46
When a hydraulic pump operates, it performs two functions. First, its mechanical action creates a vacuum at the pump inlet which allows atmospheric pressure to force liquid from the reservoir into the inlet line to the pump. Second, its mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system. A pump produces liquid movement or flow: it does not generate pressure. It produces the flow necessary for the development of pressure which is a function of resistance to fluid flow in the system. For example, the pressure of the fluid at the pump outlet is zero for a pump not connected to a system (load). Further, for a pump delivering into a system, the pressure will rise only to the level necessary to overcome the resistance of the load. Classification of pumps All pumps may be classified as either positive-displacement or non- positive-displacement. Most pumps used in hydraulic systems are positive-displacement. A non-positive-displacement pump produces a continuous flow. However, because it does not provide a positive internal seal against slippage, its output varies considerably as pressure varies. Centrifugal and propeller pumps are examples of non-positive-displacement pumps. If the output port of a non-positive- displacement pump were blocked off, the pressure would rise, and output would decrease to zero. Although the pumping element would continue Figure 1. Reciprocating pump. Figure 2. Spur gear pump. Figure 3. Lobe pump. Figure 4. Internal-gear pumps - gerotor and crescent. Figure 5. Basic (unbalanced) vane pump.

Hydraulics 2014

Embed Size (px)

Citation preview

Page 1: Hydraulics 2014

When a hydraulic pump operates, it performs two functions. First, its mechanical action creates a vacuum at the pump inlet which allows atmospheric pressure to force liquid from the reservoir into the inlet line to the pump. Second, its mechanical action delivers this liquid to the pump outlet and forces it into the hydraulic system.A pump produces liquid movement or flow: it does not generate pressure. It produces the flow necessary for the development of pressure which is a function of resistance to fluid flow in the system. For example, the pressure of the fluid at the pump outlet is zero for a pump not connected to a system (load). Further, for a pump delivering into a system, the pressure will rise only to the level necessary to overcome the resistance of the load.

Classification of pumpsAll pumps may be classified as either positive-displacement or non-positive-displacement. Most pumps used in hydraulic systems are positive-displacement.A non-positive-displacement pump produces a continuous flow. However, because it does not provide a positive internal seal against slippage, its output varies considerably as pressure varies. Centrifugal and propeller pumps are examples of non-positive-displacement pumps.If the output port of a non-positive-displacement pump were blocked off, the pressure would rise, and output would decrease to zero. Although the pumping element would continue moving, flow would stop because of slippage inside the pump.In a positive-displacement pump, slippage is negligible compared to the pump's volumetric output flow. If the output port were plugged, pressure would increase instantaneously to the point that the pump's pumping element or its case would fail (probably explode, if the drive shaft did not break first), or the pump's prime mover would stall.

Positive-displacement principleA positive-displacement pump is one that displaces (delivers) the same amount of liquid for each rotating cycle of the pumping element. Constant delivery during each cycle is possible because of the close-tolerance fit between the pumping element and the pump case. That is, the amount of liquid that slips past the pumping element in a positive-displacement pump is minimal and

Figure 1. Reciprocating pump.

Figure 2. Spur gear pump.

Figure 3. Lobe pump.

Figure 4. Internal-gear pumps - gerotor and crescent.

Figure 5. Basic (unbalanced) vane pump.

Page 2: Hydraulics 2014

negligible compared to the theoretical maximum possible delivery. The delivery per cycle remains almost constant, regardless of changes in pressure against which the pump is working. Note that if fluid slippage is substantial, the pump is not operating properly and should be repaired or replaced.Positive-displacement pumps can be of either fixed or variable displacement. The output of a fixed displacement pump remains constant during each pumping cycle and at a given pump speed. The output of a variable displacement pump can be changed by altering the geometry of the displacement chamber.Other names to describe these pumps are hydrostatic for positive-displacement and hydrodynamic pumps for non-positive-displacement. Hydrostatic means that the pump converts mechanical energy to hydraulic energy with comparatively small quantity and velocity of liquid. In a hydrodynamic pump, liquid velocity and movement are large; output pressure actually depends on the velocity at which the liquid is made to flow.

Reciprocating pumpsThe positive-displacement principle is well illustrated in the reciprocating-type pump, the most elementary positive-displacement pump, Figure 1. As the piston extends, the partial vacuum created in the pump chamber draws liquid from the reservoir through the inlet check valve into the chamber. The partial vacuum helps seat firmly the outlet check valve. The volume of liquid drawn into the chamber is known because of the geometry of the pump case, in this example, a cylinder.As the piston retracts, the inlet check valve reseats, closing the valve, and the force of the piston unseats the outlet check valve, forcing liquid out of the pump and into the system. The same amount of liquid is forced out of the pump during each reciprocating cycle.All positive-displacement pumps deliver the same volume of liquid each cycle (regardless of whether they are reciprocating or rotating). It is a physical characteristic of the pump and does not depend on driving speed. However, the faster a pump is driven, the more total volume of liquid it will deliver.

Rotary pumpsIn a rotary-type pump, rotary motion carries the liquid from the pump inlet to the pump outlet. Rotary pumps are usually classified according to the type of element that transmits the liquid, so that we speak of a gear-, lobe-, vane-, or piston-type rotary pump.

External-gear pumps can be divided into external and internal-gear types. A typical external-gear pump is shown in Figure 2. These pumps come with a straight spur, helical, or herringbone gears. Straight spur gears are easiest to cut and are the most widely used. Helical and herringbone gears run more quietly, but cost more.A gear pump produces flow by carrying fluid in between the teeth of two meshing gears. One gear is driven by the drive shaft and turns the idler gear. The chambers formed between adjacent gear teeth are enclosed by the pump housing and side plates (also called wear or pressure plates).A partial vacuum is created at the pump inlet as the gear teeth unmesh. Fluid flows in to fill the space and is carried around the outside of the gears. As the teeth mesh again at the outlet end, the fluid is forced out.Volumetric efficiencies of gear pumps run as high as 93% under optimum conditions. Running clearances between gear faces, gear tooth crests and the housing create an almost constant loss in any pumped volume at a fixed pressure. This means that volumetric efficiency at low speeds and flows is poor, so that gear pumps should be run close to their maximum rated speeds.Although the loss through the running clearances, or "slip," increases with pressure, this loss is nearly constant as speed and output change. For one pump the loss increases by about 1.5 gpm from zero to 2,000 psi regardless of speed. Change in slip with pressure change has little effect on performance when operated at higher speeds and outputs. External-gear pumps are comparatively immune to contaminants in the oil, which will increase wear rates and lower efficiency, but sudden seizure and failure are not likely to occur.

Page 3: Hydraulics 2014

The lobe pump is a rotary, external-gear pump, Figure 3. It differs from the conventional external-gear pump in the way the "gears" are driven. In a gear pump, one gear drive the other; in a lobe pump, both lobes are driven through suitable drives gears outside of the pump casing chamber.

A screw pump is an axial-flow gear pump, similar in operation to a rotary screw compressor. Three types of screw pumps are the single-screw, two-screw, and three-screw. In the single-screw pump, a spiraled rotor rotates eccentrically in an internal stator. The two-screw pump consists of two parallel intermeshing rotors rotating in a housing machined to close tolerances. The three-screw pump consists of a central-drive rotor with two meshing idler rotors; the rotors turn inside of a housing machined to close tolerances.Flow through a screw pump is axial and in the direction of the power rotor. The inlet hydraulic fluid that surrounds the rotors is trapped as the rotors rotate. This fluid is pushed uniformly with the rotation of the rotors along the axis and is forced out the other end.The fluid delivered by a screw pump does not rotate, but moves linearly. The rotors work like endless pistons, which continuously move forward. There are no pulsations even at higher speed. The absence of pulsations and the fact that there is no metal-to-metal contact results in very quiet operation.Larger pumps are used as low-pressure, large-volume prefill pumps on large presses. Other applications include hydraulic systems on submarines and other uses where noise must be controlled. Internal-gear pumps, Figure 4, have an internal gear and an external gear. Because these pumps have one or two less teeth in the inner gear than the outer, relative speeds of the inner and outer gears in these designs are low. For example, if the number of teeth in the inner and outer gears were 10 and 11 respectively, the inner gear would turn 11 revolutions, while the outer would turn 10. This low relative speed means a low wear rate. These pumps are small, compact units.

The crescent seal internal-gear pump consists of an inner and outer gear separated by a crescent-shaped seal. The two gears rotate in the same direction, with the inner gear rotating faster than the outer. The hydraulic oil is drawn into the pump at the point where the gear teeth begin to separate and is carried to the outlet in the space between the crescent and the teeth of both tears. The contact point of the gear teeth forms a seal, as does the small tip clearance at the crescent. Although in the past this pump was generally used for low outputs, with pressures below 1,000 psi, a 2-stage, 4,000-psi model has recently become available.

The gerotor internal-gear pump consists of a pair of gears which are always in sliding contact. The internal gear has one more tooth than the gerotor gear. Both gears rotate in the same direction. Oil is drawn into the chamber where the teeth are separating, and is ejected when the teeth start to mesh again. The seal is provided by the sliding contact.Generally, the internal-gear pump with toothcrest pressure sealing has higher volumetric efficiency at low speeds than the crescent type. Volumetric and overall efficiencies of these pumps are in the same general range as those of external-gear pumps. However, their sensitivity to dirt is somewhat higher.

In vane pumps, a number of vanes slide in slots in a rotor which rotates in a housing or ring. The housing may be eccentric with the center of the rotor, or its shape may be oval, Figure 5. In some designs, centrifugal force holds the vanes in contact with the housing, while the vanes are forced in and out of the slots by the eccentricity of the housing. In one vane pump, light springs hold the vanes against the housing; in another pump design, pressurized pins urge the vanes outward.During rotation, as the space or chamber enclosed by vanes, rotor, and housing increases, a vacuum is created, and atmospheric pressure forces oil into this space, which is the inlet side of the pump. As the space or volume enclosed reduces, the liquid is forced out through the discharge ports.

Balanced and unbalanced vane pumps — The pump illustrated in Figure 5 is unbalanced, because all of the pumping action occurs in the chambers on one side of the rotor and shaft. This

Page 4: Hydraulics 2014

design imposes a side load on the rotor and drive shaft. This type vane pump has a circular inner casing. Unbalanced vane pumps can have fixed or variable displacements. Some vane pumps provide a balanced construction in which an elliptical casing forms two separate pumping areas on opposite sides of the rotor, so that the side loads cancel out, Figure 6. Balanced vane pumps come only in fixed displacement designs.In a variable-volume unbalanced design, Figure 7, the displacement can be changed through an external control such as a handwheel or a pressure compensator. The control moves the cam ring to change the eccentricity between the ring and rotor, thereby changing the size of the pumping chamber and thus varying the displacement per revolution.When pressure is high enough to overcome the compensator spring force, the cam ring shifts to decrease the eccentricity. Adjustment of the compensator spring determines the pressure at which the ring shifts.Because centrifugal force is required to hold the vanes against the housing and maintain a tight seal at those points, these pumps are not suited for low-speed service. Operation at speeds below 600 rpm is not recommended. If springs or other means are used to hold vanes out against the ring, efficient operation at speeds of 100 to 200 rpm is possible.Vane pumps maintain their high efficiency for a long time, because compensation for wear of the vane ends and the housing is automatic. As these surfaces wear, the vanes move further out in their slots to maintain contact with the housing.Vane pumps, like other types, come in double units. A double pump consists of two pumping units in the same housing. They may be of the same or different sizes. Although they are mounted and driven like single pumps, hydraulically, they are independent. Another variation is the series unit: two pumps of equal capacity are connected in series, so that the output of one feeds the other. This arrangement gives twice the pressure normally available from this pump. Vane pumps have relatively high efficiencies. Their size is small relative to output. Dirt tolerance is relatively good

Piston pumpsThe piston pump is a rotary unit which uses the principle of the reciprocating pump to produce fluid flow. Instead of using a single piston, these pumps have many piston-cylinder combinations. Part of the pump mechanism rotates about a drive shaft to

Figure 8. Axial-piston pump varies displacement by changing angle of swashplate.

Figure 9. Radial piston pump.

Figure 10. Pressure-flow curve of fixed-displacement hydraulic pump.

Figure 11. Pressure flow curve of variable-displacement hydraulic pump with ideal flow and pressure compensation.

Page 5: Hydraulics 2014

generate the reciprocating motions, which draw fluid into each cylinder and then expels it, producing flow. There are two basic types, axial and radial piston; both area available as fixed and variable displacement pumps. The second variety often is capable of variable reversible (overcenter) displacement.Most axial and radial piston pumps lend themselves to variable as well as fixed displacement designs. Variable displacement pumps tend to be somewhat larger and heavier, because they have added internal controls, such as handwheel, electric motor, hydraulic cylinder, servo, and mechanical stem.

Axial-piston pumps — The pistons in an axial piston pump reciprocate parallel to the centerline of the drive shaft of the piston block. That is, rotary shaft motion is converted into axial reciprocating motion. Most axial piston pumps are multi-piston and use check valves or port plates to direct liquid flow from inlet to discharge.

Inline piston pumps — The simplest type of axial piston pump is the swashplate design in which a cylinder block is turned by the drive shaft. Pistons fitted to bores in the cylinder block are connected through piston shoes and a retracting ring, so that the shoes bear against an angled swashplate. As the block turns, Figure 8, the piston shoes follow the swashplate, causing the pistons to reciprocate. The ports are arranged in the valve plate so that the pistons pass the inlet as they are pulled out and the outlet as they are forced back in. In these pumps, displacement is determined by the size and number of pistons as well as their stroke length, which varies with the swashplate angle.In variable-displacement models of the inline pump, the swashplate swings in a movable yoke. Pivoting the yoke on a pintle changes the swashplate angle to increase or decrease the piston stroke. The yoke can be positioned with a variety of controls, i.e., manual, servo, compensator, handwheel, etc.

Bent-axis pumps — This pump consists of a drive shaft which rotates the pistons, a cylinder block, and a stationary valving surface facing the cylinder block bores which ports the inlet and outlet flow. The drive shaft axis is angular in relation to the cylinder block axis. Rotation of the drive shaft causes rotation of the pistons and the cylinder block.Because the plane of rotation of the pistons is at an angle to the valving surface plane, the distance between any one of the pistons and the valving surface continually changes during rotation. Each individual piston moves away from the valving surface during one-half of the shaft revolution and toward the valving surface during the other half.The valving surface is so ported that its inlet passage is open to the cylinder bores in that part of the revolution where the pistons move away. Its outlet passage is open to the cylinder bores in the part of the revolution where the pistons move toward the valving surface. Therefore, during pump rotation the pistons draw liquid into their respective cylinder bores through the inlet chamber and force it out through the outlet chamber. Bent axis pumps come in fixed and variable displacement configurations, but cannot be reversed.

In radial-piston pumps, the pistons are arranged radially in a cylinder block; they move perpendicularly to the shaft centerline. Two basic types are available: one uses cylindrically shaped pistons, the other ball pistons. They may also be classified according to the porting arrangement: check valve or pintle valve. They are available in fixed and variable displacement, and variable reversible (over-center) displacement.In pintle-ported radial piston pump, Figure 9, the cylinder block rotates on a stationary pintle and inside a circular reacting ring or rotor. As the block rotates, centrifugal force, charging pressure, or some form of mechanical action causes the pistons to follow the inner surface of the ring, which is offset from the centerline of the cylinder block. As the pistons reciprocate in their bores, porting in the pintle permits them to take in fluid as they move outward and discharge it as they move in.The size and number of pistons and the length of their stroke determine pump displacement. Displacement can be varied by moving the reaction ring to increase or decrease piston travel, varying eccentricity. Several controls are available for this purpose.

Page 6: Hydraulics 2014

Plunger pumps are somewhat similar to rotary piston types, in that pumping is the result of pistons reciprocating in cylinder bores. However, the cylinders are fixed in these pumps; they do not rotate around the drive shaft. Pistons may be reciprocated by a crankshaft, by eccentrics on a shaft, or by a wobble plate. When eccentrics are used, return stroke is by springs. Because valving cannot be supplied by covering and uncovering ports as rotation occurs, inlet and outlet check valves may be used in these pumps.Because of their construction, these pumps offer two features other pumps do not have: one has a more positive sealing between inlet and outlet, permitting higher pressures without excessive leakage of slip. The other is that in many pumps, lubrication of moving parts other than the piston and cylindrical bore may be independent of the liquid being pumped. Therefore, liquids with poor lubricating properties can be pumped. Volumetric and overall efficiencies are close to those of axial and radial piston pumps

What is in this article?:

Fundamentals of hydraulic pumps

Measuring pump performance

A hydraulic pump is a mechanical device that converts mechanical power into hydraulic energy. It generates flow with enough power to overcome pressure induced by the load.

More About:

Fluid Power Handbook & Directory Digital Edition

Measuring pump performanceVolume of fluid pumped per revolution is calculated from the geometry of the oil-carrying chambers. A pump never quite delivers the calculated, or theoretical, amount of fluid. How close it comes is called volumetric efficiency. Volumetric efficiency is found by comparing the calculated delivery with actual delivery. Volumetric efficiency varies with speed, pressure, and the construction of the pump.A pump's mechanical efficiency is also less than perfect, because some of the input energy is wasted in friction. Overall efficiency of a hydraulic pump is the product of its volumetric and mechanical efficiencies.Pumps are generally rated by their maximum operating pressure capability and their output, in gpm or lpm, at a given drive speed, in rpm.

Matching pump power with the loadPressure compensation and load sensing are terms often used to describe pump features that improve the efficiency of pump operation. Sometimes these terms are used interchangeably, a misconception that is cleared up once you understand the differences in how the two enhancements operate.To investigate these differences, consider a simple circuit using a fixed-displacement pump running at constant speed. This circuit is efficient only when the load demands maximum power because the pump puts out full pressure and flow regardless of load demand. A relief valve prevents excessive pressure buildup by routing high-pressure fluid to tank when the system reaches the relief setting. As Figure 10 shows, power is wasted whenever the load requires less than full flow or full pressure. The unused fluid energy produced by the pump becomes heat that must be dissipated. Overall system efficiency may be 25% or lower.Variable displacement pumps, equipped with displacement controls, Figure 11, can save most of this

Page 7: Hydraulics 2014

wasted hydraulic horsepower when moving a single load. Control variations include hand wheel, lever, cylinder, stem servo, and electrohydraulic servo controls. Examples of displacement control applications are the lever-controlled hydrostatic transmissions used to propel windrowers, skid-steer loaders, and road rollers.While matching the exact flow and pressure needs of a single load, these controls have no inherent pressure or power-limiting capabilities. And so, other provisions must be made to limit maximum system pressure, and the prime mover still must have corner horsepower capability. Moreover, when a pump supplies a circuit with multiple loads, the flow and pressure-matching characteristics are compromised.A design approach to the system in which one pump powers multiple loads is to use a pump equipped with a proportional pressure compensator, Figure 12. A yoke spring biases the pump swashplate toward full displacement. When load pressure exceeds the compensator setting, pressure force acts on the compensator spool to overcome the force exerted by the spring.The spool then shifts toward the compensator-spring chamber, ports pump output fluid to the stroking piston, and decreases pump displacement. The compensator spool returns to neutral when pump pressure matches the compensator spring setting. If a load blocks the actuators, pump flow drops to zero.Using a variable-displacement, pressure-compensated pump rather than a fixed-displacement pump reduces circuit horsepower requirements dramatically, Figure 13. Output flow of this type of pump varies according to a predetermined discharge pressure as sensed by an orifice in the pump's compensator. Because the compensator itself operates from pressurized fluid, the discharge pressure must be set higher - say, 200 psi higher - than the maximum load-pressure setting. So if the load-pressure setting of a pressure-compensated pump is 1,100 psi, the pump will increase or decrease its displacement (and output flow) based on a 1,300-psi discharge pressure.A two-stage pressure-compensator control, Figure 14, uses pilot flow at load pressure across an orifice in the main stage compensator spool to create a pressure drop of 300 psi. This pressure drop generates a force on the spool which is opposed by the main spool spring. Pilot fluid flows to tank through a small relief valve. A spring chamber pressure of 4,700 psi provides a compensator control setting of 5,000 psi. An increase in pressure over the compensator setting shifts the main stage spool to the right, porting pump output fluid to the stroking piston, which overcomes bias piston force and reduces pump displacement to match load requirements.The earlier stated misconception stems from an observation that output pressure from a pressure-compensated pump can fall below the compensator setting while an actuator is moving. This does not happen because the pump is sensing the load, it happens because the pump is undersized for the application. Pressure drops because the pump cannot generate enough flow to keep up with the load. When properly sized, a pressure-compensated pump should always force enough fluid through the compensator orifice to operate the compensator.

Page 8: Hydraulics 2014

Superior dynamicallyWith respect to its matching function, a two-stage compensator is identical to the proportional compensator control shown in Figure 12. The dynamic performance of the two-stage control is superior, however. This becomes obvious when one analyzes a transient which involves a sudden decrease in load flow demand, starting from full stroke at low pressure.The single-stage control spool ports pressure fluid to the stroke piston only when pump discharge pressure reach the compensator setting. The main-stage spool of the two-stage control starts moving as soon as pump discharge pressure minus spring chamber pressure exceeds the 300-psi spring setting. Because pilot fluid flows through the orifice and because of the flow needed to compress the fluid in the spring chamber, the spring chamber pressure lags pump discharge pressure. This causes the spool to become unbalanced and shift to the right.Pump destroking starts before pump discharge pressure reaches the compensator setting, Figure 15. Note that in system equipped with an accumulator, a two-stage compensator control provides little advantage. In excavator hydraulic systems, however, superiority of the two-stage compensator is evident: it provides system components much greater protection against pressure transients.

Load sensing: the next stepA similar control, which has recently become popular, is the load sensing control, sometimes called a power matching control, Figure 16. The single-stage valve is almost identical to the single-stage compensator control, Figure 12, except that the spring chamber is connected downstream of a variable orifice rather than directly to tank. The load-sensing compensator spool achieves equilibrium when the pressure drop across the variable orifice matches the 300-psi spring setting.Any of three basic load-sensing signals control a load-sensing pump: unloaded, working, and relieving. In the unloaded mode, the lack of load pressure causes the pump to produce zero discharge flow at bias or unload pressure. When working, load pressure causes the pump to generate discharge flow in relation to a set pressure drop, or bias pressure. When the system reaches maximum pressure, the pump maintains this pressure by adjusting its discharge flow.Like the pressure-compensated pump, a load-

Figure 15. Typical performance of a single- and two-stage pressure compensation.

Figure 16. Schematic of proportional pump compensator that provides load-sensing capability.

Figure 17. Pressure-flow curve of pump with load-sensing control.

Figure 18. Schematic of pump control that provides load sensing and pressure limiting.

Page 9: Hydraulics 2014

sensing pump has a pressure-compensation control, but the control is modified to receive two pressure signals, not just one. As with pressure compensation, the load-sensing control receives a signal representing discharge pressure, but it also receives a second signal representing load pressure. This signal originates from a second orifice downstream from the first. This second orifice may be a flow-control valve immediately beyond the pump outlet, the spool opening of a directional control valve, or it may be a restriction in a fluid conductor.Comparison of these two pressure signals in the modified compensator section allows the pump to sense both load and flow. This reduces power losses even further, Figure 17. Output flow of the pump varies in relation to the differential pressure of the two orifices. Just as the pressure-compensated pump increased its discharge pressure by the amount required to run the pressure compensator, the load- and flow-sensing pump's discharge pressure typically is between 200 and 250 psi higher than actual load pressure.Furthermore, a load-sensing pump can follow the load and flow requirements of a single circuit function or multiple simultaneous functions, relating horsepower to maximum load pressure. This consumes the lowest possible horsepower and generates the least heat.

Operator controlIf the variable orifice is a manually operated flow control valve, the system can operate in a load-matched mode at the direction of an operator. As he opens the flow control valve, flow increases proportionally (constant pressure drop across an increasing-diameter orifice), at a pressure slightly above load pressure.As suggested in Figure 17, wasted power is very low with a load-sensing variable volume pump compensator. Since the control senses pressure drop and not absolute pressure, a relief valve or other means of limiting pressure must be provided.This problem is solved by a load-sensing/pressure-limiting control, Figure 18. This control functions as the load-sensing control previously described, until load pressure reaches the pressure limiter setting. At that point, the limiter portion of the compensator overrides the load-sensing control to destroke the pump. Again, the prime mover must have corner horsepower capability.

Load-sensing gear pumpsPiston and vane pumps rely on their variable-displacement capability to accomplish load sensing. How, then, can a gear pump accomplish load sensing if its displacement is fixed? Like standard gear pumps, load-sensing gear pumps have low initial cost when compared to other designs with equivalent flow and pressure capabilities. However, load-sensing gear pumps offer the versatility of variable-displacement axial-piston and vane pumps but without the high complexity and high cost of variable-displacement mechanisms.

A load-sensing gear pump can:

provide the high efficiency of load sensing without the high cost associated with piston or vane pumps,

produce zero to full output flow in less than 40 milliseconds with little or no pressure spiking and without pump inlet supercharging,

drive circuits with low (approaching atmospheric) unload relief pressures, provide priority flow and secondary flow with a low unload pressure to reduce standby and

secondary loaded power draw, and interchange with load-sensing vane or piston pumps without having to change line or component

sizes.

Load-sensing piston pumps use a pressure compensator and a hydrostat to vary volumetric output to a system in reference to load pressure and flow requirements. A hydrostat is a spring-loaded device that meters flow according to the spring force across its equal but opposing effective areas. It

Page 10: Hydraulics 2014

may be restrictive, as in a series circuit, or it may bypass primary load pressure to a secondary or tank pressure. In simple terms, a hydrostat separates the total flow into two flows: one represents the required flow and the other represents the required pressure of the primary circuit. A load-sensing piston pump uses its hydrostat to regulate output flow relative to load pressure and bypasses the excess pump flow to a secondary route, which may be ported to tank or to a secondary circuit.A load-sensing gear pump, on the other hand, uses a hydrostat in combination with an unloader to vary its volumetric output in response to load and flow requirements. Because load-sensing piston and gear pumps both use a single load-sensing signal to control pump discharge pressure and flow, they are interchangeable in load-sensing circuits. Both types have much in common and offer substantial power savings over systems using fixed-displacement pumps. Both offer reduced power consumption in the running mode - when flow and pressure are required to operate a function. They also conserve power in the standby mode - when the system is idling or in a non-operational mode. Furthermore, they can reduce the required size - and, therefore, cost- of valves, conductors, and filters needed for the circuit.The load-sensing gear pump illustrated in Figure 19 minimizes power consumption in the running mode by separating total discharge flow according to a remote primary function pressure and a primary flow. This is accomplished through a single load-sensing signal originating from the priority circuit and routed as close as possible to the discharge side of the pump's gears.Adding an unloader control to the pump circuit, Figure 20, allows the system to conserve power in the standby mode of operation as well as in the running mode. This control must be installed in parallel with the inlet port of the hydrostat and as close as possible to the discharge side of the gears. It must be piloted by the same load-sensing signal as in Figure 19. This signal causes the pump to dump all flow from the outlet to the secondary circuit and at a pressure well below the hydrostat's pressure-drop setting in the standby mode.The unloader control must operate off the same remote load-sensing signal that controls the hydrostat. Unlike the hydrostat, the unloader poppet of the unloader control is designed with opposing areas having a ratio of at least 2:1. Any line pressure sensed that exceeds 50% of pump discharge pressure will close the unloader control. The ability of the unloader control to unload the pump to near atmospheric discharge pressure is controlled by the poppet or plunger spring force. The unloader control is set to the lowest value to maintain the internal pressure loading of the gear pump. When compared to a standard fixed-displacement gear pump circuit, this control can reduce standby power consumption by 90%.

Dual and combined controlsThe load-sensing signal can be conditioned by limiting pressure in the remote sensing line or taking it to 0 psig. Doing so causes the hydrostat and the unloader control of the load-sensing gear pump to respond to the conditioned signal according to the discharge pressure. This is accomplished by providing a pilot relief, Figure 21, which causes the hydrostat to act as the main stage of a pilot-operated relief valve. The ability to condition the load-sensing line is patented and makes the load-sensing gear pump useful for functions other than just load sensing.The combined-control load-sensing gear pump, Figure 22, is intended for large-displacement pumps and bypasses secondary flow to tank. It also is patented, and can be used in the same applications as the dual-control pump. However, because secondary flow must be routed to tank, it cannot be used when the secondary circuit drives a load

Torque behavior of engines

A hydraulic power unit driven by an electric motor must be sized differently from one driven by an internal combustion engine — due to differences in their torque-speed curves.

When specifying components for a hydraulic power unit, the prime mover is sized based on torque, speed, and power requirements of the hydraulic pump. This is fairly straightforward for electric motors bec ause they generally have a starting torque that far exceeds running torque. Often,

Page 11: Hydraulics 2014

though, designers specify motors sized larger than necessary. This results in wasted energy because the motor operates at less than maximum efficiency.

Diesel and gasoline engines are another matter. They have a much flatter torque-speed curve, so they deliver roughly the same torque at high speed as they do at low speed. This means an internal compustion engine may develop high enough torque to drive a loaded pump, but not enough to accelerate it to operating speed. Consequently, with all other factors being equal, a power unit requiring an electric motor of a given power rating usually requires a gasoline or diesel engine with a power rating more than double that of the electric motor.

Selecting the optimum motor sizeThe cost of electricity to operate an electric motor over its entire life span generally is many times that of the cost of the motor itself. Therefore, sizing the motor correctly for a hydraulic power unit can save a sizable amount of money over the life of the machine. If system pressure and flow are constant, motor sizing simply involves the standard equation:

hp = (Q ×P) ÷ (1714×EM ),where:hp is horsepower,Q is flow in gpm,P is pressure in psi, andEM is the pump's mechanical efficiency.

However, if the application requires different pressures during different parts of the operating cycle, you often can calculate root mean square (RMS) horsepower and select a smaller, less-expensive motor. Along with the calculation of rms horsepower, Figure 1, the maximum torque required at the highest pressure level of the application also must be found. Actually the two calculations are quite simple.

Figure 1. Calculation for root mean square horsepower.

For example, such an application might use a 6-gpm, 3450-rpm gear pump to power a cylinder linkage that operates for an 85-sec cycle, Figure 2. The system requires 3000 psi for the first 10 sec, 2200 psi for the next 30 sec, 1500 psi for the next 10 sec, and 2400 psi for the next 10 sec. The pump then coasts at 500 psi for 20 sec, followed by 15 sec with the motor off.

It's tempting to use the standard formula, plug in the highest-pressure segment of the cycle, and then calculate:

hp = (6 × 3000) ÷ (1714 × 0.9)= 11.7 hp for 10 sec.

Page 12: Hydraulics 2014

Figure 2. Multiple-pressure duty cycle for 6-gpm gear pump from example with calculated horsepower values. Click on image for larger view.To provide this power, some designers would choose a 10-hp motor; others would be ultra-conservative and use a 15-hp motor; a few might take a chance with 7½ hp. These motors in open drip-proof C-face models with feet would carry a relative price of about $570, $800, and $400 respectively, so there could be savings of $170 to $400 per power unit by choosing the 7½-hp motor — if it will do the job.

To determine this, first calculate the horsepower for each pressure segment of the cycle:

hp1 = (6 × 2200) ÷ (1714 × 0.9)= 8.5 hp for 30 sec.hp2 = (6 × 1500) ÷ (1714 × 0.9)= 5.8 hp for 10 sec.hp3 = (6 × 500) ÷ (1714 × 0.9)= 1.9 hp for 30 sec.

The RMS horsepower is calculated by taking the square root of the sum of these horsepowers squared, multiplied by the time interval at that horsepower, and divided by the sum of the times plus the term (toff ÷ F), as indicated in Figure 1.

Substituting the example values into the boxed equation and solving reveals that hprms = 7.2. Thus, a 7½-hp motor can be used from the standpoint of horsepower alone. However the second item, maximum torque, still must be checked before reaching a final decision. The maximum torque required to drive this particular pump will be found at the highest pressure - because the gear pump's output flow is constant. Use this equation:

T = DP ÷ (12)(6.28) EM, whereT is torque in ft-lb, andD is displacement in in. 3

For this example,D = (6 × 231) ÷ (3450)= 0.402 in. 3

Page 13: Hydraulics 2014

ThenT = (0.402 × 3000) ÷ (12 × 6.28 × 0.9)= 17.8 ft-lb.

Because electric motors running at 3450 rpm generate 1.5 ft-lb/hp, the 17.8 ft-lb of torque requires 11.9 hp (17.8÷1.5) at 3000 psi. This matches closely enough for the example application. (At other standard motor speeds: 1725 rpm generates 3 ft-lb per hp; 1150 rpm, 4.5 ft-lb per hp; 850 rpm, 6 ft-lb per hp.)

Now the second criteria can be checked against what the suggested motor can deliver in torque. What is the pull-up torque of the 7½-hp motor selected? Because the torque is least as the motor accelerates from 0 to 3450 rpm, it must be above 11.9 ft-lb with an acceptable safety margin. Note that a motor running 10% low on voltage will produce only 81% of rated pull-up torque: in other words, (208÷230)2 = 0.81. Reviewing motor manufacturers' performance curves will show several available 7½-hp models with higher pull-up torque. Any of these motors could be a good choice for this application.

Both motor criteria now have been verified. The RMS horsepower is equal to or less than the rated motor's horsepower. The motor's pull-up torque is greater than the maximum required

?:

Hydraulic power units

Gas and diesel engine power

Torque behavior of engines

A hydraulic power unit driven by an electric motor must be sized differently from one driven by an internal combustion engine — due to differences in their torque-speed curves.

Gas and diesel engine powerCorrectly sizing an electric motor for a hydraulic power unit is a straightforward procedure. And if load pressure and flow remain fairly constant, determining the power requirement is relatively simple by using the familiar equation:

hp = (q × p) ÷ (1714 × EM) where:q is flow, gpm (and accounts for the pump's volumetric efficiency),p is system pressure at full load, psi, andEM is the pump's mechanical efficiency

For example, assume an application requires a flow of 13.7 gpm at a maximum pressure of 2,000 psi, and with a pump efficiency of 0.80. From the equation above:hp = (13.7 × 2,000) ÷ (1,714 × 0.80)= 20 hp.

It may seem that a gas or diesel engine as the prime mover would have the same power rating as an electric motor. However, the general rule of thumb is to specify an internal-combustion engine with a power rating 2½ times that of an equivalent electric motor, Figure 2. This is due primarily to the fact that internal combustion engines have different torque-speed relationships than electric motors do. Examining the different torque characteristics will provide the understanding to make a choice based on solid reasoning - rather than putting faith in a rule of thumb.

Pump torque requirementsPower, of course, is the combination of torque and rotational speed. A pump's torque requirement is the main factor that determines whether a motor or engine is suitable for an application. Speed is

Page 14: Hydraulics 2014

less critical, because if a pump runs slowly, it will still pump fluid. However, if the prime mover does not develop enough torque to drive the pump, the pump will not produce any output flow.

To determine the torque required by a hydraulic pump, use the following equation:

T = (p × D ) ÷ (6.28 × 12 × EM)where:T is torque, lb-ft, andD is displacement, in. 3/revolution

Pump displacement is provided in manufacturer's literature. Continuing with the example introduced at left, if the pump has a displacement of 1.75 in.3/rev., required torque is calculated as follows:

T = (2,000 × 1.75) ÷ (75.36 × 0.80)T = 58 lb-ft

Torque can also be calculated using the familiar horsepower equation:

Figure 3 — The torque-speed curve of an AC electric motor reveals that much higher torque can be generated at low speed than is needed to drive a hydraulic pump at full-load speed. Click on image for larger view.

hp = (T × n) ÷ 5,250where:n is shaft speed, rpm.

Substituting values from the example:20 = (T × 1,800) ÷ 5250T = 58 lb-ft.

Page 15: Hydraulics 2014

Electric motor torque signatureTo understand the differences in power characteristics between an electric motor and internal-combustion engine, we'll first examine characteristics of a standard 3-phase electric motor. Figure 3 shows the torque-speed relationship of a 20 hp, 1,800 rpm, NEMA Design B motor. Upon receiving power, the motor develops an initial, locked-rotor torque, and the rotor turns. As the rotor accelerates, torque decreases slightly, then begins to increase as the rotor accelerates beyond about 400 rpm. This dip in the torque curve generally is referred to as the pull-up torque. Torque eventually reaches a maximum value at around 1,500 rpm, which is the motor's break-down torque. As rotor speed increases beyond this point, torque applied to the rotor decreases sharply. This is know as the running torque, which becomes the full-load torque when the motor is running at its rated full-load speed - usually 1,725 or 1,750 rpm.

The torque-speed curve for a 3,600-rpm motor would look almost identical to that of the 1800-rpm motor. The difference would be that speed values would be doubled and torque values would be halved.

Common practice is to ensure that torque required from the motor will always be less than breakdown torque. Applying torque equal to or greater than breakdown torque will cause the motor's speed to drop suddenly and severely, which will tend to stall the motor and most likely burn it out. If the motor is already running, it is possible to momentarily load a motor to near its breakdown torque. But for simplicity of discussion, assume the electric motor is selected based on full-load torque.

Note that Figure 3 shows a temporary large torque excess that can provide additional muscle to drive the hydraulic pump through momentary load increases. These types of electric motors also can be run indefinitely at their rated hp plus an additional percentage based on their service factor — generally 1.15 to 1.25 (at altitudes to 3,300 ft).

Catalog ratings for electric motors list their usable power at a rated speed. If the load increases, motor speed will decrease and torque will increase to a value higher than full-load torque (but less than breakdown torque). So when operating the pump at 1,800 rpm, the electric motor has more than enough torque in reserve to drive the pump

Hydraulic machineryFrom Wikipedia, the free encyclopediaJump to: navigation, searchThis article is about power machinery. For civil engineering concerning water management, see Hydraulics.

"Hydraulic equipment" redirects here. For exercise equipment using hydraulic cylinders for resistance, see Resistance training.

An excavator; main hydraulics: Boom cylinders, swingdrive, cooler fan and trackdrive

Page 16: Hydraulics 2014

Fundamental features of using hydraulics compared to mechanics for force and torque increase/decrease in a transmission.

Hydraulic machines are machinery and tools that use liquid fluid power to do simple work. Heavy equipment is a common example.

In this type of machine, hydraulic fluid is transmitted throughout the machine to various hydraulic motors and hydraulic cylinders and which becomes pressurised according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses and tubes.

The popularity of hydraulic machinery is due to the very large amount of power that can be transferred through small tubes and flexible hoses, and the high power density and wide array of actuators that can make use of this power.

Hydraulic machinery is operated by the use of hydraulics, where a liquid is the powering medium.

Contents

Page 17: Hydraulics 2014

[hide]

1 Force and torque multiplication 2 Hydraulic circuits 3 Constant pressure and load-sensing systems

o 3.1 Five basic types of load-sensing systems 4 Open and closed circuits 5 Components

o 5.1 Hydraulic pump o 5.2 Control valves o 5.3 Actuators o 5.4 Reservoir o 5.5 Accumulators o 5.6 Hydraulic fluid o 5.7 Filters o 5.8 Tubes, pipes and hoses o 5.9 Seals, fittings and connections

6 Basic calculations 7 History 8 See also 9 References and notes 10 External links

Force and torque multiplication[edit]A fundamental feature of hydraulic systems is the ability to apply force or torque multiplication in an easy way, independent of the distance between the input and output, without the need for mechanical gears or levers, either by altering the effective areas in two connected cylinders or the effective displacement (cc/rev) between a pump and motor. In normal cases, hydraulic ratios are combined with a mechanical force or torque ratio for optimum machine designs such as boom movements and trackdrives for an excavator.

ExamplesTwo hydraulic cylinders interconnected

Cylinder C1 is one inch in radius, and cylinder C2 is ten inches in radius. If the force exerted on C1 is 10 lbf, the force exerted by C2 is 1000 lbf because C2 is a hundred times larger in area (S = πr²) as C1. The downside to this is that you have to move C1 a hundred inches to move C2 one inch. The most common use for this is the classical hydraulic jack where a pumping cylinder with a small diameter is connected to the lifting cylinder with a large diameter.

Pump and motor

If a hydraulic rotary pump with the displacement 10 cc/rev is connected to a hydraulic rotary motor with 100 cc/rev, the shaft torque required to drive the pump is 10 times less than the torque available at the motor shaft, but the shaft speed (rev/min) for the motor is 10 times less

Page 18: Hydraulics 2014

than the pump shaft speed. This combination is actually the same type of force multiplication as the cylinder example (1) just that the linear force in this case is a rotary force, defined as torque.

Both these examples are usually referred to as a hydraulic transmission or hydrostatic transmission involving a certain hydraulic "gear ratio".

Hydraulic circuits[edit]

A simple open center hydraulic circuit.

For the hydraulic fluid to do work, it must flow to the actuator and/or motors, then return to a reservoir. The fluid is then filtered and re-pumped. The path taken by hydraulic fluid is called a hydraulic circuit of which there are several types. Open center circuits use pumps which supply a continuous flow. The flow is returned to tank through the control valve's open center; that is, when the control valve is centered, it provides an open return path to tank and the fluid is not pumped to a high pressure. Otherwise, if the control valve is actuated it routes fluid to and from an actuator and tank. The fluid's pressure will rise to meet any resistance, since the pump has a constant output. If the pressure rises too high, fluid returns to tank through a pressure relief valve. Multiple control valves may be stacked in series [1]. This type of circuit can use inexpensive, constant displacement pumps.

Closed center circuits supply full pressure to the control valves, whether any valves are actuated or not. The pumps vary their flow rate, pumping very little hydraulic fluid until the operator actuates a valve. The valve's spool therefore doesn't need an open center return path to tank. Multiple valves can be connected in a parallel arrangement and system pressure is equal for all valves.

Constant pressure and load-sensing systems[edit]The closed center circuits exist in two basic configurations, normally related to the regulator for the variable pump that supplies the oil:

Constant pressure systems (CP-system), standard. Pump pressure always equals the pressure setting for the pump regulator. This setting must cover the maximum required load pressure.

Page 19: Hydraulics 2014

Pump delivers flow according to required sum of flow to the consumers. The CP-system generates large power losses if the machine works with large variations in load pressure and the average system pressure is much lower than the pressure setting for the pump regulator. CP is simple in design. Works like a pneumatic system. New hydraulic functions can easily be added and the system is quick in response.

Constant pressure systems (CP-system), unloaded. Same basic configuration as 'standard' CP-system but the pump is unloaded to a low stand-by pressure when all valves are in neutral position. Not so fast response as standard CP but pump lifetime is prolonged.

Load-sensing systems (LS-system) generates less power losses as the pump can reduce both flow and pressure to match the load requirements, but requires more tuning than the CP-system with respect to system stability. The LS-system also requires additional logical valves and compensator valves in the directional valves, thus it is technically more complex and more expensive than the CP-system. The LS-system system generates a constant power loss related to the regulating pressure drop for the pump regulator:

The average is around 2 MPa (290 psi). If the pump flow is high the extra loss can be considerable. The power loss also increases if the load pressures vary a lot. The cylinder areas, motor displacements and mechanical torque arms must be designed to match load pressure in order to bring down the power losses. Pump pressure always equals the maximum load pressure when several functions are run simultaneously and the power input to the pump equals the (max. load pressure + ΔpLS) x sum of flow.

Five basic types of load-sensing systems[edit]

Load sensing without compensators in the directional valves. Hydraulically controlled LS-pump.

Load sensing with up-stream compensator for each connected directional valve. Hydraulically controlled LS-pump.

Load sensing with down-stream compensator for each connected directional valve. Hydraulically controlled LS-pump.

Load sensing with a combination of up-stream and down-stream compensators. Hydraulically controlled LS-pump.

Load sensing with synchronized, both electric controlled pump displacement and electric controlled valve flow area for faster response, increased stability and fewer system losses. This is a new type of LS-system, not yet fully developed.

Technically the down-stream mounted compensator in a valveblock can physically be mounted "up-stream", but work as a down-stream compensator.

System type (3) gives the advantage that activated functions are synchronized independent of pump flow capacity. The flow relation between 2 or more activated functions remains independent of load pressures, even if the pump reaches the maximum swivel angle. This feature

Page 20: Hydraulics 2014

is important for machines that often run with the pump at maximum swivel angle and with several activated functions that must be synchronized in speed, such as with excavators. With type (4) system, the functions with up-stream compensators have priority. Example: Steering-function for a wheel loader. The system type with down-stream compensators usually have a unique trademark depending on the manufacturer of the valves, for example "LSC" (Linde Hydraulics), "LUDV" (Bosch Rexroth Hydraulics) and "Flowsharing" (Parker Hydraulics) etc. No official standardized name for this type of system has been established but Flowsharing is a common name for it.

Open and closed circuits[edit]

Open loop and closed loop circuits

Open-loop: Pump-inlet and motor-return (via the directional valve) are connected to the hydraulic tank. The term loop applies to feedback; the more correct term is open versus closed "circuit". Open center circuits use pumps which supply a continuous flow. The flow is returned to tank through the control valve's open center; that is, when the control valve is centered, it provides an open return path to tank and the fluid is not pumped to a high pressure. Otherwise, if the control valve is actuated it routes fluid to and from an actuator and tank. The fluid's pressure will rise to meet any resistance, since the pump has a constant output. If the pressure rises too high, fluid returns to tank through a pressure relief valve. Multiple control valves may be stacked in series. This type of circuit can use inexpensive, constant displacement pumps.

Closed-loop: Motor-return is connected directly to the pump-inlet. To keep up pressure on the low pressure side, the circuits have a charge pump (a small gearpump) that supplies cooled and filtered oil to the low pressure side. Closed-loop circuits are generally used for hydrostatic transmissions in mobile applications. Advantages: No directional valve and better response, the circuit can work with higher pressure. The pump swivel angle covers both positive and negative flow direction. Disadvantages: The pump cannot be utilized for any other hydraulic function in an easy way and cooling can be a problem due to limited exchange of oil flow. High power

Page 21: Hydraulics 2014

closed loop systems generally must have a 'flush-valve' assembled in the circuit in order to exchange much more flow than the basic leakage flow from the pump and the motor, for increased cooling and filtering. The flush valve is normally integrated in the motor housing to get a cooling effect for the oil that is rotating in the motor housing itself. The losses in the motor housing from rotating effects and losses in the ball bearings can be considerable as motor speeds will reach 4000-5000 rev/min or even more at maximum vehicle speed. The leakage flow as well as the extra flush flow must be supplied by the charge pump. A large charge pump is thus very important if the transmission is designed for high pressures and high motor speeds. High oil temperature is usually a major problem when using hydrostatic transmissions at high vehicle speeds for longer periods, for instance when transporting the machine from one work place to the other. High oil temperatures for long periods will drastically reduce the lifetime of the transmission. To keep down the oil temperature, the system pressure during transport must be lowered, meaning that the minimum displacement for the motor must be limited to a reasonable value. Circuit pressure during transport around 200-250 bar is recommended.

Closed loop systems in mobile equipment are generally used for the transmission as an alternative to mechanical and hydrodynamic (converter) transmissions. The advantage is a stepless gear ratio (continuously variable speed/torque) and a more flexible control of the gear ratio depending on the load and operating conditions. The hydrostatic transmission is generally limited to around 200 kW maximum power, as the total cost gets too high at higher power compared to a hydrodynamic transmission. Large wheel loaders for instance and heavy machines are therefore usually equipped with converter transmissions. Recent technical achievements for the converter transmissions have improved the efficiency and developments in the software have also improved the characteristics, for example selectable gear shifting programs during operation and more gear steps, giving them characteristics close to the hydrostatic transmission.

Hydrostatic transmissions for earth moving machines, such as for track loaders, are often equipped with a separate 'inch pedal' that is used to temporarily increase the diesel engine rpm while reducing the vehicle speed in order to increase the available hydraulic power output for the working hydraulics at low speeds and increase the tractive effort. The function is similar to stalling a converter gearbox at high engine rpm. The inch function affects the preset characteristics for the 'hydrostatic' gear ratio versus diesel engine rpm.

Components[edit]

Hydraulic pump[edit]

Page 22: Hydraulics 2014

An exploded view of an external gear pump.

Hydraulic pumps supply fluid to the components in the system. Pressure in the system develops in reaction to the load. Hence, a pump rated for 5,000 psi is capable of maintaining flow against a load of 5,000 psi.

Pumps have a power density about ten times greater than an electric motor (by volume). They are powered by an electric motor or an engine, connected through gears, belts, or a flexible elastomeric coupling to reduce vibration.

Common types of hydraulic pumps to hydraulic machinery applications are;

Gear pump : cheap, durable (especially in g-rotor form), simple. Less efficient, because they are constant (fixed) displacement, and mainly suitable for pressures below 20 MPa (3000 psi).

Vane pump : cheap and simple, reliable. Good for higher-flow low-pressure output. Axial piston pump : many designed with a variable displacement mechanism, to vary

output flow for automatic control of pressure. There are various axial piston pump designs, including swashplate (sometimes referred to as a valveplate pump) and checkball (sometimes referred to as a wobble plate pump). The most common is the swashplate pump. A variable-angle swashplate causes the pistons to reciprocate a greater or lesser distance per rotation, allowing output flow rate and pressure to be varied (greater displacement angle causes higher flow rate, lower pressure, and vice versa).

Radial piston pump : normally used for very high pressure at small flows.

Piston pumps are more expensive than gear or vane pumps, but provide longer life operating at higher pressure, with difficult fluids and longer continuous duty cycles. Piston pumps make up one half of a hydrostatic transmission.

Control valves[edit]

control valves on a scissor lift

Directional control valves route the fluid to the desired actuator. They usually consist of a spool inside a cast iron or steel housing. The spool slides to different positions in the housing, and intersecting grooves and channels route the fluid based on the spool's position.

Page 23: Hydraulics 2014

The spool has a central (neutral) position maintained with springs; in this position the supply fluid is blocked, or returned to tank. Sliding the spool to one side routes the hydraulic fluid to an actuator and provides a return path from the actuator to tank. When the spool is moved to the opposite direction the supply and return paths are switched. When the spool is allowed to return to neutral (center) position the actuator fluid paths are blocked, locking it in position.

Directional control valves are usually designed to be stackable, with one valve for each hydraulic cylinder, and one fluid input supplying all the valves in the stack.

Tolerances are very tight in order to handle the high pressure and avoid leaking, spools typically have a clearance with the housing of less than a thousandth of an inch (25 µm). The valve block will be mounted to the machine's frame with a three point pattern to avoid distorting the valve block and jamming the valve's sensitive components.

The spool position may be actuated by mechanical levers, hydraulic pilot pressure, or solenoids which push the spool left or right. A seal allows part of the spool to protrude outside the housing, where it is accessible to the actuator.

The main valve block is usually a stack of off the shelf directional control valves chosen by flow capacity and performance. Some valves are designed to be proportional (flow rate proportional to valve position), while others may be simply on-off. The control valve is one of the most expensive and sensitive parts of a hydraulic circuit.

Pressure relief valves are used in several places in hydraulic machinery; on the return circuit to maintain a small amount of pressure for brakes, pilot lines, etc... On hydraulic cylinders, to prevent overloading and hydraulic line/seal rupture. On the hydraulic reservoir, to maintain a small positive pressure which excludes moisture and contamination.

Pressure regulators reduce the supply pressure of hydraulic fluids as needed for various circuits.

Sequence valves control the sequence of hydraulic circuits; to ensure that one hydraulic cylinder is fully extended before another starts its stroke, for example.

Shuttle valves provide a logical or function. Check valves are one-way valves, allowing an accumulator to charge and maintain its

pressure after the machine is turned off, for example. Pilot controlled Check valves are one-way valve that can be opened (for both

directions) by a foreign pressure signal. For instance if the load should not be held by the check valve anymore. Often the foreign pressure comes from the other pipe that is connected to the motor or cylinder.

Counterbalance valves are in fact a special type of pilot controlled check valve. Whereas the check valve is open or closed, the counterbalance valve acts a bit like a pilot controlled flow control.

Cartridge valves are in fact the inner part of a check valve; they are off the shelf components with a standardized envelope, making them easy to populate a proprietary valve block. They are available in many configurations; on/off, proportional, pressure

Page 24: Hydraulics 2014

relief, etc. They generally screw into a valve block and are electrically controlled to provide logic and automated functions.

Hydraulic fuses are in-line safety devices designed to automatically seal off a hydraulic line if pressure becomes too low, or safely vent fluid if pressure becomes too high.

Auxiliary valves in complex hydraulic systems may have auxiliary valve blocks to handle various duties unseen to the operator, such as accumulator charging, cooling fan operation, air conditioning power, etc. They are usually custom valves designed for the particular machine, and may consist of a metal block with ports and channels drilled. Cartridge valves are threaded into the ports and may be electrically controlled by switches or a microprocessor to route fluid power as needed.

Actuators[edit]

Hydraulic cylinder Swashplates are used in 'hydraulic motors' requiring highly accurate control and also in

'no stop' continuous (360°) precision positioning mechanisms. These are frequently driven by several hydraulic pistons acting in sequence.

Hydraulic motor (a pump plumbed in reverse) Hydrostatic transmission Brakes

Reservoir[edit]

The hydraulic fluid reservoir holds excess hydraulic fluid to accommodate volume changes from: cylinder extension and contraction, temperature driven expansion and contraction, and leaks. The reservoir is also designed to aid in separation of air from the fluid and also work as a heat accumulator to cover losses in the system when peak power is used. Design engineers are always pressured to reduce the size of hydraulic reservoirs, while equipment operators always appreciate larger reservoirs. Reservoirs can also help separate dirt and other particulate from the oil, as the particulate will generally settle to the bottom of the tank. Some designs include dynamic flow channels on the fluid's return path that allow for a smaller reservoir.

Accumulators[edit]

Accumulators are a common part of hydraulic machinery. Their function is to store energy by using pressurized gas. One type is a tube with a floating piston. On one side of the piston is a charge of pressurized gas, and on the other side is the fluid. Bladders are used in other designs. Reservoirs store a system's fluid.

Examples of accumulator uses are backup power for steering or brakes, or to act as a shock absorber for the hydraulic circuit.

Hydraulic fluid[edit]

Also known as tractor fluid, hydraulic fluid is the life of the hydraulic circuit. It is usually petroleum oil with various additives. Some hydraulic machines require fire resistant fluids,

Page 25: Hydraulics 2014

depending on their applications. In some factories where food is prepared, either an edible oil or water is used as a working fluid for health and safety reasons.

In addition to transferring energy, hydraulic fluid needs to lubricate components, suspend contaminants and metal filings for transport to the filter, and to function well to several hundred degrees Fahrenheit or Celsius.

Filters[edit]

Filters are an important part of hydraulic systems. Metal particles are continually produced by mechanical components and need to be removed along with other contaminants.

Filters may be positioned in many locations. The filter may be located between the reservoir and the pump intake. Blockage of the filter will cause cavitation and possibly failure of the pump. Sometimes the filter is located between the pump and the control valves. This arrangement is more expensive, since the filter housing is pressurized, but eliminates cavitation problems and protects the control valve from pump failures. The third common filter location is just before the return line enters the reservoir. This location is relatively insensitive to blockage and does not require a pressurized housing, but contaminants that enter the reservoir from external sources are not filtered until passing through the system at least once.

Tubes, pipes and hoses[edit]

Hydraulic tubes are seamless steel precision pipes, specially manufactured for hydraulics. The tubes have standard sizes for different pressure ranges, with standard diameters up to 100 mm. The tubes are supplied by manufacturers in lengths of 6 m, cleaned, oiled and plugged. The tubes are interconnected by different types of flanges (especially for the larger sizes and pressures), welding cones/nipples (with o-ring seal), several types of flare connection and by cut-rings. In larger sizes, hydraulic pipes are used. Direct joining of tubes by welding is not acceptable since the interior cannot be inspected.

Hydraulic pipe is used in case standard hydraulic tubes are not available. Generally these are used for low pressure. They can be connected by threaded connections, but usually by welds. Because of the larger diameters the pipe can usually be inspected internally after welding. Black pipe is non-galvanized and suitable for welding.

Hydraulic hose is graded by pressure, temperature, and fluid compatibility. Hoses are used when pipes or tubes can not be used, usually to provide flexibility for machine operation or maintenance. The hose is built up with rubber and steel layers. A rubber interior is surrounded by multiple layers of woven wire and rubber. The exterior is designed for abrasion resistance. The bend radius of hydraulic hose is carefully designed into the machine, since hose failures can be deadly, and violating the hose's minimum bend radius will cause failure. Hydraulic hoses generally have steel fittings swaged on the ends. The weakest part of the high pressure hose is the connection of the hose to the fitting. Another disadvantage of hoses is the shorter life of rubber which requires periodic replacement, usually at five to seven year intervals.

Page 26: Hydraulics 2014

Tubes and pipes for hydraulic applications are internally oiled before the system is commissioned. Usually steel piping is painted outside. Where flare and other couplings are used, the paint is removed under the nut, and is a location where corrosion can begin. For this reason, in marine applications most piping is stainless steel.

Seals, fittings and connections[edit]

Main article: Seal (mechanical)

Components of a hydraulic system [sources (e.g. pumps), controls (e.g. valves) and actuators (e.g. cylinders)] need connections that will contain and direct the hydraulic fluid being used without leaking or losing the pressure that makes them work. In some cases, the components can be made to bolt together with fluid paths built-in. In more cases, though, rigid tubing or flexible hoses are used to direct the flow from one component to the next. Each component has entry and exit points for the fluid involved (called ports) sized according to how much fluid is expected to pass through it.

There are a number of standardized methods in use to attach the hose or tube to the component. Some are intended for ease of use and service, others are better for higher system pressures or control of leakage. The most common method, in general, is to provide in each component a female-threaded port, on each hose or tube a female-threaded captive nut, and use a separate adapter fitting with matching male threads to connect the two. This is functional, economical to manufacture, and easy to service.

Fittings serve several purposes;

1. To join components with ports of different sizes.2. To bridge different standards; O-ring boss to JIC, or pipe threads to face seal, for

example.3. To allow proper orientation of components, a 90°, 45°, straight, or swivel fitting is

chosen as needed. They are designed to be positioned in the correct orientation and then tightened.

4. To incorporate bulkhead hardware to pass the fluid through an obstructing wall.5. A quick disconnect fitting may be added to a machine without modification of hoses or

valves

A typical piece of machinery or heavy equipment may have thousands of sealed connection points and several different types:

Pipe fittings , the fitting is screwed in until tight, difficult to orient an angled fitting correctly without over or under tightening.

O-ring boss, the fitting is screwed into a boss and orientated as needed, an additional nut tightens the fitting, washer and o-ring in place.

Flare fittings , are metal to metal compression seals deformed with a cone nut and pressed into a flare mating.

Face seal , metal flanges with a groove and o-ring seal are fastened together.

Page 27: Hydraulics 2014

Beam seals are costly metal to metal seals used primarily in aircraft. Swaged seals, tubes are connected with fittings that are swaged permanently in place.

Primarily used in aircraft.

Elastomeric seals (O-ring boss and face seal) are the most common types of seals in heavy equipment and are capable of reliably sealing 6000+ psi (40+ MPa) of fluid pressure.

Basic calculations[edit]Hydraulic power is defined as flow times pressure. The hydraulic power supplied by a pump:

Power = (P x Q) ÷ 600

where power is in kilowatts [kW], P pressure in bars, and Q is the flow in liters per minute. For example, a pump delivers 180 lit/min and the pressure equals 250 bar, therefore the power of the pump is 75 kW.

When calculating the power input to the pump, the total pump efficiency ηtotal must be included. This efficiency is the product of volumetric efficiency, ηvol and the hydromechanical efficiency, ηhm. Power input = Power output ÷ ηtotal. The average for axial piston pumps, ηtotal = 0.87. In the example the power source, for example a diesel engine or an electric motor, must be capable of delivering at least 75 ÷ 0.87 = 86 [kW]. The hydraulic motors and cylinders that the pump supplies with hydraulic power also have efficiencies and the total system efficiency (without including the pressure drop in the hydraulic pipes and valves) will end up at approx. 0.75. Cylinders normally have a total efficiency around 0.95 while hydraulic axial piston motors 0.87, the same as the pump. In general the power loss in a hydraulic energy transmission is thus around 25% or more at ideal viscosity range 25-35 [cSt].

Calculation of the required max. power output for the diesel engine, rough estimation:

(1) Check the max. powerpoint, i.e. the point where pressure times flow reach the max. value.

(2) Ediesel = (Pmax·Qtot)÷η.

Qtot = calculate with the theoretical pump flow for the consumers not including leakages at max. power point.

Pmax = actual pump pressure at max. power point.

Note: η is the total efficiency = (output mechanical power ÷ input mechanical power). For rough estimations, η = 0.75. Add 10-20% (depends on the application) to this power value.

(3) Calculate the required pumpdisplacement from required max. sum of flow for the consumers in worst case and the diesel engine rpm in this point. The max. flow can differ from the flow used for calculation of the diesel engine power. Pump volumetric efficiency average, piston pumps: ηvol= 0.93.

Page 28: Hydraulics 2014

Pumpdisplacement Vpump= Qtot ÷ ndiesel ÷ 0.93.

(4) Calculation of prel. cooler capacity: Heat dissipation from hydraulic oil tanks, valves, pipes and hydraulic components is less than a few percent in standard mobile equipment and the cooler capacity must include some margins. Minimum cooler capacity, Ecooler = 0.25Ediesel

At least 25% of the input power must be dissipated by the cooler when peak power is utilized for long periods. In normal case however, the peak power is used for only short periods, thus the actual cooler capacity required might be considerably less. The oil volume in the hydraulic tank is also acting as a heat accumulator when peak power is used. The system efficiency is very much dependent on the type of hydraulic work tool equipment, the hydraulic pumps and motors used and power input to the hydraulics may vary a lot. Each circuit must be evaluated and the load cycle estimated. New or modified systems must always be tested in practical work, covering all possible load cycles. An easy way of measuring the actual average power loss in the system is to equip the machine with a test cooler and measure the oil temperature at cooler inlet, oil temperature at cooler outlet and the oil flow through the cooler, when the machine is in normal operating mode. From these figures the test cooler power dissipation can be calculated and this is equal to the power loss when temperatures are stabilized. From this test the actual required cooler can be calculated to reach specified oil temperature in the oil tank. One problem can be to assemble the measuring equipment inline, especially the oil flow meter

Hydraulic drive systemFrom Wikipedia, the free encyclopediaJump to: navigation, search

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (August 2008)

A hydraulic drive system is a drive or transmission system that uses pressurized hydraulic fluid to drive hydraulic machinery. The term hydrostatic refers to the transfer of energy from flow and pressure, not from the kinetic energy of the flow.

A hydraulic drive system consists of three parts: The generator (e.g. a hydraulic pump), driven by an electric motor, a combustion engine or a windmill; valves, filters, piping etc. (to guide and control the system); the motor (e.g. a hydraulic motor or hydraulic cylinder) to drive the machinery.

Contents[hide]

1 Principle of a hydraulic drive 2 Classification of a hydraulic drives

Page 29: Hydraulics 2014

3 Hydraulic press 4 Hydraulic cylinder 5 Hydraulic motor 6 Hydraulic valves

o 6.1 Classification of hydraulic valves 7 Open and closed systems 8 See also 9 References 10 External links

Principle of a hydraulic drive[edit]

Principle of hydraulic drive system

Pascal's law is the basis of hydraulic drive systems. As the pressure in the system is the same, the force that the fluid gives to the surroundings is therefore equal to pressure × area. In such a way, a small piston feels a small force and a large piston feels a large force.

Page 30: Hydraulics 2014

The same principle applies for a hydraulic pump with a small swept volume that asks for a small torque, combined with a hydraulic motor with a large swept volume that gives a large torque. In such a way a transmission with a certain ratio can be built.

Most hydraulic drive systems make use of hydraulic cylinders. Here the same principle is used — a small torque can be transmitted into a large force.

By throttling the fluid between the generator part and the motor part, or by using hydraulic pumps and/or motors with adjustable swept volume, the ratio of the transmission can be changed easily. In case throttling is used, the efficiency of the transmission is limited. In case adjustable pumps and motors are used, the efficiency, however, is very large. In fact, up to around 1980, a hydraulic drive system had hardly any competition from other adjustable drive systems.

Nowadays, electric drive systems using electric servo-motors can be controlled in an excellent way and can easily compete with rotating hydraulic drive systems. Hydraulic cylinders are, in fact, without competition for linear forces. For these cylinders, hydraulic systems will remain of interest and if such a system is available, it is easy and logical to use this system for the rotating drives of the cooling systems, also.

Classification of a hydraulic drives[edit]Hydraulic drives are tradisionally divided into three classes. These are

Industrial hydraulics. Mobile hydraulics Aircraft hydraulics

The classification is basically due to the fact that components are classified in these cathegories, although some overlap exists between industrial and mobile hydraulics, aircraft hydraulics components are highly specialized due to extreme requirements on weight and certification.

Hydraulic press[edit]Main article: Hydraulic press

Hydraulic Press in a machine shop. This press is commonly used for hydroforming.

Page 31: Hydraulics 2014

A hydraulic is a machine (see machine press) using a hydraulic cylinder to generate a compressive force. It uses the hydraulic equivalent of a mechanical lever, and was also known as a Bramah press after the inventor, Joseph Bramah, of England. He invented and was issued a patent on this press in 1795. As Bramah (who is also known for his development of the flush toilet) installed toilets, he studied the existing literature on the motion of fluids and put this knowledge into the development of the press.[1]

Hydraulic cylinder[edit]Main article: Hydraulic cylinder

Hydraulic cylinders (also called linear hydraulic motors) are mechanical actuators that are used to give a linear force through a linear stroke. Hydraulic cylinders are able to give pushing and pulling forces of millions of metric tons with only a simple hydraulic system. Very simple hydraulic cylinders are used in presses; here, the cylinder consists of a volume in a piece of iron with a plunger pushed in it and sealed with a cover. By pumping hydraulic fluid in the volume, the plunger is pushed out with a force of plunger-area pressure.

More sophisticated cylinders have a body with end cover, a piston rod, and a cylinder head. At one side the bottom is, for instance, connected to a single clevis, whereas at the other side, the piston rod is also foreseen with a single clevis. The cylinder shell normally has hydraulic connections at both sides; that is, a connection at the bottom side and a connection at the cylinder head side. If oil is pushed under the piston, the piston rod is pushed out and oil that was between the piston and the cylinder head is pushed back to the oil tank.

The pushing or pulling force of a hydraulic cylinder is as follows:

F = Ab * pb - Ah * ph F = Pushing Force in N Ab = (π/4) * (Bottom-diameter)^2 [in m2] Ah = (π/4) * ((Bottom-diameter)^2-(Piston-rod-diameter)^2)) [in m2] pb = pressure at bottom side in [N/m2] ph = pressure at cylinder head side in [N/m2]

Apart from miniature cylinders, in general, the smallest cylinder diameter is 32 mm and the smallest piston rod diameter is 16 mm.

Simple hydraulic cylinders have a maximum working pressure of about 70 bar. The next step is 140 bar, 210 bar, 320/350 bar and further. In general, the cylinders are custom built. The stroke of a hydraulic cylinder is limited by the manufacturing process. The majority of hydraulic cylinders have a stroke between 0, 3, and 5 meters, whereas 12-15 meter stroke is also possible, but for this length only a limited number of suppliers are on the market.

In case the retracted length of the cylinder is too long for the cylinder to be built in the structure, Telescopic cylinder can be used. One has to realize that for simple pushing applications telescopic cylinders might be easily available; for higher forces and/or double acting cylinders,

Page 32: Hydraulics 2014

they must be designed especially and are very expensive. If hydraulic cylinders are only used for pushing and the piston rod is brought in again by other means, one can also use Plunger cylinders. Plunger cylinders have no sealing over the piston, if the cylinder even exists. This means that only one oil connection is necessary. In general the diameter of the plunger is rather large compared with a normal piston cylinder, whereas a hydraulic motor will always leak oil. A hydraulic cylinder does not have a leakage over the piston nor over the cylinder head sealing so that there is no need for a mechanical brake.

Hydraulic motor[edit]Main article: Hydraulic motor

Principal circuit diagram for open loop and closed loop system.

The hydraulic motor is the rotary counterpart of the hydraulic cylinder. Conceptually, a hydraulic motor should be interchangeable with the hydraulic pump, due to the fact it performs the opposite function. However, most hydraulic pumps cannot be used as hydraulic motors because they cannot be backdriven. Also, a hydraulic motor is usually designed for the working pressure at both sides of the motor. Another difference is that a motor can be reversed by a reversing valve.

Pressure in a hydraulic system is like the voltage in an electrical system and fluid flow rate is the equivalent of current. The size and speed of the pump determines the flow rate, the load at the motor determines the pressure.

Hydraulic valves[edit]

Page 33: Hydraulics 2014

These valves are usually very heavy duty to stand up to high pressures. Some special valves can control the direction of the flow of fluid and act as a control unit for a system.

Classification of hydraulic valves[edit]

Classification based on function:

1. Pressure control valves (PC Valves)2. Flow control valves (FC Valves)3. Direction control valves (DC Valves)

Classification based on method of activation:

1. Directly operated valve2. Pilot operated valve3. Manually operated valve4. Electrically actuated valve5. open control valve6. Servo controlled valves

Open and closed systems[edit]See also: Hydraulic machinery#open and closed circuits

An open system is one where the hydraulic fluid is returned into a large, unpressurized tank at the end of a cycle through the system. In contrast, a closed system is where the hydraulic fluid stays in one closed pressurized loop without returning to a main tank after each cycle