40
Hydrocarbon Habitats Basement Highs: Exploration Results and Future Possibilities Oslo, February 28 th , 2013 NGF Number 2, 2013 Abstracts and Proceedings of the Geological Society of Norway www.geologi.no

Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

Hydrocarbon HabitatsBasement Highs: Exploration Results and Future Possibilities

Oslo, February 28th, 2013

NGFNumber 2, 2013

Abstracts and Proceedings of the Geological Society of Norway

www.geologi.no

Page 2: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

© Norsk Geologisk Forening (NGF), 2013

ISBN: 978-82-92-39479-3

NGF Abstracts and ProceedingsNGF Abstracts and Proceedings was first published in 2001. The objective of this series is to generate a common publishing channel of all scientific meetings held in Norway with a geological content.

Editor:Halfdan Carstens

Front photo/illustration:Cartography: Exploro

Printing:Skipnes Kommunikasjon, Trondheim

241 PRINTED MATTER 7

31

Orders to:Norsk Geologisk Foreningc/o Norges geologiske undersøkelseN-7491 TrondheimNorwayE-mail: [email protected]

Published by:Norsk Geologisk Foreningc/o Norges geologiske undersøkelseN-7491 Trondheim, NorwayE-mail: [email protected]

The map on the front page shows onshore the basement units (Gee et al 2008); offshore the top regional basement map (Barents Sea (Marello et al. 2013), Norwegian Sea (Ebbing et al 2010), N-North Sea (Hospers and Ediriweera 1991)), with structural elements wells and oil/gas field from NPD.

Page 3: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings of the Geological Society of Norway

Number 2, 2013

Hydrocarbon HabitatsBasement Highs:

Exploration Results and Future Possibilities

February 28th, 2013

ABSTRACTS

http://www.geologi.no/basementhighs2013/

Page 4: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

2 NGF Abstracts and Proceedings, No 2, 2013

Hydrocarbon Habitats –  Basement Highs: Exploration Results and Future Possibilities  Tom Bugge Det norske President of the Geological Society of Norway (NGF)  As president of  the Geological Society of Norway  (NGF)  it  is a pleasure  to welcome you all  to  this seminar, and I am very glad to see that nearly all seats are taken also today. This is the fifth seminar in  this  Hydrocarbon  Habitats  series,  which  is  a  joint  venture  between  the  Geological  Society, GeoPublishing and Exploro.   We plan to have one more before summer and two during fall. The first one will be on 30th May with the  working  title:  “Exploring  the  Northern  North  Sea  ‐  No  quick  fix”.  Although  we  are  already discussing certain topics for the fall, I invite you to propose possible topics for these seminars.  Today we will address hydrocarbon plays and finds in conjunction with basement highs.   With both the 22nd round and APA 2012 behind us, it is now time to glance back and start reflecting over  the  future. We  still have  the astonishing Utsira High discoveries  fresh  in mind. Oil has been proven  in  both  weathered  and  fractured  crystalline  basement  rocks,  and  we  know  that  the Norwegian  Petroleum  Directory  has  oil  in  basement  as  a  play  model  offshore  Lofoten  and Vesterålen.   The  basement  highs,  however,  have  a  lot more  to  offer. More  finds  and  fields  have  reservoirs connected with basement highs, being  sandstones  from  the  Jurassic, or Permian  carbonates. The possibilities are plenty.   For  this  reason,  NGF  has  taken  the  initiative  to  sum  up  some  of  the  knowledge  that  we  have acquired so far, and to look forward based on the possibilities the basement highs have given us. We will have key notes from Robert Trice about offshore Shetland and from Alvar Braathen about the Suez Rift as well as updates from the Utsira High by Statoil and Lundin. Fridtjof Riis at the NPD will discuss weathering of basement off Lofoten‐Vesterålen  in a regional context. Further, there will be talks dealing with geophysics, chemistry and methodology for studying basement.   It has been a success with these half days meetings where we start with lunch, have several coffee breaks  and  a  beer  or  two  at  the  Justisen  Pub  after  the  seminar.  I  hope  you  appreciate  this opportunity to meet colleagues, friends and – not the least – establish new contacts and listen to the talks and take part in the discussions.  

www.geojobb.noLEDIGE STILLINGER I GEOMILJØET

Skålatårnet er bygd på toppen av Skåla (1843 m o.h.) som ligger ovenfor Loen i Stryn. I forgrunnen blokkmark med øyegneis som er byggematerialet i tårnet. Skålatårnet har 22 overnattingsplasser. Øyegneisen kan du studere i detalj på hele topplatået så vel som på vei opp.

Les mer om øyegneisen på Skåla her: geofunn.no

Foto

: Hal

fdan

Car

sten

s

Page 5: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 3

Hydrocarbon Habitats –  Basement Highs: Exploration Results and Future Possibilities  Tom Bugge Det norske President of the Geological Society of Norway (NGF)  As president of  the Geological Society of Norway  (NGF)  it  is a pleasure  to welcome you all  to  this seminar, and I am very glad to see that nearly all seats are taken also today. This is the fifth seminar in  this  Hydrocarbon  Habitats  series,  which  is  a  joint  venture  between  the  Geological  Society, GeoPublishing and Exploro.   We plan to have one more before summer and two during fall. The first one will be on 30th May with the  working  title:  “Exploring  the  Northern  North  Sea  ‐  No  quick  fix”.  Although  we  are  already discussing certain topics for the fall, I invite you to propose possible topics for these seminars.  Today we will address hydrocarbon plays and finds in conjunction with basement highs.   With both the 22nd round and APA 2012 behind us, it is now time to glance back and start reflecting over  the  future. We  still have  the astonishing Utsira High discoveries  fresh  in mind. Oil has been proven  in  both  weathered  and  fractured  crystalline  basement  rocks,  and  we  know  that  the Norwegian  Petroleum  Directory  has  oil  in  basement  as  a  play  model  offshore  Lofoten  and Vesterålen.   The  basement  highs,  however,  have  a  lot more  to  offer. More  finds  and  fields  have  reservoirs connected with basement highs, being  sandstones  from  the  Jurassic, or Permian  carbonates. The possibilities are plenty.   For  this  reason,  NGF  has  taken  the  initiative  to  sum  up  some  of  the  knowledge  that  we  have acquired so far, and to look forward based on the possibilities the basement highs have given us. We will have key notes from Robert Trice about offshore Shetland and from Alvar Braathen about the Suez Rift as well as updates from the Utsira High by Statoil and Lundin. Fridtjof Riis at the NPD will discuss weathering of basement off Lofoten‐Vesterålen  in a regional context. Further, there will be talks dealing with geophysics, chemistry and methodology for studying basement.   It has been a success with these half days meetings where we start with lunch, have several coffee breaks  and  a  beer  or  two  at  the  Justisen  Pub  after  the  seminar.  I  hope  you  appreciate  this opportunity to meet colleagues, friends and – not the least – establish new contacts and listen to the talks and take part in the discussions.  

www.geojobb.noLEDIGE STILLINGER I GEOMILJØET

Skålatårnet er bygd på toppen av Skåla (1843 m o.h.) som ligger ovenfor Loen i Stryn. I forgrunnen blokkmark med øyegneis som er byggematerialet i tårnet. Skålatårnet har 22 overnattingsplasser. Øyegneisen kan du studere i detalj på hele topplatået så vel som på vei opp.

Les mer om øyegneisen på Skåla her: geofunn.no

Foto

: Hal

fdan

Car

sten

s

Page 6: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

4 NGF Abstracts and Proceedings, No 2, 2013

Hydrocarbon Habitats: Basement Highs: Exploration Results and Future possibilitiesFebruary 28th, 2013, Oslo Kongressenter Folkets hus

Programme

10.00 Registration

11.00 Lunch

11.55 Welcome Tom Bugge, President Geological Society of Norway

12.00 Keynote: Strategies for fractured basement exploration: A case study of experience from the West of Shetlands Robert Trice, Hurricane

12.30 Keynote: Basement fracturing and weathering in rift-shoulder fault blocks; a reservoir analogue from the Sinai Suez Rift (Egypt) Alvar Braathen et al, UNIS

13.00 Coffee break

Exploration potential of the basement on the Utsira High

Chaired by Evy Glørstad-Clark, Det norske

13.25 Structural framework and geophysical mapping Jan Erik Lie, Lundin

13.45 Well results and reservoir potential Else Grandal, Lundin

14.05 Characterisation of Fracturing and Weathering of the Utsira High Granitic Basement Paul Gillespie, Statoil

14.25 Coffee break

Page 7: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 5

Hydrocarbon Habitats: Basement Highs: Exploration Results and Future possibilitiesFebruary 28th, 2013, Oslo Kongressenter Folkets hus

Programme

10.00 Registration

11.00 Lunch

11.55 Welcome Tom Bugge, President Geological Society of Norway

12.00 Keynote: Strategies for fractured basement exploration: A case study of experience from the West of Shetlands Robert Trice, Hurricane

12.30 Keynote: Basement fracturing and weathering in rift-shoulder fault blocks; a reservoir analogue from the Sinai Suez Rift (Egypt) Alvar Braathen et al, UNIS

13.00 Coffee break

Exploration potential of the basement on the Utsira High

Chaired by Evy Glørstad-Clark, Det norske

13.25 Structural framework and geophysical mapping Jan Erik Lie, Lundin

13.45 Well results and reservoir potential Else Grandal, Lundin

14.05 Characterisation of Fracturing and Weathering of the Utsira High Granitic Basement Paul Gillespie, Statoil

14.25 Coffee break

Geophysical imaging of basement rocks

Chaired by Odleiv Olesen, NGU

14.50 Improved understanding of basement highs through broadband seismic Berit Osnes, PGS

15.10 Mapping fractured and/or deeply weathered base-ment from geophysical data Marco Brönner, NGU

Miscellaneous

15.30 An integrated geological and geophysical approach to investigating the petroleum potential of basement highs Laura Marello, Gaetano Salvaggio & Tomas Kjennerud, Exploro

15.50 Coffee break

Chaired by Halfdan Carstens, GeoPublishing

16.15 Keynote: Chemical weathering of basement rocks in Norway. What do we know and what are the implications for the petroleum industry? Ola Fredin, NGU

16.45 The offshore basement highs in the Lofoten-Vesterålen area and some observations on their regional structural context Fridtjof Riis, NPD

17.05 End of conference

17.20 Informal gathering at Justisen pub

Page 8: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

6 NGF Abstracts and Proceedings, No 2, 2013

Sinai basement reservoir analogue 1

Basement  fracturing and weathering  in  rift‐shoulder  fault blocks; a  reservoir analogue  from the Sinai Suez Rift (Egypt)  Braathen1, A., Abdel Fattah2, M.M., Ogata1, K., Olaussen1, S., and Abdel‐Gawad2, G. 1‐ University Centre in Svalbard (UNIS), Norway 2‐ Beni‐Suef University, Egypt   Summary This  study  describes  deformation  and weathering  effects  observed  in  basement  rocks  in  the proximal  footwall of  rift‐bounding  faults and  in  the  rift  shoulder of  the Suez Rift,  revealed  in world‐class exposures in Sinai, Egypt. These outcrop‐based datasets reflect those reported from hydrocarbon  producing  fields  in  the  Suez  Rift,  and  may  represent  valid  analogues  to hydrocarbon reservoirs encountered in granitoid rocks in the North Sea and elsewhere.  The fracture intensity of basement rocks peaks marginal to major faults, and declines away from the faults in damage zones that stretches out to the background fracturing level over 50‐200 m. Within these major damage zones, small faults seen as 1‐5 m‐wide fracture corridors show high fracture intensity, which is similar to smaller faults encountered in the rift‐shoulder. Sometimes such  fracture corridors and  small scale  faults develop along dykes, which  represent  structural discontinuities  prone  to  be  reworked.  Especially,  major  basement‐seated  faults  show mineralogical alteration and diagenetic mineralogy  in associated fault rocks and partial sealing along fractures due to circulating fluids. This  is most striking  in the mafic basement  lithologies. In granites, the rocks of the fault cores are altered but the damage zone reveals open fracture networks.  Furthermore, the analysis documents associated thickness variations of the tropical to arid‐style weathering profile on  top of  the basement, depending on  lithology  and  amount of erosional unroofing. Schistose and mafic rocks appear to have thicker weathering profiles than granitoids. The  overlying  sandstones  show  an  overall  fining  upward  profile  some  30  to  35  m  thick, deposited  as  fluvial  sandstone/gravel/conglomerate  in  lower  part  which  gradually  passing upward to  flood plain or tidal  flat deposits. The basement source  is  reflects by angular quartz pebbles and kaolinite. Kaolinite is observed as both diagenetic pore fill and as clastic grains. Very well rounded coarse and very coarse grained quartz arenites shows origin from previous sorted sediments.   In  sum,  the basal  sandstones and  the weathering profile make up a volumetrically  significant unit with considerable porosity. These units may act as a reservoir, draining the underlying tight and fractured basement.   Introduction For decades, exploration of  rift basins has  successfully  targeted  sedimentary plays  above  the basement in the footwall of major faults, since this location offers the upper summit of pre‐rift reservoirs as well as the apex of syn‐rift reservoir clastics. The underlying basement  is seldom targeted.  As major  faults  offset  source  rocks  downwards  into  the  rift  zone,  these  become juxtaposed with  fractured basement  rocks  (e.g.  fault damage  zone)  across  the  fault.  Further, tropical  to  arid  style  weathering  below  the  top‐basement  unconformity  and  fluid‐driven 

Page 9: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 7

Sinai basement reservoir analogue 2

corrosion of fracture systems will potentially create porous and permeable weathering profiles. Thereby, migration of hydrocarbons out of the source rocks can either migrate up into overlying sedimentary  reservoir  successions,  or  across  the  fault  into  the  fractured  basement. With  a sealing cap rock succession above basement, a significant hydrocarbon column can be stored in fracture  networks  and  weathering  profiles  in  the  otherwise  tight  basement,  as  shown  by significant hydrocarbon columns  in basement of the Suez Rift (e.g., Salah and Alsharhan 1998). This study analyzes basement reservoir analogies encountered  in the onshore part of the Suez Rift, covering: (i) fracture systems in the basement around rift‐bounding and rift‐shoulder faults and in the background domain of the rift shoulder, (ii) thickness and character of the tropical to arid  weathering  profile  along  the  top  of  several  basement  lithologies,  (iii)  diagenesis  and weathering  products  encountered  on  top  of  basement  and  in  fracture  systems,  and  (iv) sedimentary deposits overlying the weathered basement.   Regional setting of Sinai Suez Rift The exposed eastern  rift  shoulder of  the Suez Rift,  in  Sinai, Egypt, offers unique  localities  for basement reservoir analogue studies (Fig. 1), as the eastern margin of the rift has been uplifted and  exhumed  during  crustal  scale  extensional  tectonics  since  the Miocene  (e.g.,  Sharp  et  al. 2000; Mustafa 2004). Two major normal fault zones demark the rift zone on the east side: (i) the Coastal Fault Belt that  juxtapose the offshore syn‐tectonic rift fill with the onland Paleozoic to Eocene  pre‐rift  sedimentary  succession  in  the  footwall  and, more  distal  to  the  rift,  (ii)  the interlinked Thal‐Baba fault zones, which have a hanging wall of mainly the Paleozoic to Eocene pre‐rift  successions,  at  places  overlain  by  syn‐rift  successions.  The  footwall  consists  of  a basement complex of Pan‐African granitoids and subordinate schists below the pre‐rift Nubian Sandstones. Both these major  faults show displacement of  the basement‐cover contact  in  the range of 1‐3 km. Outside  the main  rift  center, exhumed 20‐30 km wide  terraces  towards  the uplifted  rift  shoulder  show  subsidiary  faults with  up  to  200‐500 m  throw  that  cut  from  the basement into the overlying Nubian Sandstone and younger cover rocks.   Presented datasets  target  the  fracture  system and weathering profile  in  the basement of  the footwall of the Thal and Baba faults. We describe the cores of the master faults and the fracture sets  encountered  in  the  footwall  damage  zones,  and  document  the  effects  of  lithological variations  in  the  basement  rocks.  Different  protolith  mineralogy  observed  between  mainly coarse‐grained  microcline  granite,  coarse‐medium  grained  hornblende  granodiorite,  and medium‐fine grained hornblende‐biotite schist, affected the encountered diagenetic alterations.   Datasets Fracture  intensity  distribution  datasets  from  rift‐bounding  and  rift‐shoulder  faults:  The  rift‐bounding Thal fault offers exhumed footwall basement in a 700 m high mountain range topped by klippen of Nubian Sandstones (see Mustafa 2004). Exposures of the fault core at several sites along the fault show 10‐20 m thick zones of fault rocks that have experienced diagenesis (Fig. 2). Both the fault zone width and the diagenetic effect seem  lithology‐dependent and the  latter  is more extensive in mafic lithologies. The nearby footwall damage zone in the basement shows a dense  network  of  fractures  in  an  inner  damage  zone,  with  fracture  intensity  of  the  outer damage zone declining towards a background level of 1‐2 fracture/meter over 50 to 200 meters (Fig. 3). This damage zone  is dissected by subsidiary  faults that define 2‐5 m to 10‐20 m wide fracture corridors.  

Page 10: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

8 NGF Abstracts and Proceedings, No 2, 2013

Sinai basement reservoir analogue 3

 The rift shoulder offers smaller offset faults, representing zones of intense fracturing similar to the fracture corridors of the major faults. They typically show 5‐10 m wide inner damage zones next to the fault core that is followed by 10‐30 m wide outer damage zones that are transitional into the background level.  Fracture  systems  in  the  pristine  tight  basement  rocks  contain  some  long  fractures,  mostly encountered  in the  fracture corridors next to  faults. Such  fractures could be highly permeable giving the main contribution to  fluid flow  (Odling 1997; Braathen and Gabrielsen 1998; Venvik Ganerød et al. 2006). Notably, some of these fracture corridors concentrate along granite dykes, representing anisotropic  features of the basement rocks where the bulk of the deformation  is accommodated.  Weathering profile thickness variation datasets: The basement‐cover contact  in Sinai  is mostly well exposed, showing a weathering profile  in the basement  rocks  (Fig. 4). This profile can be mapped out in a general sense by the characters of outcrops (superb versus moderate quality of exposures). A first assessment suggests this profile to be 5‐10 m deep in granite, slightly deeper in granodiorite and 10‐20 m deep  in dark schists  for areas with  few  fractures  (i.e. background level), but  seems  to extend much deeper  in  zones of  intense  fracturing,  for  instance  in  fault damage zones (see Fig. 4). Such relief is well known from weathering profiles in tropical to arid regions.  The cover section: The weathered granite is overlain by classical Nubian Sandstones, probably of Cambrian age. The up to 35 m thick logged section at five localities up to 15 km apart show an overall fining upward section (Figs. 4 and 5) with a very coarse grained cross stratified sandstone to conglomeratic, 2 to 5 m thick lower part. The logged section shown in Fig. 5b has a lower, 4 meter unit with well‐rounded and very coarse to coarse grained cross stratified sandstone, with scattered gravel and pebbles. This unit  is  interpreted as northwards prograding and aggrading braidplain.  Incomes  of  interbedded  fines  in  upper  part  of  this  unit  suggest  waning  of  the braidplain. Apart for an intersected fluvial stream channels around 10 m up from the base of the sedimentary  rock  section,  the  upper  part  of  the  section  consists  of  very  fine  to  fine  grained sandstone with wave  and  current  ripples, horizontal  laminated,  low  angle  cross  stratification and hetereoliths (Fig 5a). In the southern outcrops, the lower braidplain part is passing upward to  flood  plain,  over  bank,  lacustrine  and  single  story  fluvial  channel  deposits.  Here  the sandstones are whitish due to abundant kaolinite as pore filling clays. In the northern outcrops the  fine  grained  upper  part  is  interpreted  as  tidal  flat  and  lacustrine  deposits  occasionally intersected  by  fluvial  stream  channel  and  overbank  deposits.  In  contrast  to  the  southern outcrops the coarser grained sandstones in the northern outcrops are cleaner with less kaolinite and have much better observable porosity.   Micro‐textural  analysis  and mineralogy  of  fault  rocks  and  top‐basement  weathering  profile: Ongoing work on micro‐textures (optical and SEM) and mineralogy (XRD) suggests that feldspars and mafic minerals  are  labile  in  the weathering profile, whereas quartz  is  stable. The  former minerals are replaced by clays, kaolinite and subordinate zeolite. The alteration varies from mild in  quartz‐dominated  units  to  significant  in  mafic  schists,  in  both  cases  creating  secondary porosity by dissolution of mineral phases. This is reflected in offshore basement reservoirs in the Suez Rift, revealing porosities around 10‐20% and good permeability (Alsharhan and Salah 1994; Salah and Alsharhan 1998). 

Page 11: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 9

Sinai basement reservoir analogue 4

Discussion of scientific challenges Fundamental  outcrop  data  based  on  fracture  mapping  and  weathering  characterization  of granitoids and schistose granodiorite illustrate the challenges of predicting basement reservoirs in  the  subsurface  (Fig.  6).  For  instance,  the  tight  fractured  basement  can  offer  hundreds  of meters of hydrocarbon columns, basically  limited by the base  level of the source rock(s)  in the nearby,  down‐faulted  basin. Migration  from  source  rocks  across  altered  fault  rocks  into  the fractured damage  zones  in  the  footwall basement  is  a possible hydrocarbon  fairway  type,  as shown by producing oilfields in the Suez Rift. Accumulation of hydrocarbons would likely firstly build  up  in  the  top‐basement  weathering  profile  and  overlying  recycled  sandstones,  and thereafter  gradually  fill  underlying  fracture  systems  in  the basement.  In order  to predict  the fairways and column heights, with bearing on production strategies,  insight has to be found  in combined understanding of faults, fracture systems, weathering‐diagenesis and sedimentology. The presented ongoing study addresses all four approaches in an effort to mature the concepts applied to exploitation of basement reservoirs.   References  Alsharhan,  A.S.,  and  Salah, M.G.,  1994:  Geology  and  hydrocarbon  habitat  in  a  rift  setting: 

southern Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology 42 (3), 312‐331. Braathen,  A.,  and  Gabrielsen,  R.H.,  1998.  Lineament  architecture  and  distribution  in 

metamorphic and sedimentary rocks, with application to Norway. NGU Report 98.043, Geological Survey of Norway, pp. 78. 

Moustafa,  A.  R.,  2004,  Geologic Maps  of  the  Eastern  Side  of  the  Suez  Rift  (Western  Sinai Peninsula), Egypt: AAPG map series. 

Odling, N.E., 1997. Scaling and connectivity of joint systems in sandstone from western Norway. Journal of Structural Geology 19 (10), 1257–1271. 

Salah, M.G.,  and Alsharhan, A.S.,  1998:  The  Precambrian basement: A major  reservoir  in  the rifted basin, Gulf of Suez. Journal of Petroleum Science and Engineering 19, 201–222. 

Sharp,  I. R., R.L. Gawthorpe, B. Armstrong,  and  J.R. Underhill,  2000:  Propagation  history  and passive  rotation  of  mesoscale  normal  faults:  implications  for  syn‐rift  stratigraphic development. Basin Research, v. 12, p. 285‐306. 

Vevik Ganerød, G., Braathen, A., and Willemoes Wissing, B., 2008: Predictive permeability model of extensional  faults  in crystalline and metamorphic rocks; verification by pre‐grouting in sub‐sea tunnels in Norway. Journal of Structural Geology 30, 993‐1004. 

   

Page 12: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

10 NGF Abstracts and Proceedings, No 2, 2013

Sinai basement reservoir analogue 5

 Fig. 1. Oblique aerial  view of  the  Suez Rift  shoulder as  seen on‐land  the western  Sinai, Egypt (from Google Earth Pro, 2012). Note major  faults  that separate  topographic domains, seen as light‐colored pre‐rift units of mainly Cretaceous to Eocene age, dark gray Pz‐Mz pre‐rift Nubian Sandstones  on  basement,  and  dark  basement  in  the  footwall  of  the  rift‐bounding  Thal  fault (center of figure). The mountain range in the center is 700 m high, showing a klippen of Nubian Sandstones resting on mainly basement granitoids. Faults are outlined in red.   

Page 13: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 11

Sinai basement reservoir analogue 6

 Fig. 2. Exposure of the Thal rift‐bounding fault, showing a wide zone of brecciated and altered granodiorite in the footwall (dark color). Details of the fault core next to the hanging wall show a sand  injectite  and  highly  sheared  and  altered  basement  fault  rocks  (dark  red)  next  to  down‐faulted  sandstones  of  the  hanging  wall.  A  scan  line  of  fracture  intensity  is  located  on  the photograph and shown in Fig. 3.     

Page 14: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

12 NGF Abstracts and Proceedings, No 2, 2013

Sina

 

Fig. 320 mfract 

ai basement r

3. Plot of scam wide  innerturing that is

reservoir ana

an line from tr damage zos found some

alogue

the Thal faulne and a grae 150‐200 m f

lt (of Fig. 2) aadual declinefrom the fau

and into the fe  in  fractureult. 

footwall grae  intensity to

 

 anodiorite. Noowards backg

7

ote the ground 

Page 15: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 13

Sinai basement reservoir analogue 8

 Fig. 4. Basement‐cover contact of the rift‐shoulder, with a c. 200 m throw fault to the left (east), as seen in this 200 m high mountain side with a view from the south. The basement here is red, coarse microcline granite,  intruded by a  few m–thick black, mafic dikes. The upper 5 m of  the granite is deeply weathered as suggested by the change in color into a white tint and degrading quality  of  outcrops.  This  weathering  profile  extends  deeply  into  basement  along  the  inner damage  zone  of  the  fault  (right/east), which  likely  is  of Miocene  age.  The  overlying  Nubian Sandstones sedimentary section starts with mature, coarse to medium grained and pebbly fluvial sandstone  (Cambrian?)  followed by  flood‐plain deposits  including probable eolian dunes. Note encircled person for scale.    

Page 16: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

14 NGF Abstracts and Proceedings, No 2, 2013

Sina

 Fig. succstratand plan(b). intertowahetescattdomcurreas a  

ai basement r

5.  Summaryession:  In  thtified well  rogravels  interar, cross straUpwards  inrpreted as agards north noereoliths  withtered trace f

minated curreent. Apart frtidal mixed m

reservoir ana

y  log and phhe  cover,  theounded and rsected by scatified, well ncomes  of  inggrading andorthwest. Thh  wave  andfossils. Most ent. A few exarom an  intersmud sand an

alogue

otographs oe  lower partvery  coarse cours of congrounded, ventersected  td waning of ahe upper pard  current  ripof the curreample of plansected fluviand sand flat. 

 

of basement t  consists  of grained  red glomerates. ry coarse to thin  beds  ofa braidplain. rt (a)  is mainpples,  low  ant ripples annar stratifiedal channel at 

weathering massive  gre

d colored  sanThese beds coarse grainf  fines  are Paleo‐curren

nly fine to veangle  laminand cross stratd sandstone saround 10 m

profile and een mottled ndstone withare followedned and poroseen.  The  lonts measuremry fine graination,  cross tification shoshows south m the upper 

sedimentaryand  through

h  scattered pd by a 3 m coous sandstonower  part  iments show sned sandstonstratificatio

ow north norsoutheast dpart  is  inter

9

 

y  cover h  cross pebbles oset of ne unit is  here stream nes and on  and rtheast directed rpreted 

Page 17: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 15

Sinai basement reservoir analogue 10

 

  Fig.  6.  Conceptual model  for  a weathered  basement  to  cover‐sandstone  reservoir  of  the  rift center to rift‐shoulder domain. 

Page 18: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

16 NGF Abstracts and Proceedings, No 2, 2013

Mapping fractured and/or deeply weathered basement from geophysical data  Brönner, M.1, Nærheim, M.2, Hogstad, K.3, Olesen, O.1  1) Geological Survey of Norway, 7491 Trondheim 2) Norges Teknisk Naturvitenskaplige Universitet, Trondheim, now ConocoPhillips, Stavanger 3) Det norske oljeselskap, Harstad  Systematic mapping  and  investigation  of  fractured  and  deeply  weathered  basement  are  still  an underexplored  and  challenging  topic, which  is why  hydrocarbon  exploration  in  basement  rocks  is commonly shackled with words  like by accident, exotic or unconventional. Even though quite a few fields worldwide  are  producing  from  reservoirs within  the  basement  and  some  have  been  highly prolific over several decades.   K.K. Landes et al. (1960) had already urged at an AAPG meeting in 1960 that “Commercial oil deposits in basement rocks are not geological ‘accidents’ but are oil accumulations which obey all the rules of oil  sourcing, migration and entrapment;  therefore  in areas of not  too deep basement, oil deposits within basement should be explored with the same professional skill and zeal as accumulations in the overlying sediments”.  This perception  is affirmed  for the Norwegian shelf where of more than 50 wells drilled down  into basement quite a few show signs of weathered and/or fractured basement rock, and in the last few years a couple of companies have begun to explore systematically for hydrocarbon reservoirs in the basement on the Norwegian and UK continental shelf using high‐resolution seismic data.   A  fractured  basement  and  subsequent  alteration  by  weathering  processes,  however,  cause noticeable  changes  of  the  rock’s  physical  parameters, which  are  also  likely  to  be  detected  using geophysical methods other than seismics. Although seismics is certainly the most powerful technique for producing a very detailed picture of the subsoil,  it  is also the most expensive method, which  is economically challenging in many cases. It is well known that fracturing and weathering of basement rocks also effect changes in the rock resistivity, density and magnetisation.  Several  studies  from  onshore  Norway  have  proved  the  benefits  of  local  2D  resistivity  profiling (Brönner  et  al.  2010a),  but  for  larger  areas  especially  the  joint  interpretation  of  high‐quality aeromagnetic data with the landscape morphology (AMAGER method, Olesen et al. 2007, Brönner et al.  2010a)  proved  to  be  a  reliable  technique  for  mapping  of  fractured  and  deeply  weathered basement. Onshore Norway different epochs of glaciations eroded and removed almost entirely the overlying  sedimentary  successions.  The method  is  based  on  the  not  necessarily  but  for  Norway common observation that deeply weathered basement shows a noticeable reduced magnetisation of the  parent  material  and  is  moreover  easily  erodible.  Relative  magnetic  lows  correlating  with topographic depressions in eroded and exposed basement landscapes are hitherto likely to  indicate the location and distribution of deep weathering.   Offshore, on the Norwegian shelf the AMAGER method  is not easily applicable due to sedimentary coverage, but in general, also marine high‐resolution gravity and magnetic data have the potential to map fractured/weathered basement and at a significantly smaller budget.  

 For the E&P industry the quality of the basement especially on the various basement highs along the Norwegian shelf are of particular  interest for both bottom seal and/or migration paths. Gravity and magnetics in particular in conjunction with additional observations from seismics and wells can give fast and economically reliable  indications of the basement quality. However,  little knowledge exists or has been published about the potential and limitations of such data applications.  We will present results of approaches to map fractured and deep weathering in the basement from mainland Norway and  the Loppa High  in  the  southwestern Barents Sea, where we applied marine gravity data  together with an automated  fracture  tracking  technique  from  seismic data  to  identify fractured basement.  

Page 19: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 17

Mapping fractured and/or deeply weathered basement from geophysical data  Brönner, M.1, Nærheim, M.2, Hogstad, K.3, Olesen, O.1  1) Geological Survey of Norway, 7491 Trondheim 2) Norges Teknisk Naturvitenskaplige Universitet, Trondheim, now ConocoPhillips, Stavanger 3) Det norske oljeselskap, Harstad  Systematic mapping  and  investigation  of  fractured  and  deeply  weathered  basement  are  still  an underexplored  and  challenging  topic, which  is why  hydrocarbon  exploration  in  basement  rocks  is commonly shackled with words  like by accident, exotic or unconventional. Even though quite a few fields worldwide  are  producing  from  reservoirs within  the  basement  and  some  have  been  highly prolific over several decades.   K.K. Landes et al. (1960) had already urged at an AAPG meeting in 1960 that “Commercial oil deposits in basement rocks are not geological ‘accidents’ but are oil accumulations which obey all the rules of oil  sourcing, migration and entrapment;  therefore  in areas of not  too deep basement, oil deposits within basement should be explored with the same professional skill and zeal as accumulations in the overlying sediments”.  This perception  is affirmed  for the Norwegian shelf where of more than 50 wells drilled down  into basement quite a few show signs of weathered and/or fractured basement rock, and in the last few years a couple of companies have begun to explore systematically for hydrocarbon reservoirs in the basement on the Norwegian and UK continental shelf using high‐resolution seismic data.   A  fractured  basement  and  subsequent  alteration  by  weathering  processes,  however,  cause noticeable  changes  of  the  rock’s  physical  parameters, which  are  also  likely  to  be  detected  using geophysical methods other than seismics. Although seismics is certainly the most powerful technique for producing a very detailed picture of the subsoil,  it  is also the most expensive method, which  is economically challenging in many cases. It is well known that fracturing and weathering of basement rocks also effect changes in the rock resistivity, density and magnetisation.  Several  studies  from  onshore  Norway  have  proved  the  benefits  of  local  2D  resistivity  profiling (Brönner  et  al.  2010a),  but  for  larger  areas  especially  the  joint  interpretation  of  high‐quality aeromagnetic data with the landscape morphology (AMAGER method, Olesen et al. 2007, Brönner et al.  2010a)  proved  to  be  a  reliable  technique  for  mapping  of  fractured  and  deeply  weathered basement. Onshore Norway different epochs of glaciations eroded and removed almost entirely the overlying  sedimentary  successions.  The method  is  based  on  the  not  necessarily  but  for  Norway common observation that deeply weathered basement shows a noticeable reduced magnetisation of the  parent  material  and  is  moreover  easily  erodible.  Relative  magnetic  lows  correlating  with topographic depressions in eroded and exposed basement landscapes are hitherto likely to  indicate the location and distribution of deep weathering.   Offshore, on the Norwegian shelf the AMAGER method  is not easily applicable due to sedimentary coverage, but in general, also marine high‐resolution gravity and magnetic data have the potential to map fractured/weathered basement and at a significantly smaller budget.  

 For the E&P industry the quality of the basement especially on the various basement highs along the Norwegian shelf are of particular  interest for both bottom seal and/or migration paths. Gravity and magnetics in particular in conjunction with additional observations from seismics and wells can give fast and economically reliable  indications of the basement quality. However,  little knowledge exists or has been published about the potential and limitations of such data applications.  We will present results of approaches to map fractured and deep weathering in the basement from mainland Norway and  the Loppa High  in  the  southwestern Barents Sea, where we applied marine gravity data  together with an automated  fracture  tracking  technique  from  seismic data  to  identify fractured basement.  

Page 20: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

18 NGF Abstracts and Proceedings, No 2, 2013

Chemical weathering of basement rocks in Norway. What do we know and what are the implications for the petroleum industry?  Ola Fredin1,2, Ronald Sørlie3, Odleiv Olesen1, Jan‐Erik Lie3, Jochen Knies1, Else Margrethe Grandal3,Marco Brønner1, Horst Zwingmann4, Axel Müller1, Christoph Vogt5 

1: Geologcial Survey of Norway, Trondheim, Norway 2: Norwegian University of Science and Technology, Trondheim, Norway 3: Lundin Petroleum Norway, Oslo, Norway 4: CSIRO, Kensington, Australia 5: University of Bremen, Bremen, Germany  Fractured and weathered basement is an important part of the hydrocarbon play on southern Utsira high  in  the  Norwegian  North  Sea.  Chemical  weathering  of  basement  rocks  on‐  and  offshore Scandinavia needs to be studied  in more detail. However,  it turns out there are  important onshore sites  with  preserved  weathering  soils  (saprolite),  which  are  used  by  the  petroleum  industry  to improve offshore exploration models.  For  the past  century  there has been  a debate  about  the  role of deep weathering  as  a  landscape forming  agent  onshore  Scandinavia.  The  discussion  ranges  from  that  Scandinavia  largely  was influenced by Quaternary processes and most of the older weathering imprint has been obliterated, to  the notion  that effects of past  chemical etching  still dominates  the  landscape.  In  recent  years, more  and more  evidence  is pointing  at  the  importance of past deep weathering processes  as  an important  factor  in  the  geology  of  Scandinavia.  Extensive  studies  have  been  made  in  southern Sweden and Denmark, where it has been shown that significant deep weathering took place in sub‐Cretaceous  time with  the most  intense,  kaolinitic, weathering  occurring  in  late  Triassic  and  early Jurassic times.  Less  is  known  in Norway  but  relatively widespread  occurrences  of  saprolite  in  South  to Western Norway  and  in  the  Lofoten/Vesterålen  area  have  been  reported,  but  the  age  of  this weathering remains  unclear.  The  only  confirmed  locality with  sub‐Mesozoic weathering  is  the  Ramså  basin, Andøya where weathered basement gneisses are overlain by  Jurassic and Cretaceous  sedimentary rocks.  These  Norwegian  saprolite  localities  have  recently  been  investigated  with  respect  to  for example  geophysical  properties,  grain  size,  petrography,  geochemistry,  clay  mineralogy  and palaeomagnetism. In addition, the same spectrum of techniques has also been applied to weathered basement found in offshore exploration wells (Edvard Grieg 16/1‐15 and Johan Sverdrup 16/3‐4) on southern Utsira High  in  discoveries made  by  Lundin Norway. Generally, many  similarities  can  be found  between  the  onshore‐  and  offshore  saprolites.  We  also  attempted  K‐Ar  dating  of  illite diagenesis in the southern Utsira High wells, thus giving an age of when deep weathering took place. Preliminary  data  suggest  saprolite  formation  in  late  Triassic,  which  thus  is  consistent  with observations in southern Scandinavia. We also conducted Quartz provenance studies on the Draupne sst. together with weathered basement on southern Utsira High and concluded that the Draupne sst. to a large extent is derived from erosion and short transported weathered material. Again, this shows that past weathering of basement directly have influenced the petroleum system on southern Utsira high.   cgg.com

Today the industry has a new Geoscience leader.

Our global community of talented geoscientists work closely with our clients to deliver innovative solutions for the exploration and sustainable development of the Earth’s natural resources.

With a proven track record and a proud heritage of more than 80 years, we are your geoscience partner of choice.

We are CGG.

PASSION FORGEOSCIENCE

Page 21: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 19

Chemical weathering of basement rocks in Norway. What do we know and what are the implications for the petroleum industry?  Ola Fredin1,2, Ronald Sørlie3, Odleiv Olesen1, Jan‐Erik Lie3, Jochen Knies1, Else Margrethe Grandal3,Marco Brønner1, Horst Zwingmann4, Axel Müller1, Christoph Vogt5 

1: Geologcial Survey of Norway, Trondheim, Norway 2: Norwegian University of Science and Technology, Trondheim, Norway 3: Lundin Petroleum Norway, Oslo, Norway 4: CSIRO, Kensington, Australia 5: University of Bremen, Bremen, Germany  Fractured and weathered basement is an important part of the hydrocarbon play on southern Utsira high  in  the  Norwegian  North  Sea.  Chemical  weathering  of  basement  rocks  on‐  and  offshore Scandinavia needs to be studied  in more detail. However,  it turns out there are  important onshore sites  with  preserved  weathering  soils  (saprolite),  which  are  used  by  the  petroleum  industry  to improve offshore exploration models.  For  the past  century  there has been  a debate  about  the  role of deep weathering  as  a  landscape forming  agent  onshore  Scandinavia.  The  discussion  ranges  from  that  Scandinavia  largely  was influenced by Quaternary processes and most of the older weathering imprint has been obliterated, to  the notion  that effects of past  chemical etching  still dominates  the  landscape.  In  recent  years, more  and more  evidence  is pointing  at  the  importance of past deep weathering processes  as  an important  factor  in  the  geology  of  Scandinavia.  Extensive  studies  have  been  made  in  southern Sweden and Denmark, where it has been shown that significant deep weathering took place in sub‐Cretaceous  time with  the most  intense,  kaolinitic, weathering  occurring  in  late  Triassic  and  early Jurassic times.  Less  is  known  in Norway  but  relatively widespread  occurrences  of  saprolite  in  South  to Western Norway  and  in  the  Lofoten/Vesterålen  area  have  been  reported,  but  the  age  of  this weathering remains  unclear.  The  only  confirmed  locality with  sub‐Mesozoic weathering  is  the  Ramså  basin, Andøya where weathered basement gneisses are overlain by  Jurassic and Cretaceous  sedimentary rocks.  These  Norwegian  saprolite  localities  have  recently  been  investigated  with  respect  to  for example  geophysical  properties,  grain  size,  petrography,  geochemistry,  clay  mineralogy  and palaeomagnetism. In addition, the same spectrum of techniques has also been applied to weathered basement found in offshore exploration wells (Edvard Grieg 16/1‐15 and Johan Sverdrup 16/3‐4) on southern Utsira High  in  discoveries made  by  Lundin Norway. Generally, many  similarities  can  be found  between  the  onshore‐  and  offshore  saprolites.  We  also  attempted  K‐Ar  dating  of  illite diagenesis in the southern Utsira High wells, thus giving an age of when deep weathering took place. Preliminary  data  suggest  saprolite  formation  in  late  Triassic,  which  thus  is  consistent  with observations in southern Scandinavia. We also conducted Quartz provenance studies on the Draupne sst. together with weathered basement on southern Utsira High and concluded that the Draupne sst. to a large extent is derived from erosion and short transported weathered material. Again, this shows that past weathering of basement directly have influenced the petroleum system on southern Utsira high.   cgg.com

Today the industry has a new Geoscience leader.

Our global community of talented geoscientists work closely with our clients to deliver innovative solutions for the exploration and sustainable development of the Earth’s natural resources.

With a proven track record and a proud heritage of more than 80 years, we are your geoscience partner of choice.

We are CGG.

PASSION FORGEOSCIENCE

Page 22: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

20 NGF Abstracts and Proceedings, No 2, 2013

An integrated geological and geophysical approach to investigate the petroleum potential of basement highs  Laura Marello, Gaetano Salvaggio, Tomas Kjennerud Exploro AS, Stiklestadveien 1, 7041, Trondheim, Norway.  Abstract The  basement  in  the  Norwegian  Shelf  is  the  extension  of  the  onshore  units  and  consists  of  an aggregate of different  terranes  spanning  from  the Archeaen  to  the  Silurian. The understanding of offshore basement has seen a strong  improvement  in  the  last years  (e.g. Ebbing and Olesen 2010; Slagstad et al 2011; Marello et al. 2013). The recent models provide a regional knowledge of depths to basement and of basement composition, which can be used to further investigate the petroleum potential of the Norwegian Continental Self.   In  the present work we study  the applicability of different methods  to  identify  the conditions  that play and important role in having hydrocarbons in basement or associated with basement highs. In a first stage we made a regional overview of the Norwegian Shelf basement structure in relation with the  location  of  oil/gas  discovered  hydrocarbons. We  estimate  statistically  the  range  of  basement depths and basement thickness where the largest numbers of oil/gas fields have been found (Fig. 1). In a second part of the study we use a wealth of methods to understand basement structures and composition in areas characterized by shallower basement.   Seismic  data may  provide  a  good  understanding  of  basement  highs morphology. High  quality  3D seismic data allows for mapping depth to basement with a high degree of confidence, and to outline the main  faults and  lineaments.  In addition seismic attribute analysis provides a  first estimation of internal basement heterogeneities. The results obtained from seismic data are then integrated with gravity  and magnetic  studies.  Different mathematical  transformations  have  been  applied  to  the potential field and furnish a qualitative interpretation of the main density and magnetic sources (the basement). Especially where we have good control of the basement geometry the changes in gravity and magnetic anomalies are interpreted in terms of density and magnetic variations in the bedrock. These  petrophysical  heterogeneities  in  the  basement  can  further  be  related  with  weathering processes,  fractures  in basement or with a  lithological  change.  Furthermore  the  results of  seismic and potential  field  interpretation are also  integrated with well data  (where available) and onshore geology.   This combined approach provides a good understanding of the basement, allowing to define distinct geological basement units (e.g. different Caledonian allochthons, Precambrian basement, weathered basement  and  fractured  basement)  dominated  by  different  properties  and  with  well‐defined geometries,  which  are  the  key  elements  in  order  to  understand  the  petroleum  potential  of basement.  References Ebbing,  J. & Olesen, O. 2010: New  compilation of  top basement and basement  thickness  for  the Norwegian  continental shelf reveals segmentation of the passive margin system. Petroleum Geology Conference series; v. 7; p. 885‐897.  

Hospers, J., Ediriweera, K.W., 1988. Mapping of the top of the crystalline crust in the Viking Graben Area, North Sea. In: Kristoffersen, Y. (Ed.), Progress of the Studies of the Lithosphere in Norway: Norges Geologiske Undersøkelse, Special Publication, 3, pp. 21–28.  Marello, L., Ebbing, J., Gernigon, L., 2013. Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophys. J. Int. (in press).  Slagstad, T., Davidsen, B., Daly, J.S., 2011. Age and composition of crystalline basement rocks on the Norwegian continental margin; offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society 168, 1–19.                              Fig. 1. Oil/gas fields (from NPD) plotted on a regional top basement compilation (Barents Sea (Marello et al. 2013), Norwegian Sea (Ebbing et al 2010), N‐North Sea (Hospers and Ediriweera 1991)). Most of the oil/gas fields are located in areas with top basement depths in the range of ‐4.8 to ‐8.2 km (brown areas).  

Hospers, J., Ediriweera, K.W., 1988. Mapping of the top of the crystalline crust in the Viking Graben Area, North Sea. In: Kristoffersen, Y. (Ed.), Progress of the Studies of the Lithosphere in Norway: Norges Geologiske Undersøkelse, Special Publication, 3, pp. 21–28.  Marello, L., Ebbing, J., Gernigon, L., 2013. Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophys. J. Int. (in press).  Slagstad, T., Davidsen, B., Daly, J.S., 2011. Age and composition of crystalline basement rocks on the Norwegian continental margin; offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society 168, 1–19.                              Fig. 1. Oil/gas fields (from NPD) plotted on a regional top basement compilation (Barents Sea (Marello et al. 2013), Norwegian Sea (Ebbing et al 2010), N‐North Sea (Hospers and Ediriweera 1991)). Most of the oil/gas fields are located in areas with top basement depths in the range of ‐4.8 to ‐8.2 km (brown areas).  

Page 23: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 21

An integrated geological and geophysical approach to investigate the petroleum potential of basement highs  Laura Marello, Gaetano Salvaggio, Tomas Kjennerud Exploro AS, Stiklestadveien 1, 7041, Trondheim, Norway.  Abstract The  basement  in  the  Norwegian  Shelf  is  the  extension  of  the  onshore  units  and  consists  of  an aggregate of different  terranes  spanning  from  the Archeaen  to  the  Silurian. The understanding of offshore basement has seen a strong  improvement  in  the  last years  (e.g. Ebbing and Olesen 2010; Slagstad et al 2011; Marello et al. 2013). The recent models provide a regional knowledge of depths to basement and of basement composition, which can be used to further investigate the petroleum potential of the Norwegian Continental Self.   In  the present work we study  the applicability of different methods  to  identify  the conditions  that play and important role in having hydrocarbons in basement or associated with basement highs. In a first stage we made a regional overview of the Norwegian Shelf basement structure in relation with the  location  of  oil/gas  discovered  hydrocarbons. We  estimate  statistically  the  range  of  basement depths and basement thickness where the largest numbers of oil/gas fields have been found (Fig. 1). In a second part of the study we use a wealth of methods to understand basement structures and composition in areas characterized by shallower basement.   Seismic  data may  provide  a  good  understanding  of  basement  highs morphology. High  quality  3D seismic data allows for mapping depth to basement with a high degree of confidence, and to outline the main  faults and  lineaments.  In addition seismic attribute analysis provides a  first estimation of internal basement heterogeneities. The results obtained from seismic data are then integrated with gravity  and magnetic  studies.  Different mathematical  transformations  have  been  applied  to  the potential field and furnish a qualitative interpretation of the main density and magnetic sources (the basement). Especially where we have good control of the basement geometry the changes in gravity and magnetic anomalies are interpreted in terms of density and magnetic variations in the bedrock. These  petrophysical  heterogeneities  in  the  basement  can  further  be  related  with  weathering processes,  fractures  in basement or with a  lithological  change.  Furthermore  the  results of  seismic and potential  field  interpretation are also  integrated with well data  (where available) and onshore geology.   This combined approach provides a good understanding of the basement, allowing to define distinct geological basement units (e.g. different Caledonian allochthons, Precambrian basement, weathered basement  and  fractured  basement)  dominated  by  different  properties  and  with  well‐defined geometries,  which  are  the  key  elements  in  order  to  understand  the  petroleum  potential  of basement.  References Ebbing,  J. & Olesen, O. 2010: New  compilation of  top basement and basement  thickness  for  the Norwegian  continental shelf reveals segmentation of the passive margin system. Petroleum Geology Conference series; v. 7; p. 885‐897.  

Hospers, J., Ediriweera, K.W., 1988. Mapping of the top of the crystalline crust in the Viking Graben Area, North Sea. In: Kristoffersen, Y. (Ed.), Progress of the Studies of the Lithosphere in Norway: Norges Geologiske Undersøkelse, Special Publication, 3, pp. 21–28.  Marello, L., Ebbing, J., Gernigon, L., 2013. Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophys. J. Int. (in press).  Slagstad, T., Davidsen, B., Daly, J.S., 2011. Age and composition of crystalline basement rocks on the Norwegian continental margin; offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society 168, 1–19.                              Fig. 1. Oil/gas fields (from NPD) plotted on a regional top basement compilation (Barents Sea (Marello et al. 2013), Norwegian Sea (Ebbing et al 2010), N‐North Sea (Hospers and Ediriweera 1991)). Most of the oil/gas fields are located in areas with top basement depths in the range of ‐4.8 to ‐8.2 km (brown areas).  

Hospers, J., Ediriweera, K.W., 1988. Mapping of the top of the crystalline crust in the Viking Graben Area, North Sea. In: Kristoffersen, Y. (Ed.), Progress of the Studies of the Lithosphere in Norway: Norges Geologiske Undersøkelse, Special Publication, 3, pp. 21–28.  Marello, L., Ebbing, J., Gernigon, L., 2013. Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophys. J. Int. (in press).  Slagstad, T., Davidsen, B., Daly, J.S., 2011. Age and composition of crystalline basement rocks on the Norwegian continental margin; offshore extension and continuity of the Caledonian–Appalachian orogenic belt. Journal of the Geological Society 168, 1–19.                              Fig. 1. Oil/gas fields (from NPD) plotted on a regional top basement compilation (Barents Sea (Marello et al. 2013), Norwegian Sea (Ebbing et al 2010), N‐North Sea (Hospers and Ediriweera 1991)). Most of the oil/gas fields are located in areas with top basement depths in the range of ‐4.8 to ‐8.2 km (brown areas).  

Page 24: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

22 NGF Abstracts and Proceedings, No 2, 2013

Improved understanding of basement highs through broadband seismic  Berit Osnes PGS  Introduction The North Sea still holds opportunities  for  large discoveries  through  the use of geological  insight and creativity coupled with new technology. Basement highs play a key role in hydrocarbon exploration and can make for an attractive target, as shown through the recent success story of the Utsira High, which may open up exploration of other basement highs.  Understanding  the  role of basement highs  in  exploration  can  be  complicated  and difficult  to model. Improved seismic  imaging and resolution can help our understanding of the role of basement highs  in terms of hydrocarbon migration, trapping mechanisms, fractured reservoirs and sources of sediment.  In this paper we will review how GeoStreamer broadband seismic and advanced imaging technology has improved the understanding of the Utsira and Mandal basement highs as potential reservoirs alongside the lateral sealing potential for associated traps.   Case histories The first towed streamer broadband survey on the southern part of the Utsira High was acquired by PGS on behalf of Lundin and partners in 2009 and the results have been published in many papers. Between 2009 and 2011 PGS also acquired GeoStreamer® multiclient data across the northern part of the Utsira High and over  the Mandal High  in  the Central Graben. The  seismic  section  in  Figure 1  shows a half‐graben north of the giant Johan Sverdrup discovery on Utsira High. If migration through basement  is a working  model,  then  pre‐Upper  Jurassic  sediments  can  represent  interesting  opportunities  to  be pursued.   Whilst most of the traps in the Norwegian‐Danish Basin are salt induced, there are other opportunities where  the Mandal  High may  act  as  both  a  source  of  sediment  and  lateral  seal.  Examples  will  be discussed in the presentation.  GeoStreamer delivers both deep penetration  through  low  frequencies and enhanced  resolution  from high  frequencies  .  This  is  achieved by  combining data  from  co‐located pressure  and particle  velocity sensors  in  the  streamers.  The  streamers  are  towed deeper  than  in  conventional  acquisition,  thereby improving the low frequency signal/noise. This is very important for the seismic  imaging of a fractured basement.   Both Utsira and Mandal Highs have been depth‐imaged with PGS Beam migration, which has improved the understanding of the fracture patterns within the basement highs. The PGS beam migration is well suited  for  application  to  broadband  data  as  wavelet  picking  is  designed  to  preserve  the  original amplitudes. The difference between Kirchhoff    (left) and Beam  (right) depth migration on  the Mandal 

High is shown in Figure 2 and the benefits of using the two styles will be presented. The technology itself and  the  implications of  the  imaged  fault patterns  for  the Mandal High as a possible  reservoir will be presented and discussed.   

        Figure 1: Half‐graben on the Utsira High, north of the Johan Sverdrup discovery.                 Figure 2: Fracture pattern on the Mandal High, depth‐imaged by Kirchhoff algorithm (left) and PGS Beam algorithm (right)  

Page 25: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 23

Improved understanding of basement highs through broadband seismic  Berit Osnes PGS  Introduction The North Sea still holds opportunities  for  large discoveries  through  the use of geological  insight and creativity coupled with new technology. Basement highs play a key role in hydrocarbon exploration and can make for an attractive target, as shown through the recent success story of the Utsira High, which may open up exploration of other basement highs.  Understanding  the  role of basement highs  in  exploration  can  be  complicated  and difficult  to model. Improved seismic  imaging and resolution can help our understanding of the role of basement highs  in terms of hydrocarbon migration, trapping mechanisms, fractured reservoirs and sources of sediment.  In this paper we will review how GeoStreamer broadband seismic and advanced imaging technology has improved the understanding of the Utsira and Mandal basement highs as potential reservoirs alongside the lateral sealing potential for associated traps.   Case histories The first towed streamer broadband survey on the southern part of the Utsira High was acquired by PGS on behalf of Lundin and partners in 2009 and the results have been published in many papers. Between 2009 and 2011 PGS also acquired GeoStreamer® multiclient data across the northern part of the Utsira High and over  the Mandal High  in  the Central Graben. The  seismic  section  in  Figure 1  shows a half‐graben north of the giant Johan Sverdrup discovery on Utsira High. If migration through basement  is a working  model,  then  pre‐Upper  Jurassic  sediments  can  represent  interesting  opportunities  to  be pursued.   Whilst most of the traps in the Norwegian‐Danish Basin are salt induced, there are other opportunities where  the Mandal  High may  act  as  both  a  source  of  sediment  and  lateral  seal.  Examples  will  be discussed in the presentation.  GeoStreamer delivers both deep penetration  through  low  frequencies and enhanced  resolution  from high  frequencies  .  This  is  achieved by  combining data  from  co‐located pressure  and particle  velocity sensors  in  the  streamers.  The  streamers  are  towed deeper  than  in  conventional  acquisition,  thereby improving the low frequency signal/noise. This is very important for the seismic  imaging of a fractured basement.   Both Utsira and Mandal Highs have been depth‐imaged with PGS Beam migration, which has improved the understanding of the fracture patterns within the basement highs. The PGS beam migration is well suited  for  application  to  broadband  data  as  wavelet  picking  is  designed  to  preserve  the  original amplitudes. The difference between Kirchhoff    (left) and Beam  (right) depth migration on  the Mandal 

High is shown in Figure 2 and the benefits of using the two styles will be presented. The technology itself and  the  implications of  the  imaged  fault patterns  for  the Mandal High as a possible  reservoir will be presented and discussed.   

        Figure 1: Half‐graben on the Utsira High, north of the Johan Sverdrup discovery.                 Figure 2: Fracture pattern on the Mandal High, depth‐imaged by Kirchhoff algorithm (left) and PGS Beam algorithm (right)  

Page 26: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

24 NGF Abstracts and Proceedings, No 2, 2013

The  offshore  basement  highs  in  the  Lofoten‐Vesterålen  area  and  some  observations  on  their regional structural context   Fridtjof Riis, Christian Magnus and Jon Arne Øverland Norwegian Petroleum Directorate  Abstract Fractured  and/or  weathered  crystalline  basement  rocks  may  constitute  reservoirs  for  petroleum.  In  the Norwegian shelf, approximately 60 exploration wells are drilled into pre‐Devonian rocks (Figure 1). Weathered zones and fracture permeability have been observed in many of these wells.   The  reservoir quality of  the basement  rocks of  the Norwegian  shelf  is  thought  to depend on  their position relative to the Caledonian orogenic belt (Figure 1), on the duration and paleo‐climate of their exposure before burial  and  on  the  style  and  degree  of  tectonization  and  fracturing.  For  the  study  of  basement  petroleum geology it is also necessary to consider the overlying source rocks.   In Figure 1, the basement has been divided into provinces based on the considerations above.   In the Baltic Shield provinces in the south and north‐east, Precambrian rocks are overlain by Cambrian source rocks. The climate prior to burial was cold and no extensive weathering is indicated.  In the southernmost part of the North Sea and in the Barents Sea, basement rocks belong to the external part of the orogen. Following Carboniferous  (possibly also Devonian) rifting, they were covered by Carboniferous sediments  in a warm and humid climate. Weathering  is observed  in a few cores. Carboniferous source rocks are mainly gas prone.  In  the  northern  North  Sea,  Norwegian  Sea  and  offshore  Lofoten‐Vesterålen,  the  Stord  Basin,  Froan  and Helgeland Basins (purple lines in Figure 1) were filled with Triassic sediments following Permian‐Triassic rifting. The paleo‐climate at  that  time was dry and warm. The basement highs  in  the Møre and Lofoten‐Vesterålen area  and  in  the Norwegian onshore were  gradually  transgressed  in  the  Jurassic  (locally  in  the Cretaceous), when the climate was humid. In many locations, there are only thin stratigraphic sections between the Upper Jurassic source rocks and the basement.  In the Lofoten‐Vesterålen high, the mid Jurassic transgression of the basement  is observed  in Andøya and  in shallow  stratigraphic wells  drilled  by  the  IKU  (now  SINTEF  Petroleumsforskning).  In Andøya,  the  basement below  the  Jurassic  outcrops  is  strongly  weathered.  Offshore  seismic  interpretation  reveals  large  rotated basement blocks with a thin cover of Jurassic sediments and a thick Lower Cretaceous shaly section. Due to its position  close  to  the  active margin,  the  faults were  reactivated  in  several  phases  in  the  late  Cretaceous, Paleogene and Neogene. The onshore morphology of Lofoten and of the strandflat east of Vestfjorden seem to be controlled by the exhumed cores of Mesozoic fault blocks. In these large blocks, weathering surfaces which were initially semi‐horizontal are now rotated. Gravity data suggest that narrow basement cored ridges extend from the Lofoten‐Vesterålen high towards the south (Utgard High) and to the north along the Senja Fracture zone (Figure 1).   In  the evaluation of  the petroleum potential of  the Lofoten‐Vesterålen area  (NPD website), a play model  in fractured and weathered basement in the major rotated fault blocks was identified. The reservoir properties of these basement rocks are poorly constrained, and the parameters used for volume estimates were based on literature studies, mainly from the Utsira High.     

                                       Figure 1. Overview of different basement provinces in the Norwegian shelf and their relation to the Caledonian orogen. Wells drilled  into basement are  shown as black dots. The black  line along  the coast  in the north shows the basement subcrop to the sea floor. Basins and highs are  indicated by the Base Cretaceous surface. The subdivision of the Caledonian orogeny is  sketchy and simplified.    

Page 27: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 25

The  offshore  basement  highs  in  the  Lofoten‐Vesterålen  area  and  some  observations  on  their regional structural context   Fridtjof Riis, Christian Magnus and Jon Arne Øverland Norwegian Petroleum Directorate  Abstract Fractured  and/or  weathered  crystalline  basement  rocks  may  constitute  reservoirs  for  petroleum.  In  the Norwegian shelf, approximately 60 exploration wells are drilled into pre‐Devonian rocks (Figure 1). Weathered zones and fracture permeability have been observed in many of these wells.   The  reservoir quality of  the basement  rocks of  the Norwegian  shelf  is  thought  to depend on  their position relative to the Caledonian orogenic belt (Figure 1), on the duration and paleo‐climate of their exposure before burial  and  on  the  style  and  degree  of  tectonization  and  fracturing.  For  the  study  of  basement  petroleum geology it is also necessary to consider the overlying source rocks.   In Figure 1, the basement has been divided into provinces based on the considerations above.   In the Baltic Shield provinces in the south and north‐east, Precambrian rocks are overlain by Cambrian source rocks. The climate prior to burial was cold and no extensive weathering is indicated.  In the southernmost part of the North Sea and in the Barents Sea, basement rocks belong to the external part of the orogen. Following Carboniferous  (possibly also Devonian) rifting, they were covered by Carboniferous sediments  in a warm and humid climate. Weathering  is observed  in a few cores. Carboniferous source rocks are mainly gas prone.  In  the  northern  North  Sea,  Norwegian  Sea  and  offshore  Lofoten‐Vesterålen,  the  Stord  Basin,  Froan  and Helgeland Basins (purple lines in Figure 1) were filled with Triassic sediments following Permian‐Triassic rifting. The paleo‐climate at  that  time was dry and warm. The basement highs  in  the Møre and Lofoten‐Vesterålen area  and  in  the Norwegian onshore were  gradually  transgressed  in  the  Jurassic  (locally  in  the Cretaceous), when the climate was humid. In many locations, there are only thin stratigraphic sections between the Upper Jurassic source rocks and the basement.  In the Lofoten‐Vesterålen high, the mid Jurassic transgression of the basement  is observed  in Andøya and  in shallow  stratigraphic wells  drilled  by  the  IKU  (now  SINTEF  Petroleumsforskning).  In Andøya,  the  basement below  the  Jurassic  outcrops  is  strongly  weathered.  Offshore  seismic  interpretation  reveals  large  rotated basement blocks with a thin cover of Jurassic sediments and a thick Lower Cretaceous shaly section. Due to its position  close  to  the  active margin,  the  faults were  reactivated  in  several  phases  in  the  late  Cretaceous, Paleogene and Neogene. The onshore morphology of Lofoten and of the strandflat east of Vestfjorden seem to be controlled by the exhumed cores of Mesozoic fault blocks. In these large blocks, weathering surfaces which were initially semi‐horizontal are now rotated. Gravity data suggest that narrow basement cored ridges extend from the Lofoten‐Vesterålen high towards the south (Utgard High) and to the north along the Senja Fracture zone (Figure 1).   In  the evaluation of  the petroleum potential of  the Lofoten‐Vesterålen area  (NPD website), a play model  in fractured and weathered basement in the major rotated fault blocks was identified. The reservoir properties of these basement rocks are poorly constrained, and the parameters used for volume estimates were based on literature studies, mainly from the Utsira High.     

                                       Figure 1. Overview of different basement provinces in the Norwegian shelf and their relation to the Caledonian orogen. Wells drilled  into basement are  shown as black dots. The black  line along  the coast  in the north shows the basement subcrop to the sea floor. Basins and highs are  indicated by the Base Cretaceous surface. The subdivision of the Caledonian orogeny is  sketchy and simplified.    

Page 28: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

26 NGF Abstracts and Proceedings, No 2, 2013

Strategies for fractured basement exploration: A case study from the West of Shetland

Dr Robert Trice

CEO Hurricane Exploration

Extended Abstract

Commercial production of hydrocarbon from fractured crystalline basement is well documented, with petroleum basins across the globe hosting fractured basement fields. The UK is an anomaly within this global phenomenon, as despite numerous serendipitous discoveries of basement oil in the North Sea and the West of Shetlands (WoS), currently there is no commercial field on the United Kingdom Continental Shelf (UKCS) that is reliant on oil production from fractured basement. Recognising that this situation presented an exploration niche, Hurricane Exploration plc (Hurricane) was formed in 2005 to focus on UKCS basement exploration and undertook a strategy for acquiring and evaluating fractured basement prospective exploration acreage in the West of Shetlands.

The current results of deploying this basement-focused strategy are two discoveries, Lancaster and Whirlwind. Lancaster has a contingent resource range (1C-3C) of 62 - 456 MMboe and is associated with 38° API oil. Whirlwind, which has very similar reservoir properties to Lancaster, is associated with either volatile light oil or a gas condensate. Contingent resource volumes for Whirlwind are of a similar magnitude to Lancaster, ranging from 98-373 MMstb of oil and 236-1017 Bscf of gas for the volatile oil case and 91-301 MMstb oil and 437-1308 Bscf of gas for the gas condensate case.

In addition to the two discoveries Hurricane has two further basement prospects Lincoln and Typhoon, which combine as a resource base of 444 MMboe of un-risked mean prospective resource.

The strategy deployed to acquire these basement resources is summarised with a focus on the geoscience aspects of acquiring and evaluating basement prospectivity. A key element of this strategy is that Hurricane has maintained 100% control of its basement discoveries to date allowing a consistent approach to evaluating the basement play in the WoS. The geological aspects of the applied strategy which will be focused on during the presentation are:

a) Work flow

b) Identifying the fracture network

c) Visualizing and modelling the fracture network

These aspects will be discussed in context to generating a basement prospect, fractured basement data acquisition and generating basement resource estimates.

Generating a basement prospect

In contrast to clastic and carbonate fields, basement fields and their respective reservoirs are poorly documented. That stated there are global examples of productive basement fields, outcrop analogue data and technical papers devoted to basement evaluation. Through evaluating such data sources it is clear that basement prospectivity is associated with traps such as basement highs, basement ridges, buried hills and fault blocks. Combinations of these trapping elements are common. In addition basement fields are typically located proximal to a prolific kitchen and may benefit from an overlying hydrocarbon bearing clastic succession, which sits unconformably on the basement. A key element in evaluating a prospective region for basement prospectivity is to establish what geological properties are most likely to be present and thereby what is the likely characteristics of a given basement prospect or lead. Such a process is no different to any method of prospect generation, however in the case of basement there is a relatively small volume of offset and analogue data to work with and consequently it is advisable to start the exploration process with the absolute basics. The approach taken by the author follows a prescriptive work flow (Figure 1), which can be applied to numerous phases of the exploration/appraisal process.

Figure 1 - Consistent generic workflow applied in fractured basement reservoir evaluation

The workflow consists of the underlying steps all of which benefit from cross reference to one another:

Internal data – Data package comprising previous data acquired on a Lead or Prospect, e.g. seismic or well data (not always available).

In the case of Hurricane’s basement prospects data was available for review from previous operators who had penetrated the basement and in some cases undertaken testing and/or coring both of which reduced uncertainty on basement oil presence.

Page 29: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 27

Strategies for fractured basement exploration: A case study from the West of Shetland

Dr Robert Trice

CEO Hurricane Exploration

Extended Abstract

Commercial production of hydrocarbon from fractured crystalline basement is well documented, with petroleum basins across the globe hosting fractured basement fields. The UK is an anomaly within this global phenomenon, as despite numerous serendipitous discoveries of basement oil in the North Sea and the West of Shetlands (WoS), currently there is no commercial field on the United Kingdom Continental Shelf (UKCS) that is reliant on oil production from fractured basement. Recognising that this situation presented an exploration niche, Hurricane Exploration plc (Hurricane) was formed in 2005 to focus on UKCS basement exploration and undertook a strategy for acquiring and evaluating fractured basement prospective exploration acreage in the West of Shetlands.

The current results of deploying this basement-focused strategy are two discoveries, Lancaster and Whirlwind. Lancaster has a contingent resource range (1C-3C) of 62 - 456 MMboe and is associated with 38° API oil. Whirlwind, which has very similar reservoir properties to Lancaster, is associated with either volatile light oil or a gas condensate. Contingent resource volumes for Whirlwind are of a similar magnitude to Lancaster, ranging from 98-373 MMstb of oil and 236-1017 Bscf of gas for the volatile oil case and 91-301 MMstb oil and 437-1308 Bscf of gas for the gas condensate case.

In addition to the two discoveries Hurricane has two further basement prospects Lincoln and Typhoon, which combine as a resource base of 444 MMboe of un-risked mean prospective resource.

The strategy deployed to acquire these basement resources is summarised with a focus on the geoscience aspects of acquiring and evaluating basement prospectivity. A key element of this strategy is that Hurricane has maintained 100% control of its basement discoveries to date allowing a consistent approach to evaluating the basement play in the WoS. The geological aspects of the applied strategy which will be focused on during the presentation are:

a) Work flow

b) Identifying the fracture network

c) Visualizing and modelling the fracture network

These aspects will be discussed in context to generating a basement prospect, fractured basement data acquisition and generating basement resource estimates.

Generating a basement prospect

In contrast to clastic and carbonate fields, basement fields and their respective reservoirs are poorly documented. That stated there are global examples of productive basement fields, outcrop analogue data and technical papers devoted to basement evaluation. Through evaluating such data sources it is clear that basement prospectivity is associated with traps such as basement highs, basement ridges, buried hills and fault blocks. Combinations of these trapping elements are common. In addition basement fields are typically located proximal to a prolific kitchen and may benefit from an overlying hydrocarbon bearing clastic succession, which sits unconformably on the basement. A key element in evaluating a prospective region for basement prospectivity is to establish what geological properties are most likely to be present and thereby what is the likely characteristics of a given basement prospect or lead. Such a process is no different to any method of prospect generation, however in the case of basement there is a relatively small volume of offset and analogue data to work with and consequently it is advisable to start the exploration process with the absolute basics. The approach taken by the author follows a prescriptive work flow (Figure 1), which can be applied to numerous phases of the exploration/appraisal process.

Figure 1 - Consistent generic workflow applied in fractured basement reservoir evaluation

The workflow consists of the underlying steps all of which benefit from cross reference to one another:

Internal data – Data package comprising previous data acquired on a Lead or Prospect, e.g. seismic or well data (not always available).

In the case of Hurricane’s basement prospects data was available for review from previous operators who had penetrated the basement and in some cases undertaken testing and/or coring both of which reduced uncertainty on basement oil presence.

Page 30: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

28 NGF Abstracts and Proceedings, No 2, 2013

Page 31: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 29

Page 32: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

30 NGF Abstracts and Proceedings, No 2, 2013

Figure 3 Pre-drill conceptual model of the basement reservoir at Lancaster Prospect.

The conceptual model summarises key statistical information gathered from outcrop analogues such as, lithology, fracture frequency, fracture connectivity, fault zone widths, degree and distribution of weathering, stress direction and key aspects of the anticipated reservoir quality.

The final product of the prospect generation work flow is the prospect summary (Figure 4), which indicate that oil can accumulate outside of structural closure (especially in flank locations), that fault zones will be subvertical and that the anticipated oil would be light. Estimates of resource potential therefore need to be subdivided (for risking purposes) between the GRV within structural closure and an anticipated GRV below structural closure that could also be associated with in place hydrocarbon. Offset data and global field analogues were helpful in establishing potential oil down to depths.

Figure 4 Pre-drill conceptual model and volumetric assessment of the fractured basement reservoir prospect Lancaster (note - post well result indicate the contingent resource range for recoverable oil is, C1 60 MMstb, 2C 200MMstb, 3C 437 MMstb)

From the analysis of analogue and offset undertaken during the “Generating a Basement Prospect” it was evident that numerous basement wells and discoveries had been drilled without optimal consideration of the fracture network. This situation was either due to limited seismic data, limited geological knowledge or where basement penetrations were not the primary exploration target. Consequently many basement fields are associated with wells that are interpreted as having low permeability/tight reservoir. Hurricane’s strategy was focused to optimise the penetration of quality reservoir and a GRV volume containing hydrocarbon. To this end well, defined seismic scale faults were mapped and evaluated for their potential connectivity to a broader fault/fracture network (Slightam 2012). Such seismic scale faults where the drilling target to be evaluated by deviated wells drilled perpendicular to the fault strike. Once drilled a detailed data acquisition program was undertaken to ensure that the seismic scale faults could be characterised by well based measurements.

Page 33: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 31

Figure 3 Pre-drill conceptual model of the basement reservoir at Lancaster Prospect.

The conceptual model summarises key statistical information gathered from outcrop analogues such as, lithology, fracture frequency, fracture connectivity, fault zone widths, degree and distribution of weathering, stress direction and key aspects of the anticipated reservoir quality.

The final product of the prospect generation work flow is the prospect summary (Figure 4), which indicate that oil can accumulate outside of structural closure (especially in flank locations), that fault zones will be subvertical and that the anticipated oil would be light. Estimates of resource potential therefore need to be subdivided (for risking purposes) between the GRV within structural closure and an anticipated GRV below structural closure that could also be associated with in place hydrocarbon. Offset data and global field analogues were helpful in establishing potential oil down to depths.

Figure 4 Pre-drill conceptual model and volumetric assessment of the fractured basement reservoir prospect Lancaster (note - post well result indicate the contingent resource range for recoverable oil is, C1 60 MMstb, 2C 200MMstb, 3C 437 MMstb)

From the analysis of analogue and offset undertaken during the “Generating a Basement Prospect” it was evident that numerous basement wells and discoveries had been drilled without optimal consideration of the fracture network. This situation was either due to limited seismic data, limited geological knowledge or where basement penetrations were not the primary exploration target. Consequently many basement fields are associated with wells that are interpreted as having low permeability/tight reservoir. Hurricane’s strategy was focused to optimise the penetration of quality reservoir and a GRV volume containing hydrocarbon. To this end well, defined seismic scale faults were mapped and evaluated for their potential connectivity to a broader fault/fracture network (Slightam 2012). Such seismic scale faults where the drilling target to be evaluated by deviated wells drilled perpendicular to the fault strike. Once drilled a detailed data acquisition program was undertaken to ensure that the seismic scale faults could be characterised by well based measurements.

Page 34: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

32 NGF Abstracts and Proceedings, No 2, 2013

Whilst it is important to have a clear geological target that best tests the properties of the prospect, it is also essential to plan the mechanics of drilling basement targets as there are a number of potential drilling issues to accommodate including, a) management of fluid losses, b) optimising bottom hole assembly (bits motors, stabilisers MWD etc), and, c) drilling methods (managing ROP over vibration etc). Whilst analogue data and published papers provide a significant amount of data on which to formulate a drilling strategy, there is no substitute, in basement operations, for working as an integrated team with the well planning and operational team. Key learning from drilling the Lewisian Basement includes:

Drilling fluid losses:

Work with drilling contractor to define benchmark for acceptable hourly loss rate(s) and to define mitigation measures for manageable loss criteria. Define solution for “total” loss scenario.

Drilling:

Whilst underbalance and managed pressure drilling systems offer an optimum method of reducing formation damage these techniques require specialised equipment, trained personal and HSE approvals which are not readily available on the open rig market. Consequently basement drilling needs to be achieved through use of conventional pressure management systems. The combination of tricone rock bits, drilling brine and use of MWD data are more than capable of drilling basement reservoirs and Hurricane has achieved rates of penetration equivalent of 3-5 m/hour (depending on fracture properties). High resolution mudlogging has also proven invaluable in typing/detecting hydrocarbon.

Fractured basement data acquisition

Effective data acquisition in Type 1 Fractured Reservoirs such as basement requires the gathering of a broad range of static and dynamic data. This requires detailed wireline and testing (DST) data with wireline testing and production logging (flow meter) providing the key measurements that integrate depth based static properties such as fracture attitude to permeability and flow. Well testing of discrete intervals such as an individual fault zone is also of significant benefit in helping to understand the behaviour and properties of the fracture network. Key wireline/LWD measurements that have proved helpful in evaluating the Lewisian Basement are summarised below:

Lateralog – fracture detection, fracture aperture estimate

Electrical imaging – fracture identification, fracture orientation, fracture aperture estimate

Acoustic imaging – fracture identification, fracture orientation, fracture aperture estimate

Wireline pressure – fracture permeability & formation fluid

NMR – bulk porosity – fracture detection

Density-neutron & pef – lithology and fracture identification, aperture estimate

Spectral gamma – lithology and permeable fracture detection

Sidewall cores – lithology and hydrocarbon presence, fracture properties

PLT – multiple rate passes – fracture permeability, deliverability, formation fluid

From the integration of the above data with production logging data it was possible to determine that many permeable/productive fractures are of sufficient aperture to be detected by conventional wireline and LWD measurements. Such aperture magnitudes are interpreted as having been associated with permeability enhancement through hydrothermal and epithermal process, an interpretation supported by the mineralogical assemblages noted from sidewall core analysis.

A key learning from the data analysed in the wells so far drilled is that, contrary to the initial pre-drill conceptual model, fracture frequency is not associated with seismic scale fault zones and fracture frequency is significantly higher than predicted with permeable fractures being equivalently distributed within and without seismic scale fault zones. However it is apparent that seismic scale fault zones are associated with preferential permeability (consistent with the pre-drill conceptual model) indicating that such rock volumes are better connected to the bulk fracture network.

Of the wireline measurements acquired, sonic waveform data has proven to be the least responsive to permeable fractures, an observation clearly supported by comparison to PLT and wireline tester data. This is attributed to a function of relative fracture azimuth to the borehole (tool), fracture tortuosity and very high fracture frequency.

During DST data acquisition it is recommended to acquire pressure data on the seabed to accommodate tidal effects that occur within the reservoir. Cyclic pressure variation of @1 Psi have been noted in the Lewisian basement during a 24 hour well test. In addition, variable rate choke with PLT provides important information on fluid movement and fracture productivity.

Generating basement resource estimates

Fracture reservoirs are a challenge to evaluate from the perspective of establishing hydrocarbon resource volumes. Currently there is no acknowledged industry standard for evaluating fractured reservoirs. Type 1 fractured reservoirs bring their own specific challenges and Hurricane has worked closely with third party specialists to develop a robust methodology for establishing fractured basement resource volumes. The details of this approach remain proprietary, however the basic approach is a mechanism for evaluating and risking hydrocarbon within structural closure and hydrocarbon outside of structural closure. The four basic steps applied to volumetric analysis are summarised using the Lancaster discovery as an example as Figure 5.

Page 35: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 33

Whilst it is important to have a clear geological target that best tests the properties of the prospect, it is also essential to plan the mechanics of drilling basement targets as there are a number of potential drilling issues to accommodate including, a) management of fluid losses, b) optimising bottom hole assembly (bits motors, stabilisers MWD etc), and, c) drilling methods (managing ROP over vibration etc). Whilst analogue data and published papers provide a significant amount of data on which to formulate a drilling strategy, there is no substitute, in basement operations, for working as an integrated team with the well planning and operational team. Key learning from drilling the Lewisian Basement includes:

Drilling fluid losses:

Work with drilling contractor to define benchmark for acceptable hourly loss rate(s) and to define mitigation measures for manageable loss criteria. Define solution for “total” loss scenario.

Drilling:

Whilst underbalance and managed pressure drilling systems offer an optimum method of reducing formation damage these techniques require specialised equipment, trained personal and HSE approvals which are not readily available on the open rig market. Consequently basement drilling needs to be achieved through use of conventional pressure management systems. The combination of tricone rock bits, drilling brine and use of MWD data are more than capable of drilling basement reservoirs and Hurricane has achieved rates of penetration equivalent of 3-5 m/hour (depending on fracture properties). High resolution mudlogging has also proven invaluable in typing/detecting hydrocarbon.

Fractured basement data acquisition

Effective data acquisition in Type 1 Fractured Reservoirs such as basement requires the gathering of a broad range of static and dynamic data. This requires detailed wireline and testing (DST) data with wireline testing and production logging (flow meter) providing the key measurements that integrate depth based static properties such as fracture attitude to permeability and flow. Well testing of discrete intervals such as an individual fault zone is also of significant benefit in helping to understand the behaviour and properties of the fracture network. Key wireline/LWD measurements that have proved helpful in evaluating the Lewisian Basement are summarised below:

Lateralog – fracture detection, fracture aperture estimate

Electrical imaging – fracture identification, fracture orientation, fracture aperture estimate

Acoustic imaging – fracture identification, fracture orientation, fracture aperture estimate

Wireline pressure – fracture permeability & formation fluid

NMR – bulk porosity – fracture detection

Density-neutron & pef – lithology and fracture identification, aperture estimate

Spectral gamma – lithology and permeable fracture detection

Sidewall cores – lithology and hydrocarbon presence, fracture properties

PLT – multiple rate passes – fracture permeability, deliverability, formation fluid

From the integration of the above data with production logging data it was possible to determine that many permeable/productive fractures are of sufficient aperture to be detected by conventional wireline and LWD measurements. Such aperture magnitudes are interpreted as having been associated with permeability enhancement through hydrothermal and epithermal process, an interpretation supported by the mineralogical assemblages noted from sidewall core analysis.

A key learning from the data analysed in the wells so far drilled is that, contrary to the initial pre-drill conceptual model, fracture frequency is not associated with seismic scale fault zones and fracture frequency is significantly higher than predicted with permeable fractures being equivalently distributed within and without seismic scale fault zones. However it is apparent that seismic scale fault zones are associated with preferential permeability (consistent with the pre-drill conceptual model) indicating that such rock volumes are better connected to the bulk fracture network.

Of the wireline measurements acquired, sonic waveform data has proven to be the least responsive to permeable fractures, an observation clearly supported by comparison to PLT and wireline tester data. This is attributed to a function of relative fracture azimuth to the borehole (tool), fracture tortuosity and very high fracture frequency.

During DST data acquisition it is recommended to acquire pressure data on the seabed to accommodate tidal effects that occur within the reservoir. Cyclic pressure variation of @1 Psi have been noted in the Lewisian basement during a 24 hour well test. In addition, variable rate choke with PLT provides important information on fluid movement and fracture productivity.

Generating basement resource estimates

Fracture reservoirs are a challenge to evaluate from the perspective of establishing hydrocarbon resource volumes. Currently there is no acknowledged industry standard for evaluating fractured reservoirs. Type 1 fractured reservoirs bring their own specific challenges and Hurricane has worked closely with third party specialists to develop a robust methodology for establishing fractured basement resource volumes. The details of this approach remain proprietary, however the basic approach is a mechanism for evaluating and risking hydrocarbon within structural closure and hydrocarbon outside of structural closure. The four basic steps applied to volumetric analysis are summarised using the Lancaster discovery as an example as Figure 5.

Page 36: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

34 NGF Abstracts and Proceedings, No 2, 2013

Figure 5. The basic four steps used in evaluating the resource potential of the Lancaster Prospect. (a) Depicts the seismic scale faults mapped across the Lancaster structure. Faults planes are interpreted to be vertical. (b) A subset of the fault volume extracted for modelling purposes. (c) Represents the modelled GRV. The upper surface is defined by the top basement reflector and the lower surface is defined by an oil down to, (d) Portrays the GRV spit into the two reservoir facies Pseudomatrix and Fault zones. (e) Reservoir properties are probabilistically populated within the model and in this example porosity is presented within Fault Zones and Pseudomatrix.

A key component of this approach is the splitting of the reservoir GRV into two facies, Fault Zones (FZ Figure 6) and Pseudomatrix (PM Figure 6). Fault zone GRV is the rock volume interpreted as being associated with fault zones associated with seismic scale faults. Detailed analysis of wireline data indicates that such zones are 30 -70m in width and up-to 90m in width based on outcrop data. Pseudomatrix is the remaining GRV and comprises sub seismic scale faults.

Figure 6. Basic reservoir description for volumetric analysis including reservoir parameters.

Figure 7. Summary of reservoir calibration as an integrated workflow. Key elements include the calibration of fracture porosity/permeability with PLT data and the testing of geometric models (DFN’s) with pressure data.

Page 37: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

NGF Abstracts and Proceedings, No 2, 2013 35

Figure 5. The basic four steps used in evaluating the resource potential of the Lancaster Prospect. (a) Depicts the seismic scale faults mapped across the Lancaster structure. Faults planes are interpreted to be vertical. (b) A subset of the fault volume extracted for modelling purposes. (c) Represents the modelled GRV. The upper surface is defined by the top basement reflector and the lower surface is defined by an oil down to, (d) Portrays the GRV spit into the two reservoir facies Pseudomatrix and Fault zones. (e) Reservoir properties are probabilistically populated within the model and in this example porosity is presented within Fault Zones and Pseudomatrix.

A key component of this approach is the splitting of the reservoir GRV into two facies, Fault Zones (FZ Figure 6) and Pseudomatrix (PM Figure 6). Fault zone GRV is the rock volume interpreted as being associated with fault zones associated with seismic scale faults. Detailed analysis of wireline data indicates that such zones are 30 -70m in width and up-to 90m in width based on outcrop data. Pseudomatrix is the remaining GRV and comprises sub seismic scale faults.

Figure 6. Basic reservoir description for volumetric analysis including reservoir parameters.

Figure 7. Summary of reservoir calibration as an integrated workflow. Key elements include the calibration of fracture porosity/permeability with PLT data and the testing of geometric models (DFN’s) with pressure data.

Page 38: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

36 NGF Abstracts and Proceedings, No 2, 2013

Once the 3D reservoir model is constructed various sensitivities can be run including varying porosity, water saturation and oil down-to. The results are then cross-checked with further detailed analysis/calibration, (Figure 7) which is basically a workflow consisting of detailed analysis of geophysical, wireline and test data cross referenced to analogue fields and discrete fracture network models of the fracture network.

Summary

An important conclusion from this work is that whilst there are many geological and production similarities between analogue basement reservoirs it is evident that the fracture network is unique to each field and each reservoir. Given that it is the fracture characteristics that define the reserves of Type 1 Fractured reservoirs the most important objective of any fractured basement evaluation strategy is the acquisition and interpretation of data that helps define the productive fracture network.

Fractured basement reservoirs remain a potentially significant unproven play type for the UKCS and NCS (Norwegian Continental Shelf). Whilst fractured basement is generally ignored by the industry it is clear from basement discoveries such as Lancaster & Whirlwind and Lundin’s /Statoil’s Tellus, that there is a growing volume of data which supports the potential for basement reservoir. The Norwegian and UK continental shelves are blessed with a prolific source rock and large basement structures and it is clearly a matter of time before fractured basement reservoirs are contributing to commercial production in the UK and Norway.

Reference

Slightam, C. 2012. “Characterizing seismic-scale faults pre and post-drilling; Lewisian Basement, West of Shetlands, UK”. In; Spence G.H., Redfern J., Aguilera R., Bevan T.G., Cosgrove J.W., Couples G.D. & Daniel J.M. (eds.) 2012. Advances in the study of Fractured Reservoirs. Geological Society, Special Publications, 374, .In press.

Page 39: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

www.exploro.no |

Exploro is an independent consulting company based on

the values, service, quality and integrity.

Exploro provides exploration focused geological and geophysical

consulting for the petroleum industry.

service

quality

integrity

Contacts:Bjørn Lorentsen. +47 988 79 [email protected]

Tomas Kjennerud. +47 906 25 [email protected]

Erosion reconstruction of the Norwegian Sea

Main office Trondheim: Stiklestadveien 1. 7041 Trondheim

Oslo office:

Kjørbokollen 30. 1337 Sandvika

Deliverables:

• Petrelproject.• Unifiedtimeandphasematched2D

public seismic database• Report• 10Cenozoickeyseismicreflectorsfrom

Base Tertiary to Seabed• Palaeobathymetryreconstructionofallmaps• Erosion estimates in all eroded wells based on:

Vitrinitereflectance,Soniclogvelocities, Densitylogs

• Erosion estimates from Seismic interval velocities

• Tie with onshore topography• Integrated erosion model with

seismostratigraphy• All Maps built back to their pre-erosional state

Study implications

• ConstrainCenozoicverticalmovements

Tilting of carrier beds and increased constrain on hydrocarbon migration

• Maximum burial and hence input to modelling the thermal state and source rock maturity in eroded areas

• Input to pressure modelling

• Better prediction of reservoir properties in eroded areasin eroded areas

Page 40: Hydrocarbon Habitats Basement Highs: Exploration Results ...geologi.no/images/Konferanser/HH/Abstract_2-2013.pdf · With both the 22nd round and APA 2012 behind us, it is now time

Join our networkJoin our network

The Geological Society of Norway (NGF) is an apolitical, interdisciplinary organization for the Norwegian geo-science community in Norway. Our mission is to com-municate geoscience knowledge and build networks through academic, scientific and social events, and increase awareness of the geosciences in society.

As a member in NGF you gain• Access to Norway’s largest network in the geosciences• Invitation to meetings and excursions in your own regional group• Receive GEO (Geoscience magazine) 8 times a year• Receive Geo ExPro (Petroleum geoscience magazine) 6 times a year• Invitations to our national and international conferences• Discounts on conference fees• GEO calendar each year• Discounts on NGF books• Opportunity to influence our goals and activities through participation

in boards and committees

Full member: NOK 590 per yearStudent: NOK 250 per year

Register to become a member: www.geologi.no Foto: iStock / Antony Spencer

ngf_verveannonse.indd 1 25.02.13 14:16