x

    7)2

    dx =1

    10

    21)

    t3

    (2 t2) 52dt

    Solution: Using direct substitution with u = 2 t2, and du = 2t dt, we get:t3

    (2 t2) 52dt =

    t2

    (2 t2) 52(t dt) =

    2 u

    2u5

    2

    du

    =

    (u5

    2

    +

    1

    2 u3

    2

    ) du

    =2

    3u

    3

    2 u 12 + C

    t3

    (2 t2) 52dt =

    2

    3(2 t2) 32 (2 t2) 12 + C

    Page 10 of 22

  • 7/30/2019 I1S1

    11/22

    MATH 105 921 Solutions to Integration Exercises

    22)

    1

    x2

    4 x2 dx

    Solution: Using inverse trigonometric substitution with x = 2sin y, that is, y =arcsin x2, and dx = 2 cos y dy, we get:

    1

    x2

    4 x2 dx =

    2cos y

    4sin2 y

    4 4sin2 ydy =

    2cos y

    4sin2 y(2 cos y)dy

    =

    1

    4csc2 y dy = 1

    4cot y + C

    Therefore, 1

    x2

    4 x2 dx = 1

    4cot(arcsin

    x2

    ) + C =

    4 x24x

    + C

    23)

    y2 1 dy

    Solution: Using inverse trigonometric substitution with y = sec u, that is, u =

    arccos

    1y

    , and dy = sec u tan u du, we get:

    y2 1 dy =

    sec2 u 1(sec u tan u du) =

    tan2 u sec u du

    = (sec2 u 1)sec u du = sec3 u du sec u duFor the second integral on the right hand side, we have that:

    sec u du = ln | sec u + tan u| + C

    For the first integral on the right hand side, we use the reduction formula:sec3 u du =

    1

    2tan u sec u +

    1

    2

    sec u du =

    1

    2tan u sec u +

    1

    2ln | sec u + tan u| + C

    Observe that since u = arccos1y

    , we have that tan u =

    y2

    1. Therefore,sec3 u du

    sec u du =

    1

    2tan u sec u 1

    2ln | sec u + tan u| + C

    y2 1 dy = 12

    y

    y2 1 12

    ln |y +

    y2 1| + C

    Page 11 of 22

  • 7/30/2019 I1S1

    12/22

    MATH 105 921 Solutions to Integration Exercises

    24)

    x sin x cos x dx

    Solution: Using the double angle identity sin(2x) = 2 sin x cos x, we have that:

    x sin x cos x dx = 1

    2

    x sin(2x) dx

    Using direct substitution with t = 2x, and dt = 2 dx, we get:

    1

    2

    x sin(2x) dx =

    1

    8

    t sin t dt

    Using integration by parts with u = t, du = dt, and dv = sin t dt, v = cos t, we get:1

    8 t sin t dt = 1

    8t cos t +

    1

    8 cos t dt = 1

    8t cos t +

    1

    8sin t + C

    Therefore, x sin x cos x dx = 1

    4x cos(2x) +

    1

    8sin(2x) + C

    25)

    (1 + cos )2 d

    Solution:(1 + cos )2 d =

    (1 + 2 cos + cos2 ) d

    =

    d + 2

    cos d +

    cos2 d

    = + 2 sin +

    1 + cos(2)

    2

    d (using half-angle formula)

    = + 2 sin +

    2+

    sin(2)

    4+ C

    (1 + cos )2 d = 32 + 2 sin + 14 sin(2) + C

    26)

    1

    4x x2 dx

    Page 12 of 22

  • 7/30/2019 I1S1

    13/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Completing the square yields 4x x2 = 4 (x 2)2. Using direct substi-tution with u = x 2, and du = dx, we get:

    1

    4x x2

    dx = 1

    4 u2

    du

    Using inverse trigonometric substitution with u = 2 sin t, that is, t = arcsinu

    2

    , and

    du = 2 cos t dt, we get:1

    4 u2 du =

    2cos t4 sin2 t

    dt =

    2cos t

    2cos tdt =

    dt = t + C

    14x x2 dx = arcsin

    x 2

    2

    + C

    27)10

    11 + x

    1

    3

    dx

    Solution: Using direct substitution with u = 1 + x1

    3 , and du =1

    3x23 dx, so dx =

    3x2

    3 du = 3(u 1)2 du. When x = 0, u = 1 and when x = 1, u = 2. We have that:10

    1

    1 + x1

    3

    dx =

    21

    3(u 1)2u

    du =

    21

    (3u 6 + 3u

    ) du

    = (3

    2u2 6u + 3ln |u|) |21

    = (6 12 + 3 ln2) (32 6 + 3 ln1) = 3

    2+ 3ln 2

    10

    1

    1 + x1

    3

    dx = 32

    + 3ln 2.

    28)

    1

    x3 + xdx

    Solution: Using partial fractions, we have:

    1

    x3 + x=

    A

    x+

    Bx + C

    x2 + 1=

    A(x2 + 1) + (Bx + C)x

    x3 + x=

    (A + B)x2 + Cx + A

    x3 + x

    So, A + B = 0, C = 0 and A = 1. So, B = 1 and we get:1

    x3 + xdx =

    1

    xdx

    x

    x2 + 1dx = ln |x|

    x

    x2 + 1dx

    Page 13 of 22

  • 7/30/2019 I1S1

    14/22

    MATH 105 921 Solutions to Integration Exercises

    On the remaining integral, using direct substitution with u = x2 + 1 and du = 2x dx,we get:

    x

    x

    2

    + 1

    dx = 1

    2u

    du =1

    2

    ln

    |u

    |+ C =

    1

    2

    ln(x2 + 1) + C

    Therefore, 1

    x3 + xdx = ln |x| 1

    2ln(x2 + 1) + C

    Remark: This involves partial fractions with non-linear factors, which you are not

    required to master in this course!

    29) ln(1 + t) dtSolution: Using direct substitution with s = 1 + t, and ds = dt, we have that:

    ln(1 + t) dt =

    ln s ds

    Using integration by parts with u = ln s, du =1

    sds, and dv = ds, v = s, we get:

    ln s ds = s ln s

    s

    1

    sds = s ln s

    ds = s ln s s + C

    Therefore, ln(1 + t) dt = (1 + t) ln(1 + t) (1 + t) + C

    30)

    sin(3x) cos(5x) dx

    Solution: Using the trigonometric identity that sin a cos b = 12

    (sin(a+b)+sin(a

    b)),

    we get:sin(3x) cos(5x) dx =

    1

    2(sin(8x) + sin(2x)) dx = 1

    16cos(8x) +

    1

    4cos(2x) + C

    Remark: You are not required to memorize any sum to product or product to sum

    trigonometric identities!

    Page 14 of 22

  • 7/30/2019 I1S1

    15/22

    MATH 105 921 Solutions to Integration Exercises

    31)

    1

    k2 6k + 9 dk

    Solution: By completing the square, we observe that k2 6k + 9 = (k 3)2. So,using direct substitution with u = k

    3, and du = dk, we have that:

    1

    k2 6k + 9 dk =

    1

    (k 3)2 dk =

    1

    u2du = 1

    u+ C

    1

    k2 6k + 9 dk = 1

    k 3 + C

    32)

    1

    sec x 1 dx

    Solution: Since sec x = 1cos x

    , we get:

    1

    sec x 1 dx =

    cos x

    1 cos x dx =

    1 + 11 cos x

    dx = x +

    1

    1 cos x dx

    For the remaining integral, use a direct substitution with t = tanx

    2

    , so dt =

    1

    2sec2

    x2

    dx. We also can compute that sec

    x2

    =

    t2 + 1, cosx

    2

    =

    1t2 + 1

    and sinx

    2 =t

    t2 + 1. So, dx =

    2

    t2 + 1dt. Using double angle formula, we get:

    cos x = cos2x

    2

    sin2

    x2

    =

    1

    t2 + 1 t

    2

    t2 + 1=

    1 t2t2 + 1

    So, after the substitution, we get:1

    1 cos x dx =

    1

    1 1t2t2+1

    2

    t2 + 1

    dt =

    1

    t2dt

    = 1t

    + C = cotx

    2

    + C

    Therefore, 1

    sec x 1 dx = x cotx

    2

    + C

    Remark: This is an extremely challenging question; do not panic if you do not know

    how to solve it!

    Page 15 of 22

  • 7/30/2019 I1S1

    16/22

    MATH 105 921 Solutions to Integration Exercises

    33)

    10

    2

    ex + 1dx

    Solution: Using direct substitution with u = ex + 1, and du = ex dx, that isdx

    = 1

    u1du

    . Whenx

    = 0,u

    = 2, and whenx

    = 1,u

    =e1

    + 1. So, we get:10

    2

    ex + 1dx =

    e1+12

    2u(u 1) du

    Using partial fraction, we get:

    2u(u 1) =

    A

    u+

    B

    u 1 =A(u 1) + Bu

    u(u 1) =(A + B)s + (A)

    u(u 1)Thus, A + B = 0 and A = 2. So, A = 2, and B = 2. Thus, we have that:

    e

    1

    +1

    2

    2u(u 1) du =

    e

    1

    +1

    2

    2u

    du

    e1

    +1

    2

    2u 1 du

    Therefore,

    e1+12

    2u(u 1) du = (2ln |u| 2 ln |u 1|) |

    e1+12 = (2 ln(e

    1 + 1) + 2) (2ln2 0)

    2

    ex + 1dx = 2 ln(e1 + 1) + 2 2 l n 2.

    34)

    1

    c2 6c + 10 dc

    Solution: Completing the square yields c2 6c + 10 = (c 3)2 + 1. So, using directsubstitution with u = c 3, and du = dc, we have that:

    1

    c2 6c + 10 dc =

    1

    (c 3)2 + 1 dc =

    1

    u2 + 1du = arctan u + C

    1

    c2 6c + 10dc = arctan(c

    3) + C

    35)

    f(x)f(x) dx

    Page 16 of 22

  • 7/30/2019 I1S1

    17/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Using direct substitution with u = f(x), and du = f(x) dx, we get:f(x)f(x) dx =

    u du =

    1

    2u2 + C

    f(x)f(x) dx = 12(f(x))2 + C

    36)

    1

    x2 + 4x + 5dx

    Solution: Completing the square, we get x2 + 4x + 5 = (x + 2)2 + 1. Using directsubstitution with u = x + 2 and du = dx, we get:

    1

    x2 + 4x + 5dx =

    1(x + 2)2 + 1

    dx =

    1u2 + 1

    du = arctan(u) + C

    1

    x2 + 4x + 5dx = arctan(x + 2) + C

    37)

    20

    1

    (3 + 5x)2dx

    Solution: Using direct substitution with u = 3 + 5x, and du = 5 dx, when x = 0,then u = 3, and when x = 2, u = 13. We have that:2

    0

    1

    (3 + 5x)2dx =

    133

    1

    5u2du =

    15u

    |133 = 1

    65+

    1

    15=

    2

    39

    20

    1

    (3 + 5x)2dx =

    2

    39

    38) sin(ln u) duSolution: Using direct substitution with t = ln u, that is, u = et, and du = et dt, wehave that:

    sin(ln u) du =

    et sin t dt

    Page 17 of 22

  • 7/30/2019 I1S1

    18/22

    MATH 105 921 Solutions to Integration Exercises

    Using integration by parts twice to compute the integral on the right hand side (seethe solution of question 18 for details), we have that:

    et sin t dt =1

    2

    et sin t

    1

    2

    et cos t + C

    Therefore,sin(ln u) du =

    1

    2elnu sin(ln u) 1

    2elnu cos(ln u) + C =

    1

    2u sin(ln u) 1

    2u cos(ln u) + C

    39)

    r(ln r)2 dr

    Solution: Using integration by parts with u = (ln r)2, du =2 ln r

    rdr, and dv = r dr,

    v =r2

    2, we get that:

    r(ln r)2 dr =

    r2(ln r)2

    2

    r ln r dr

    Using integration by parts again on the remaining integral with u1 = ln r, du1 =1

    rdr,

    and dv1 = r dr, v1 =r2

    2, we get that:

    r ln r dr =

    r2 ln r

    2

    r

    2dr =

    r2 ln r

    2 r

    2

    4+ C

    Therefore, r(ln r)2 dr =

    r2(ln r)2

    2 r

    2 ln r

    2+

    r2

    4+ C

    40)

    1x3 x dx

    Page 18 of 22

  • 7/30/2019 I1S1

    19/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Using partial fraction, we get:

    1

    x3 x =A

    x+

    B

    x + 1+

    C

    x 1 =A(x2 1) + B(x2 x) + C(x2 + x)

    x3 x= (A + B + C)x

    2

    + (C B)x + (A)x3 x

    Thus, A + B + C = 0, C B = 0 and A = 1. Therefore, A = 1, and B + C = 1,which gives C = 12 and B = 12 . So,

    1

    x3 x dx =1

    xdx

    1

    2(x + 1)dx +

    1

    2(x 1) dx

    1

    x3 x dx = ln |x| 1

    2ln |x + 1| + 1

    2ln |x 1| + C

    Remark: This involves partial fractions with 3 distinct roots in the denominator, which

    you are not required to master in this course!

    41)

    sec3 u du

    Solution: We use the reduction formula:sec3 u du =

    1

    2tan u sec u +

    1

    2

    sec u du =

    1

    2tan u sec u +

    1

    2ln | sec u + tan u| + C

    42)

    x2 2x 8

    x 1 dx

    Solution: Observe that x2 2x 8 = (x 1)2 9. Using direct substitution witht = x 1, and dt = dx, we get:

    x2 2x 8x 1 dx =

    t2 9

    tdt

    Using inverse trigonometric substitution with t = 3sec y, and dt = 3 sec y tan y dy, we

    Page 19 of 22

  • 7/30/2019 I1S1

    20/22

    MATH 105 921 Solutions to Integration Exercises

    get:

    t2 9

    tdt =

    9sec2 y 9

    3sec y3sec y tan y dy =

    3tan2 y dy

    =

    3(sec2 y 1) dy = 3tan y 3y + C

    x2 2x 8x 1 dx = 3 tan(arccos

    3

    t

    ) 3 arccos

    3

    t

    + C =

    t2 9 3 arccos

    3

    t

    +

    =

    (x 1)2 9 3 arccos

    3

    x 1

    + C

    43)

    r2 1r

    dr

    Solution: Using inverse trigonometric substitution with sec s = r, that is, s =

    arccos

    1

    r

    , and sec s tan s ds = dr, we get:

    r2 1

    rdr =

    sec2 s 1

    sec ssec tan s ds =

    tan2 s ds

    =

    (sec2 s 1) ds = tan s s + C

    r2

    1

    r dr = tan(arccos1

    r

    ) arccos1r+ C = r2 1 arccos1r+ C

    44)

    (et

    2

    + 16)tet2

    dt

    Solution: Using direct substitution with u = et2

    and du = 2tet2

    dt, we get:

    (et2 + 16)tet

    2

    dt = 1

    2(u + 16) du =

    1

    4u2 + 8u + C

    (et2

    + 16)tet2

    dt =1

    4e2t

    2

    + 8et2

    + C

    45)

    y ln y dy

    Page 20 of 22

  • 7/30/2019 I1S1

    21/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Using integration by parts with u = ln y, du =1

    ydy and dv =

    y dy,

    v =2

    3y3

    2 , we get:

    y ln y dy = 2

    3y3

    2 ln y

    23

    y1

    2 dy = 23

    y3

    2 ln y 49

    y3

    2 + C

    46)

    cos

    1 + sin2 d

    Solution: Using direct substitution with u = sin , and du = cos d, we have that:

    cos 1 + sin2 d =

    11 + u2 du = arctan u + C

    cos

    1 + sin2 d = arctan(sin ) + C

    47)

    1

    x2

    x2 + 4dx

    Solution: Using inverse trigonometric substitution with 2 tan u = x, and 2 sec u du =

    dx, we get:1

    x2

    x2 + 4dx =

    1

    4tan2 u

    4tan2 u + 42sec2 u du =

    2sec2 u

    8tan2 u sec udu

    =

    cos2 u

    4cos u sin2 udu =

    1

    4cot u csc u du

    = 14

    csc u + C = 14

    csc(arctanx

    2

    ) + C

    1

    x2

    x2 + 4dx =

    x2 + 4

    4x+ C

    48)

    tet

    2

    dt

    Page 21 of 22

  • 7/30/2019 I1S1

    22/22

    MATH 105 921 Solutions to Integration Exercises

    Solution: Using direct substitution with u = t2, and du = 2t dt, we have that:tet

    2

    dt =

    1

    2eu du =

    1

    2eu + C

    tet2 dt = 12 et2 + C

    49)

    cos(t) cos(sin(t)) dt

    Solution: Using direct substitution with u = sin(t) dt, and du = cos(t) dt, wehave that:

    cos(t) cos(sin(t)) dt =

    1 cos u du = 1 sin u + C

    cos(t) cos(sin(t)) dt =1

    sin(cos(t)) + C

    50)

    4

    0

    sin5(x) dx

    Solution: Using direct substitution with u = cos x, and du =

    sin x dx, when x = 0,

    then u = 1, and when x = 4

    , u = 12

    . We have that:

    4

    0

    sin5(x) dx =

    4

    0

    (sin2(x))2 sin x dx =

    4

    0

    (1 cos2 x)2 sin x dx

    =

    12

    1

    (1 u2)2 du = 1

    2

    1

    (1 + 2u2 u4) du

    = (u + 23

    u3 15

    u5) |12

    1

    = (1

    2 +1

    32 1

    202) (1 +2

    3 1

    5) = 43

    602 +8

    15

    4

    0

    sin5(x) dx = 4360

    2+

    8

    15

    P 22 f 22