1
HYPERVELOCITY IMPACT HYPERVELOCITY IMPACT Dynamic Fracture Behavior of Brittle Polymers How do things break when hit by a shooting star? . . . The process of hypervelocity fracture at the impact site can be regarded as a multiplespalling phenomenon initiated at the free surfaces. Upon impact at v 0 two shock waves propagate away from the interface, I, one towards the end of the impactor, S 1 , and one towards the rear side of the plate, S 2 . Rarefaction waves are then transmitted toward the axis of symmetry of the impactor, and later at the ends of the impactor and plate causing ejecta to form at the impact site and cracks to propagate in the plane of the plate (figures right) [2]. The modeI or crack opening dynamic stress intensity factor can described by the singular stress solution and is directly related to the energy release rate ahead of the moving crack [3]. Highspeed photography (100 million frames per second) is used to capture the isochromatic fringe pattern and caustics generated during crack growth resulting from a nylon 6/6 cylindrical slug impact at 4.5 km/s on Mylar. (A) Configuration of plate for hypervelocity impact. (B) Upon impact the caustic from the right precrack has not yet felt the impact shock. (C) The fastest stress wave, the longitudinal wave, travels radially outward from the impact site at 2447 km/s and disturbs the caustic, but there is no crack growth. Eject is thrown from the plate and clouds the field of view. (D) The crack begins to grow, ejecta is starting to disperse and the shear wave is seen moving radially outwards from the impact site at 1185 m/s. (E) The crack appears to growth just behind the shear wave. (F) After 80 μs the polymer plate has almost completely failed, cracks speeds averaged 360 m/s. Introduction Optical Methods & HighSpeed Photography Acknowledgements & References L. Lamberson 1 , V. Eliasson 2 , A. J. Rosakis 1 Graduate Aerospace Laboratories California Institute of Technology 1 , Department of Aerospace & Mechanical Engineering – University of Southern California 2 QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. [1] Special thanks to Felipe Figueroa at USC for the SolidWorks facility image. [2] C.J. Maiden, A.R. McMillan, AIAA J., 2 (11), 1992 (1964). [3] A.J. Rosakis, A.T. Zehnder, Int. J. Fracture, 27, 169 (1985). Generous funding from the Department of Energy National Nuclear Security Administration under Award Number DEFC5208NA28613, NASA Aeronautics Scholarship Program as well as the National Science Foundation is gratefully acknowledged. Crack Tip Fracture Behavior Optics HighSpeed Camera Velocimetry HighSpeed Camera Projectile from Flight Tube Laser Beam 514 nm PlanoConvex Lens Polarizer Polarizer Mirror Mirror Mirror Target Plate Loaded in Tension Steel Vacuum Chamber Homalite 100 Oscillating Crack Path Homalite 100 Branching 2.54 mm HOMALITE 100 MYLAR Flat 690 467 1.0 1.0 330 1185 2447 MYLAR Oscillating 208 52.5 0.73 0.45 230 1082 2145 HOMALITE 100 QuasiStatic Energy Release Rate [J/m 2 ] *QuasiStatic Fracture Toughness [MPa/m] Averaged Dynamic Stress Intensity [MPa/m] P Wave Speed [m/s] S Wave Speed [m/s] Averaged Crack Tip Velocity [m/s] Averaged Dynamic Energy Release Rate [J/m 2 ] Crack Path Appearance σ σ x 1 x 2 x 3 48 μs E 35 μs D 20 mm 5 μs B 20 μs C 20 mm 80 μs F Impact P Wave Caustic S Wave S Wave Crack Growth 20 mm 20 mm 20 mm 20 mm Ejecta A Hypervelocity impact induced fracture behavior of brittle polymers was experimentally investigated using a unique twostage lightgas gun at speeds averaging 6 km/s (13,4000 mph). Resulting mode I or opening mode crack tip stress intensity and energy release rates were analyzed using the optical techniques of caustics and dynamic photoelasticity. (Above) Nylon right cylindrical slug, L = 1.8 mm, L/D = 1, m = 5 mg, impacting Mylar film, 12.7 microns thick, at 5.5 km/s. (Left) Experimental configuration of lightgas gun impact on brittle targets in tension utilizing dynamic photoelasticity and caustics [1]. Stress Intensity ) , ( 2 ) ( θ π σ v f r t K ij ID 2 ) ( ID I ID K E A t G Energy Release Rate Dynamic Fracture & Impact Physics x y Crack tip r θ Caustic Diameter v where t is time, v is crack speed, E is the plate Young’s Modulus, σ ij is the stress tensor and A I is a universal function which includes plate material properties and wave speeds (A) Photograph of 150 mm diameter, 1.6 mm thick polymer plate held in load frame inside twostage lightgas gun with collimated laser beam illumination around a 20 mm hole with precracks. (B) Highspeed photography (1 million frames per second) is used to capture the hypervelocity impact, selfilluminated, as it files through the field of view from left to right, creating a streak of ionized gas in its path 35 μs before impact. (C) At 15 μs before impact the projectile is closer to the polymer plate and has an impact velocity of 5.2 km/s. (D) Spectral flash and plasma formation upon impact with polymer plate. (E) Ejecta 35 μs after impact with considerable localized heating present. A nylon 6/6 right cylindrical slug, L = 1.8 mm, L/D = 1 and mass of 5 mg, impacts a Homalite 100 plate 6.5 mm thick that has existing hypervelocity impact damage. The second hypervelocity impact collided with the plate at 5 km/s and the wave phenomena and interaction with the existing damage site is captured with highspeed photography and optical diagnostics. Imaging laser power is at 2 Watts with the beam expanded to a 100 mm diameter field of view, and exposure times are around 70 ns. After 5 μs the P wave from the second impact has reached the first impact site and soon after caustics from crack growth can be seen at both impact sites. Complex wave interaction and reflections from free surfaces is seen after 10 μs. Impact sites of Homalite 100 and Mylar are compared sidebyside. Each was hit with a nylon 6/6 right cylindrical slug 1.8 mm in length and diameter at approximately 5 km/s. Notice that the Homalite 100 site has extensive dynamic branching, whereas the Mylar site has a glassy like appearance of melt fronts. This could be due to the fact that the thermal conductivity of Mylar is about 30% lower than Homalite 100. Additionally the size of the impact holes in both materials are greater than the diameter of the hypervelocity projectile. 2.54 mm 2.54 mm 2.54 mm 2.54 mm Mylar Smooth Crack Path Mylar had a smooth and flat crack path appearance, whereas Homalite 100 exhibited oscillating crack paths. This is due to the fact the time Mylar crack growth reached failure occurred on average 20 μs faster than Homalite, and consequently the cracks did not experience any complex wave interaction from reflection at the plate boundaries. Homalite 100 cracks preferred to grow in the instantaneous local Mode I (opening) direction and only branched when crack speeds reached about half of the material Rayleigh wave speed. Average branching angle was approximately 30°. † Determined by averaging 2 amplitudes from pulse-echo ultrasonic technique, +/- 175 m/s *from literature (Mylar from Shockey 1981, Homalite from Rosakis 1983) 1 μs 5 μs 10 μs 20 μs Impact 1 Impact 2 Caustics P-wave 1 μs 5 μs 10 μs 20 μs Impact 1 Impact 2 Caustics P-wave

HYPERVELOCITY IMPACT - Ares J. Rosakisrosakis.caltech.edu/downloads/research/hypervelocity-impact-psaap... · Hypervelocity impact induced fracture behavior of brittle polymers was

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • HYPERVELOCITY IMPACTHYPERVELOCITY IMPACTDynamic Fracture Behavior of Brittle Polymers

    How do things break when hit by a shooting star? . . . 

    The process of hypervelocity fracture at the impact site can be regarded as a multiple‐spallingphenomenon initiated at the free surfaces.

    Upon impact at v0 two shock waves propagate away from the interface, I, one towards the end of the impactor, S1, and one towards the rear side of the plate, S2.  Rarefaction waves are then transmitted toward the axis of symmetry of the impactor, and later at the ends of the impactor and plate causing ejecta to form at the impact site and cracks to propagate in the plane of the plate (figures right) [2].

    The mode‐I or crack opening dynamic stress intensity factor can described by the singular stress solution and is directly related to the energy release rate ahead of the moving crack [3].

    High‐speed photography (100 million frames per second) is used to capture the isochromaticfringe pattern and caustics generated during crack growth resulting from a nylon 6/6 cylindrical slug impact at 4.5 km/s on Mylar.       (A) Configuration of plate for hypervelocity impact. (B) Upon impact the caustic from the right pre‐crack has not yet felt the impact shock. (C) The fastest stress wave, the longitudinal wave, travels radially outward from the impact site at 2447 km/s and disturbs the caustic, but there is no crack growth.  Eject is thrown from the plate and clouds the field of view. (D) The crack begins to grow, ejecta is starting to disperse and the shear wave is seen moving radially outwards from the impact site at 1185 m/s.    (E) The crack appears to growth just behind the shear wave. (F) After 80 μs the polymer plate has almost completely failed, cracks speeds averaged 360 m/s.

    Introduction Optical Methods & High‐Speed Photography

    Acknowledgements & References

    L. Lamberson1, V. Eliasson2, A. J. Rosakis1

    Graduate Aerospace Laboratories ‐ California Institute of Technology1, Department of Aerospace & Mechanical Engineering – University of Southern California2

    QuickTime™ and aTIFF (Uncompressed) decompressor

    are needed to see this picture.QuickTime™ and a

    TIFF (Uncompressed) decompressorare needed to see this picture.

    [1] Special thanks to Felipe Figueroa at USC for the SolidWorks facility image.  [2] C.J. Maiden, A.R. McMillan, AIAA J., 2 (11), 1992 (1964).[3] A.J. Rosakis, A.T. Zehnder, Int. J. Fracture, 27, 169 (1985).Generous funding from the Department of Energy National Nuclear Security Administration under Award Number DE‐FC52‐08NA28613, NASA Aeronautics Scholarship Program as well as the National Science Foundation is gratefully acknowledged.

    Crack Tip Fracture Behavior

    Optics High‐Speed Camera

    Velocimetry High‐Speed Camera

    Projectile from Flight Tube

    Laser Beam 514 nm

    Plano‐Convex Lens

    Polarizer

    Polarizer

    Mirror

    Mirror

    Mirror

    Target Plate      Loaded in Tension

    Steel Vacuum Chamber

    Homalite 100 Oscillating Crack Path

    Homalite 100 Branching 2.54 mm

    HOMALITE 100 MYLAR

    Flat

    690

    467

    1.0

    1.0

    330

    1185

    2447

    MYLAR

    Oscillating

    208

    52.5

    0.73

    0.45

    230

    1082

    2145

    HOMALITE 100

    Quasi‐Static Energy Release Rate [J/m2]

    *Quasi‐Static Fracture Toughness [MPa/√m]

    Averaged Dynamic Stress Intensity [MPa/√m]

    †P Wave Speed [m/s]

    S Wave Speed [m/s]

    Averaged Crack Tip Velocity [m/s]

    Averaged Dynamic Energy Release Rate [J/m2]

    Crack Path Appearance

    σ

    σ

    x1

    x2

    x3

    48 μsE35 μsD

    20 mm

    5 μsB 20 μsC

    20 mm

    80 μsF

    Impact

    P Wave

    Caustic

    S WaveS Wave

    Crack Growth

    20 mm

    20 mm 20 mm 20 mm

    Ejecta

    A

    Hypervelocity impact induced fracture behavior of brittle polymers was experimentally investigated using a unique two‐stage light‐gas gun at speeds averaging 6 km/s (13,4000 mph).  Resulting mode I or opening mode crack tip stress intensity and energy release rates were analyzed using the optical techniques of caustics and dynamic photoelasticity.  

    (Above) Nylon right cylindrical slug, L = 1.8 mm, L/D = 1, m = 5 mg, impacting Mylar film, 12.7 microns thick, at 5.5 km/s.

    (Left)Experimental configuration of light‐gas gun impact on brittle targets in tension utilizing dynamic photoelasticity and caustics [1].

    Stress Intensity

    ),(2)( θπσ vfrtK ijID ⋅∝

    2)( IDIID KEAtG ∝

    Energy Release Rate

    Dynamic Fracture & Impact Physics

    x

    y

    Crack tip

    r

    θ

    Caustic Diameter

    v

    where t is time, v is crack speed,  E is the plate Young’s Modulus, σij is the stress tensor and AI is a universal function which includes plate material 

    properties and wave speeds 

    (A) Photograph of 150 mm diameter, 1.6 mm thick polymer plate held in load frame inside two‐stage light‐gas gun with collimated laser beam illumination around a 20 mm hole with pre‐cracks.  (B) High‐speed photography (1 million frames per second) is used to capture the hypervelocity impact, self‐illuminated, as it files through the field of view from left to right, creating a streak of ionized gas in its path 35 μs before impact. (C) At 15 μs before impact the projectile is closer to the polymer plate and has an impact velocity of 5.2 km/s. (D) Spectral flash and plasma formation upon impact with polymer plate. (E) Ejecta 35 μs after impact with considerable localized heating present.  

    A nylon 6/6 right cylindrical slug, L = 1.8 mm, L/D = 1 and mass of 5 mg, impacts a Homalite 100 plate 6.5 mm thick that has existing hypervelocity impact damage.  The second hypervelocity impact collided with the plate at 5 km/s and the wave phenomena and interaction with the existing damage site is captured with high‐speed photography and optical diagnostics.  Imaging laser power is at 2 Watts with the beam expanded to a 100 mm diameter field of view, and exposure times are around 70 ns.  After 5 μs the P wave from the second impact has reached the first impact site and soon after caustics from crack growth can be seen at both impact sites.  Complex wave interaction and reflections from free surfaces is seen after 10 μs.  

    Impact sites of Homalite 100 and Mylar are compared side‐by‐side.   Each was hit with a nylon 6/6 right cylindrical slug 1.8 mm in length and diameter at approximately 5 km/s.  Notice that the Homalite 100 site has extensive dynamic branching, whereas the Mylar site has a glassy like appearance of melt fronts.  This could be due to the fact that the thermal conductivity of Mylar is about 30% lower than Homalite 100.  Additionally the size of the impact holes in both materials are greater than the diameter of the hypervelocity projectile.   

    2.54 mm2.54 mm

    2.54 mm

    2.54 mmMylarSmooth Crack Path 

    Mylar had a smooth and flat crack path appearance, whereas Homalite 100 exhibited oscillating crack paths.  This is due to the fact the time Mylar crack growth reached failure occurred on average 20 μs faster than Homalite, and consequently the cracks did not experience any complex wave interaction from reflection at the plate boundaries.  Homalite 100 cracks preferred to grow in the instantaneous local Mode I (opening) direction and only branched when crack speeds reached about half of the material Rayleigh wave speed.  Average branching angle was approximately 30°.  

    † Determined by averaging 2 amplitudes from pulse-echo ultrasonic technique, +/- 175 m/s*from literature (Mylar from Shockey 1981, Homalite from Rosakis 1983)

    1 μs 5 μs

    10 μs 20 μs

    Impact 1

    Impact 2

    Caustics

    P-wave

    1 μs 5 μs

    10 μs 20 μs

    Impact 1

    Impact 2

    Caustics

    P-wave

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice