176
GRI-93/0109 RECORD COPY C.1 Topical Report Hydraulic Fracture Model Comparison Study: Complete Results Prepared by: 1 1 1 1 111 111 1 1 1 11 *8574884* N. R. Warpinski, Sandia National Laboratories I. S. Abou-Sayed, Mobil Exploration and Production Services SANDIA NATIONAL Z. Moschovidis, AMOCO Production Company LABORATORIES C. Parker CONOCO TECHNICAL LIBRARY GasResearch Institute Tight Sands and Gas, Processing Research Department February 1993 180p.

Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Embed Size (px)

Citation preview

Page 1: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GRI-93/0109

RECORD COPY

C.1

Topical Report

Hydraulic Fracture Model Comparison Study: Complete Results

Prepared by: 1 1 1 1 11 1 11 1 1 1 1 11 *8574884*

N. R. Warpinski, Sandia National Laboratories

I. S. Abou-Sayed, Mobil Exploration and Production Services SANDIA NATIONAL Z. Moschovidis, AMOCO Production Company LABORATORIES C. Parker CONOCO TECHNICAL LIBRARY

Gas Research Institute

Tight Sands and Gas, Processing Research Department

February 1993

180p.

Page 2: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GRI93/0109 SAND93-7042

HYDRAULIC FRACTURE MODEL COMPARISON STUDY: COMPLETE RESULTS

TOPICAL REPORT (February, 1993)

Prepared by N. R. Warpinski Sandia National Laboratories

l.S. Abou-Sayed Mobil Exploration and Production Services Z. Moschovidis AMOCO Production Company

C. Parker CONOCO

Prepared at Sandia National Laboratories

Division 6114 P.O. BOX 5800

Albuquerque, New Mexico 87185

For GAS RESEARCH INSTITUTE Contract No. 5089-211-2059

GRI Project Manager Steve Wolhart

Tight Gas Sands Field Evaluation

February 1993

Page 3: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GRI DISCLAIMER

LEGAL NOTICE This report was prepared by Sandia National Laboratories as an account of work sponsored by the Gas Research institute (GRI). Neither GRI, members of GRI, nor any person acting on behalf of either

a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Page 4: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

.- ..”, ..- .“.

E?(3RT 00CUMENTAllON 1- ‘c-~ -- % X [email protected]% Auo,b No.

PAGE GRI-93/olo9

Tltl* l nd Subtttle s x Oao

2/17/93 Preparation Hydraulic Fracture Model Comparison Study: Complete Results &

~wS)N.R. Warpinski, 1.S. Abou-Sayed, C. Parker, Z. Moschovidis ‘ m&~& ““” ‘0”

fid~omanixotion Ma- l nd Addrns la ~dt/WorttUn4t N..

Sandia National Laboratories Division 6253 IL _mct(C)orCcOmt(G) No.

P.O. BOX 5800 m 5089-211-2059 Albuquerque, New Mexico 87185 (a)

Z SfmnwnhSOfSdXdOCINameo#~S l%Tyf100f~O@Wt &14riOdCowr,d

Gas Research Institute Topical Report 8600 Bryn Mawr Avenue Chicago, Illinois 60631 14.

~ su~wYN~= Topical report on the results of the Fracture Propagation Modeling Forum

cmsrmct(udtsuo~

This study is a comparison of hydraulic fracture models run using test data from the GR Staged-Field Experiment #3 (SFE-3). Models compared include: (1) PKN and GDK constant- height versions; (2) 3-layer pseudo-3-D models; and (3) 5-layer 3-D or pseudo-3D models Model calculations were provided by several consulting companies, oil producing companies, service companies, and academia. Modelers were given the measured stress an~ material property data obtained at SFE-3 and fluid properties approximating those used during SFE-3 stimulations. Companies were allowed to run any or all of the three cases (constant height, 3 layer, or 5 layer) using their own models or commercial models they had purchased,. Included with the results are brief discussions of each model. This paper documents the differences in length, height, width, pressure, and efficiency predicted by the various models for each of the”three cases. Well-known differences in length between 2-D PKN and GDK models are shown, but so are differences between the pseudo-3-D and fully-3-D models. For example, two of the models yield much shorter lengths than other 3-D models. Overall, efficiencies varied between 40% and 97%, and net pressures ranged from about 700 to 1600 psi for the 3-layer and 5-layer cases. Heights varied from 300-700 ft. These comparisons clearly show that fracture design models give widely varying results. These results provide the petroleum engineer a practical comparison of the various available design models for an actual field test.

17.

oa4uMntAMlysi* l . 00urloIacs

Tight gas sands, hydraulic fracturing, fracture modeling

b. 1dontlfm?8/Otmn. Ended Terms

SFE No. 3, fracture height, Fracpro, Trifrac, Stimplan, MFRAC-11, TerraFrac, Enerfrac

C. COSATI Flold/Cmup

GOHFER, HYFRAC3D,

IL Awdlablllty SWtctinl 19. SoawltYU-c (This R.- I z1. No. of Paces

Page 5: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Title

Contractor

Principal Investigator

Report Period

Objective

Technical Perspective

Hydraulic Fracture Model Comparison Study: Complete Results

Sandia National Laboratories

GRI Contract Number: 5089-211-2059

N. R. Warpinski

February 1991 -Februa~, 1993 Topical Report

To develop a mmparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs.

Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production diffiwlt and often economic and stimulation is required. Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer, being used extensively in tight gas sandstones, coalbed methane, high permeability sandstones in Alaska, very weak sandstones off the US. gulf coast, in horizontal wells in chalks, and in many other applications from waste disposal to geothermal reservoirs. Because of this diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes.

In addition, many modelers have added ad-hoc features to their models to simulate mechanisms that are not well understood at this time. Such mechanisms include tip effects, wall roughness, complex fracturing, and some aspects of height growth. As a result, fracture models have become heteromorphic with no standard of comparison. Engineers are thus faced with

Page 6: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

a difficult choice in selecting a model that isappropriate for their needs.

Technical The technical approach was to collect and integrateApproach the results of the Fracture Model Propagation Forum

into a comparative study of the similarity anddifferences of hydraulic-fracture model output run onthe same input data. Participating modelers weregiven two treatment data sets (one Newtonian fluid,one power-law fluid) and four different geometries(constant-height PKN, constant-height GDK, 3-layer, 5-Iayer) and asked to provide length, height, maximumwidth at the wellbore, average width at the wellbore,average width in the whole fracture, net pressure, andefficiency at 25 minute intervals throughout the fracturetreatment (total time of 200 minutes). These resultswere assembled by a four member committee into plotsand tables of comparative data.

Results This report is a comparison of the fracture modelingresutts of twelve different simulators, some of them runin different modes for eight separate design cases.Comparisons of length, width, height, net pressure,maximum width at the wellbore, average width at thewellbore, and average width in the fracture have beenmade, both for the final geometry and as a function oftime. For the models in this study, differences infracture length, height and width are often greater thana factor of two. In addition, several comparisons of thesame model with different options show a largevariability in model output depending upon the optionschosen. Two comparisons were made of the samemodel run by different companies; in both cases theagreement was good.

Page 7: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Table of Contents

1.02.03.0

4.0

5.06.07.0

8.09.0

RESEARCH OBJECTIVESRATIONALEBACKGROUND - BASIC MODELING DISCUSSION

3.1 Planar 3-D Models3.2 Planar 3-D Finite Difference Model - GOHFER3.3 Pseudo-3-D Models3.4 Classic PKN and GDK Models

FRACTURE MODELS4.14.24.34.44.54.64.74.84.9

S.A. Holditch & Assoc. (TRIFRAC)Meyer & Associates (MFRAC-11)Advani (Lehigh HYFRAC3D)Shell (ENERFRAC)Halliburtion (PROP)ChevronConocoMarathon (GOHFER)ARCO (using TerraFrac)

4.10 /’4S1(STIMPLAN)4.11 Resources Engineering Systems (FRAPRO)4.12 Texaco (using FRACPRO)

SFE-3 FORMATION AND TREATMENT DATATEST CASESMODEL RESULTS

7.1 2-D Results (Cases 1-4)7.2 3-Layer Results7.3 5-Layer Results

DISCUSSIONCONCLUSIONS

10.0 RECOMMENDATIONS11.0 REFERENCES

APPENDIX AAPPENDIX BAPPENDIX CAPPENDIX DAPPENDIX EAPPENDIX FAPPENDIX G

1234455666778899910101112131414161617192021

107116125134136145155

Page 8: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

List of Tables

Table 1 Rock and Reservoir DataTable 2 Treatment DataTable 3 2-D Results at End of PumpTable 4 3-Layer Results at End of PumpTable 5 5-layer Results at End of PumpTable 6 Time to breakthrough into lower layerTable 7 S.A Holditch & Assoc. - GDK Constant height p=200 cpTable 8 S.A Holditch & Assoc. - GDK Constant height n’=0.5, k‘ =0.06Table 9 S.A Holditch & Assoc. - PKNConstant height p=200 cpTable 10 S.A Holditch & Assoc. - PKN Constant height n’=0.5, k’=0.06Table 11 S.A. Holditch & Assoc. - 3-layer p=200 wTable 12 S.A. Holditch & Assoc. - 3-layer n’=0.05, k’=0.06Table 13 S.A. Holditch & Assoc. - 5-layer p=200 cpTable 14 S.A. Holditch & Assoc. - 5-layer n’=0.05, k’=0.06Table 15 Meyer& Assoc. - GDK Constant height p=200 cp Base CaseTable 16 Meyer& Assoc. - GDK Constant height n’=0.5, k’=0.06 Base CaseTable 17 Meyer& Assoc. - PKN Constant height p=200 cp Base CaseTable 18 Meyer& Assoc. - PKN Constant height n’=0.5, k’=0.06Base CaseTable 19 Meyer& Assoc. - 3-layer ~=200 cp Base CaseTable 20 Meyer& Assoc. - 3-layer n’=0.5, k’=0.06 Base CaseTable 21 Meyer& Assoc. - 5-layer p=200 cp Base CaseTable 22 Meyer& Assoc. - 5-layer n’=0.5, k’=0.06 Base CaseTable 23 Meyer& Assoc. - GDK Constant height p=200 cp Knobs onTable 24 Meyer& Assoc. - GDK Constant height n’=0.5, k’=0.06 Knobs onTable 25 Meyer& Assoc. - PKN Constant height p=200 cp Knobs onTable 26 Meyer& Assoc. - PKN Constant height n’=0.5, k’=0.06 Knobs onTable 27 Meyer& Assoc. - 34ayer w=200 cp Knobs onTable 28 Meyer& Assoc. - 3-layer n’=0.5, k’=0.06 Knobs onTable 29 Meyer& Assoc. - 54ayer p=200 cp Knobs onTable 30 Meyer& Assoc. - 5-layer n’=0.5, k’=0.06 Knobs onTable 31 Advani - PKN Constant Height p=200 cpTable 32 Advani - PKN Constant Height n’=0.5, k’=0.06Table 33 Advani - 3-Layer u=200 cpTable 34 Advani - 3-Layer n’=0.5, k’=0.06Table 35 Advani - 5-Layer p=200 cpTable 36 Advani - 5-Layer n’=0.5, k’=0.06Table 37 Shell - GDK Constant Height p=200 cpTable 38 Shell - GDK Constant Height n’=0.5, k’=0.06Table 39 Shell - PKN Constant Height p=200 cpTable 40 Shell - PKN Constant Height n’=0.5, k’=0.06Table 41 Shell ENERFRAC v=200 cp Base CaseTable 42 Shell ENERFRAC n’=0.5, k’=0.06 Base CaseTable 43 Shell ENERFRAC 1.L=200cp 0verpressure=500 psi

Page 9: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Table 44 Shell ENERFRAC n’=0.5, k’=0.06 0verpressure=500 psiTable 45 Shell ENERFRAC p=200 cp Overpressure=l 000 psiTable 46 Shell ENERFRAC n’=0.5, k’=0.06 Overpressure=l 000 psiTable 47 Shell ENERFRAC p=200 cp Overpressure=l 500 psiTable 48 Shell ENERFRAC n’=0.5, k’=0.06 Overpressure=l 500 psiTable 49 Shell ENERFRAC p=200 cp 0verpressure=2000 psiTable 50 Shell ENERFRAC n’=0.5, k’=0.06 0verpressure=2000 psiTable 51 Halliburton GDK Constant Height p=200 cpTable 52 Halliburton GDK Constant Height n’=0.5, k’=0.06Table 53 Chevron GDK Constant Height v=200 cpTable 54 Chevron PKN Constant Height p=200 cpTable 55 Conoco GDK Constant Height ~=200 cpTable 56 Conoco GDK Constant Height n’=0.5, k’=0.06Table 57 Conoco PKN Constant Height p=200 cpTable 58 Conoco PKN Constant Height n’=0.5, k’=0.06Table 59 Marathon GOHFER Constant Height y=200 cpTable 60 Marathon GOHFER Constant Height n’=0.5, k’=0.06Table 61 Marathon GOHFER 3-Layer M=200cpTable 62 Marathon GOHFER 3-Layer n’=0.5, k’=0.06Table 63 Marathon GOHFER 5-Layer p=200 cpTable 64 Marathon GOHFER 5-Layer n’=0.5, k’=0.06Table 65 ARCO Stimplan 3-Layer p=200 cpTable 66ARC0 Stimplan 3-Layer n’=0.5, k’=0.06Table 67ARC0 Stimplan 5-Layer M=200cpTable 68 ARCO Stimplan 5-Layer n’=0.5, k’=0.06Table 69 ARCO TerraFrac 5-Layer n’=0.5, k’=0.06Table 70 NSI Tech. Stimplan 3-Layer p=200 cpTable 71 NSI Tech. Stimplan 3-Layer n’=0.5, k’=0.06Table 72 NSI Tech. Stimplan 5-Layer p=200 cpTable 73 NSI Tech. Stimplan 5-Layer n’=0.5, k’=0.06Table 74 RES Fracpro 3-Layer ~=200 wTable 75 RES Fracpro 3-Layer n’=0.5, k’=0.06Table 76 RES Fracpro 5-Layer p=200 cpTable 77 RES Fracpro 5-Layer n’=0.5, k’=0.06Table 78 Texaco Fracpro GDK Constant Height v=200 cpTable 79 Texaco Fracpro PKN Constant Height v=200 wTable 80 Texaco Fracpro 3-Layer p=200 cpTable 81 Texaco Fracpro 5-Layer p=200 cpTable 82 Texaco Fracpro 5-Layer n’=0.5, k’=0.06Table 83 Texaco Fracpro 5-Layer n’=0.5, k’=0.06 No tip effects

Page 10: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

List of Figures

Figure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16Figure 17Figure 18Figure 19Figure 20Figure 21Figure 22Figure 23Figure 24Figure 25Figure 26Figure 27Figure 28Figure 29Figure 30Figure 31Figure 32Figure 33Figure 34Figure 35Figure 36Figure 37Figure 38Figure 39Figure 40Figure 41Figure 42Figure 43

Length comparison for cases 1-4Net pressure comparison for cases 14Efficiency comparison for cases 1-4Comparison of maximum width at welibore for cases 1-4Comparison of average width at wellbore for cases 14Comparison of average width in fracture for cases 1-4Length history for case 1Net pressure history for case 1History of width at wellbore for case 1

Length history for case 2Net pressure history for case 2History of width at wellbore for case 2Length history for case 3Net pressure history for case 3Histo~ of width at wellbore for case 3Length history for case 4Net pressure history for case 4History of width at wellbore for case 4Length history for other constant height-models -200 cpNet pressure history for other constant height-models -200 cpHistory of width at wellbore for other mnstant-height models -200 cpLength history for other constant height-models - n’, k’Net pressure history for other constant height-models - n’, k’History of width at wellbore for other constant-height models - n’, k’Length comparison for cases 5 and 6Height comparison for cases 5 and 6Net pressure mmparison for cases 5 and 6Efficiency comparison for cases 5 and 6Comparison of maximum width at wellbore for cases 5 and 6Comparison of average width at wellbore for cases 5 and 6Comparison of average width in fracture for cases 5 and 6Length history for case 5Height history for case 5Net pressure history for case 5History of width at wellbore for case 5Length history for case 6Height history for case 6Net pressure history for case 6History of width at wellbore for case 6Length comparison for cases 7 and 8Height comparison for cases 7 and 8Net pressure comparison for cases 7 and 8Efficiency mmparison for cases 7 and 8

Page 11: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Figure 44 Comparison of maximum width at wellbore for cases 7 and 8Figure 45 Comparison of average width at wellbore for cases 7 and 8Figure 46 Comparison of average width in fracture for cases 7 and 8Figure 47 Length history for case 7Figure 48 Height history for case 7Figure 49 Net pressure history for case 7Figure 50 History of width at wellbore for case 7Figure 51 Length history for case 8Figure 52 Height history for case 8Figure 53 Net pressure history for case 8Figure 54 History of width at wellbore for case 8

Appendix AFigure Al Height profile - case 5Figure A2 Width profile - case 5Figure A3 Height profile - case 6Figure A4 Width profile - case 6Figure A5 Height profile - case 7Figure A6 Width profile - case 7Figure A7 Height profile - case 8Figure A8 Width profile - case 8

Appendix BFigure B1 Height profile - case 5Figure B2 Width profile - case 5Figure B3 Height profile - case 6Figure B4 Width profile - case 6Figure B5 Height profile - case 7Figure B6 Width profile - case 7Figure B7 Height profile - case 8Figure B8 Width profile - case 8

Appendix CFigure Cl Height profile - case 5Figure C2 Width profile - case 5Figure C3 Height profile - case 6Figure C4 Width profile - case 6Figure C5 Height profile - case 7Figure C6 Width profile - case 7Figure C7 Height profile - case 8Figure C8 Width profile - case 8

Appendix DFigure D1 Height profiles - cases 5-8

Page 12: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Appendix EFigure El Height profile - case 5Figure E2 Width profile - case 5Figure E3 Height profile - case 6Figure E4 Width profile - case 6Figure E5 Height profile - case 7Figure E6 Width profile - case 7Figure E7 Height profile - case 8Figure E8 Width profile - case 8

Appendix FFigure F1 Height profile (Stimplan) - case 5Figure F2 Width profile (Stimplan) - case 5Figure F3 Height profile (Stimplan) - case 6Figure F4 Width profile (Stimplan) - case 6Figure F5 Height profile (Stimplan) - case 7Figure F6 Width profile (Stimplan) - case 7Figure F7 Height profile (Stimplan) - case 8Figure F8 Width profile (Stimplan) - case 8Figure F9 Height profile (TerraFrac) - case 8

Appendix GFigure G1 Height profile - case 5Figure G2 Width profile - case 5Figure G3 Height profile - case 6Figure G4 Width profile - case 6Figure G5 Height profile - case 7Figure G6 Width profile - case 7Figure G7 Height profile - case 8Figure G8 Width profile - case 8

Page 13: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1

1.0 RESEARCH OBJECTIVES

The objective of the GRI Fracture Propagation Modeling Forum and the associatedpublication of the results in this report is to assemble a comparative study of availablehydraulic fracture models. Hydraulic fracturing is one of the most important stimulationtechniques available to the petroleum engineer, being used extensively in ti ht gas

9sandstones, f‘5 coalbed methane,6 high permeability sandstones in Alaska, veryweak sandstones off the US. gulf coast,8 in horizontal wells in chalks,9110 and in manyother applications from waste disposal to geothermal reservoirs. Because of thisdiversity of application, hydraulic fracture design models must be able to account forwidely varying rock properties, reservoir properties, in situ stresses, fracturing fluids,and proppant loads. As a result, fracture simulation has emerged as a highly mmplexendeavor that must be able to describe many different physical processes.

As the complexity of hydraulic fracturing has increased, many modelers have used ad-hoc features in their models to simulate mechanisms that are not well understood atthis time. Such mechanisms include tip effects, wall roughness, complex fracturing,and some aspects of height growth. As a result, fracture models have bemmeheteromorphic with no standard of comparison. Engineers are thus faced with adifficult choice in selecting a model that is appropriate for their needs.

In order to compare models in a reasonable sense, all models must be run with thesame input. The purpose of the Forum was to bring concerned modelers together toshare results of their models and to agree on a set of rigid input data that all muld runfor a comparative study. Participating modelers were given two treatment data sets(one Newtonian fluid, one power-law fluid) and four different geometries (mnstant-height PKN, constant-height GD~ 3-layer, 5-layer) and asked to provide length, height,maximum width at the wellbore, average width at the wellbore, average width in thewhole fracture, net pressure, and efficiency at 25 minute intervals throughout thefracture treatment (total time of 200 minutes). This report documents all of the resultssupplied by the modelers and tabulates and plots those results.

Page 14: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

2

2.0 RATIONALE

The petroleum engineer, who must design the fracture treatment, is often confrontedwith a difficult choice of selecting a suitable hydraulic-fracture model for hislher needs,yet there is very little comparative information available to help in making that choice,particularly with respect to the newer 3-D and pseudo-3-D models. Many experiencedengineers will also have their own biases about hydraulic fracture performance andwould prefer to find a mde whose output is most consistent with the engineersexperience. The purpose of this report is to help provide some guidance by comparingmany of the available simulators.

This report had its origins in the Fracture Propagation Modeling Forum held February26-27, 1991, near Houston, TX. This forum, which was sponsored by the GasResearch Institute, was open to all known hydraulic fracturing modelers. Participantswere asked to provide fracture designs based on the SFE No. 3 fracture experiment, aswell as a history match of the actual pressure data from the treatment. Aftercomparison of the fracture designs and histoty matches presented at this meeting, afinal, revised design data set was given to all participants. Most of the revised datasets were returned by September 1991, although a couple were returned or modified aslate as November 1993. The results in this report are derived from the modelcalculations of the revised design data set. Because of the difficulty in trying toestablish any consistency in the use of the actual treatment data (e.g., effects of thebreaker, temperature, rate changes, etc.), it was decided that any further attempt tocompare history matches would need to be deferred. Thus, publication of forum resultsis limited to the design phase only.

To publish the results, a four-member committee (the authors) was chosen from forumparticipants. In assembling this mmparison, the members of the committee havepurposely attempted to avoid making any judgments about the relative value of differentmodels so as not to inject our biases into this comparison. Only the results andquantifiable comparisons are given.

Since hydraulic fracturing is performed in a large percentage of gas completions (andin recompletion), the benefit to the gas consumer comes from the optimization of thistechnique when an appropriate model is used. Optimization results in more cost-effective completions, enhanced gas production, lower wellhead costs, and additionalsupply.

The modelers who participated in the forum and prepared data for this paper desewespecial thanks for their efforts. Most importantly, Dr. Steve Holditch of S.A. Holditch &Associates should be singled out for special mention as the prime mover of the forum, atfollow-up SPE paper, and this report.

Page 15: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

3

3.0 BACKGROUND - BASIC MODELING DISCUSSION

In recent years, there has been a proliferation of fracturing simulators used in the oilindustry. This proliferation was intensified by the availability of personal computers andtheneed for fast running design simulators forusein the field. Apply ingthese modelsas “black boxes”, without knowing the underlying assumptions may lead to erroneousconclusions, especially for unconfined fracture growth. While specific descriptions ofthe individual models are given in section 4.0, this section provides a general overviewof hydraulic-fracture models and catalogues the various models into similar groupings.

Hydraulic fracturing is a complex non-linear mathematical problem, that involves themechanical interaction of the propagating fracture with the fluid dynamics of theinjected slurry. Several assumptions are commonly made to render the problemtractable: plane fractures, symmetric with respect to the wellbore; elastic formation;linear fracture mechanics for fracture propagation prediction; power law behavior offracturing fluids and slurries; simplification of fracture geometry, and its representationby few geometric parameters; etc. The reader is referred to the SPE MonographVolume 1211 for a detailed description of the governing equations. Although themodels predict “trends” of treating pressure behavio~ they may not always reliablypredict the observed behavior for a given treatment. This discrepancy has beenattributed to many complex interactions of the injected fluids with the formation that arenot well understood.

An attempt to phenomenologically characterize some of these mmplex processesoccurring within the fracture (e.g., multiple fractures, increased frictional losses) andnear the fracture tip (e.g. non-linear formation behavior, microcracking, formationplasticity, dilatancy, plugging, etc.) was made in various simulators by the introductionof additional ad hoc parameters (“knobs”). The choice of values for these parametersis only based on the experience of the modeler, possibly with some guidance from thelaborato~, field observations, or from other computational resources (e.g., finiteelement codes). These knobs are used to match model predictions with field observedbehavior, and result in the lack of a standard model response for a given physicalproblem. This issue was addressed in the forum by having different participants(several different models) simulate common test cases derived from the actual SFE No.3 well fracturing treatment. These models can be categorized in the order ofdecreasing complexity as follows:

(1) Planar threedimensional (3D) models

● TerraFrac of TerraTek, Inc.12-16 run by ARCO● HYFRAC3D by Dr. Advani of Lehigh University 7

(2) Unique Finite Difference Simulator GOHFER of Marathon Oil CO.18119

Page 16: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

4

(3) Planar Pseudo threedimensional models

A- “Cell” Approach

STIMPIAN of NSI, Inc.ENERFRAC of Shel120~21TRIFRAC of Holditch & Assoc.

B- Overall Fracture Geomet~ Parameterization

FRACPRO of RES, lnc.22-25MFRAC-11of Meyer and ASSOC.26-29

(4) Classic PKN and GDK Models30-35

PROP of Halliburton34-36Chevron 2-D mode137Conoco 2-D mode138139Shell 2-D modelPseudo-3-D models run in mnstant-height mode

A discussion of the basics of these models is given to provide some insights on themodel assumptions and how they are expected to affect the results.

3.1 Planar 3-D Models

The TerraFrac12-16 and the HYFRAC3D17 models employ similar assumptions andformulate the physics rigorously, assuming planar fractures of arbitrary shape in alinearly elastic formation, two dimensional flow in the fracture, power law fluids, andlinear fracture mechanics for fracture propagation. Their difference is in the numericaltechnique to calculate fracture opening. TerraFrac uses an integral equationrepresentation, while the HYFRAC3D model uses the finite element method. Bothmodels use finite elements for twodimensional fluid flow within the fracture and employa fracture tip advancement proportional to the stress intensity factor on the fracture tipcontour.

3.2 Planar 3-D Finite-Difference Model -GOHFER

Besides the numerical technique used, this modell8119 is different from the previousmodels in two fundamental ways: (a) fracture opening is calculated by superpositionusing the surface displacement of a half space under normal load (BoussinesqSolution); (b) the fracture propagates when the tensile stress normal to the fracturingplane exceeds the tensile strength of the formation at some distance outside thefracture by enforcing the tensile criterion at the centroid of the cells “outside” the

Page 17: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

5

fracturing mntour. This model predicts higher treating pressures and shorter and widerfractures as compared with the ones of the previous 3D models.

3.3 Pseudo-3-D Models

These models were developed from the PKN model by removing the requirement ofconstant fracture height. They use equations based on simple geometries (radial} twodimensional, elliptical) to calculate fracture width as a function of position and pressureand apply a fracture propagation criterion to both length and height. Furthermore, theyassume one dimensional flow along the length of the fracture.

These models can be divided into two categories: (A) models that divide the fracturealong its length into “cells”, and use local cell geometry (twodimensional crack orpenny crack) to relate fracture opening with fluid pressure; (B) models that use aparametric representation of the total fracture geometry. As a result of theseassumptions, it is expected that each class will have different fracture geometry, evenfor the simple case of a mnfined fracture.

The pseudo-3D simulators are extensively used for fracture design because of theirefficiency and their availability on personal mmputers. However, they are directlyapplicable only for the geometries that are not significantly different from the basicassumptions of the model (e.g., models based on a PKN geometry should have largelength/height ratios to be appropriate). For relatively unconfined fracture growth in acomplex in situ stress profile, a 3D model is thus more accurate in predicting “trends” offracture geometry. To avoid this problem, some pseudo-3-D models attempt to includetruly 3D fracture behavior in terms of “history” matching or “lumped” parametersdetermined from fully 3D-solutions of simpler problems or determined from simulationsusing 3D models.

3.4 Classic PKN and GDK Models

The difference in treating pressure behavior and fracture geometty of the PKN andGDK models is well documented in the literature 1140and need not be repeated here.

Page 18: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

6

4.0 FRACTURE MODELS

This section describes the individual fracture models that were used in this comparisorl.Short descriptions of the models were provided by the modelers or by the companieswho ran commercially available models.

4.1 S.A. Holditch & Assoc. (TRIFRAC\

SAH’S hydraulic fracturing model TRIFRAC is a pseudo-3-D fracture propagation andproppant transport model that computes created and propped fracture dimensionsusing a finitedifference numerical approach. It has the capability to handle multiplenon-symmetric stress layers with unique values for Young’s modulus, Poisson’s ratio,fracture toughness, permeability, porosity, and fluid Ieakoff coefficients for each layer.Properties for a maximum of twenty-two layers can be input currently.

The apparent viscosity of the fracturing fluid is computed based upon the shear rateinside the fracture and changes in n’ and k’ due to variations of temperature and time.A temperature calculation model is thus part of TRIFRAC. Choice of initiating thehydraulic fracture from ten different layers simultaneously is available. Special optionsare available to input pump schedule for nitrogen foam treatments.

The created geometry computation module is coupled with a rigorous finite differenceproppant transport simulator that solves simultaneously for proppant distribution,transport, and settling along with the growth of the fracture. Depending upon the fluid ‘velocity along the height of the fracture and the rate of settling of the proppant, themodel computes the proppant profile at each time step during the job.

TRIFRAC also has the simpler twodimensional geometry computational finite-difference models of Geertsma and DeKlerk, and Perkins, Kern, and Nordgren.Horizontal fracture geometry calwlation using the GDK method is also available. Allthese models are coupled with proppant transport calculation modules.

4.2 Mever & Associates (MFRAC-11~

MFRAC-1126-29is a pseudo-3-D hydraulic fracturing simulator. MFRAC-11alsoincludes options for the penny, GeertsmadeKlerk and Perkins-Kern/Nordgren type 2-Dfracturing models. Version 7.0, written in C++ and developed under Microsoft Windows3.x, offers a user interface which takes full advantage of the facilities existing under thisoperating system. The program’s features include intelligent menus, a complete fluiddatabase, flexible units and user wstomized help screens.This study was run usingMFRAC-11,Version 6.1.

MFRAC-11accounts for the coupled parameters affecting fracture propagation andproppant transport. The major fracture, rock and fluid mechanics phenomena include:(1) multi-layer, unsymmetrical confining stress mntrast, (2) fracture toughness and

Page 19: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

7

tip/overpressure effects, (3) rock deformation, (4) variable injection rate and timedependent fluid rheology properties, (5) multi-layer leak-off with spurt loss and (6) 2-Dproppant transport. The fracture propagation model calculates fracture length, upperand lower heights, width, net pressure, efficiency, and geometry parameters as afunction of time. The width variation as a function of height and confining stress is alsocalculated.

In order to provide applicability over the broadest range of circumstances, MFRAC-11offers numerous options which can be employed by the user. These options and otherfree parameters (“knobs”) allows customization in the modeling approach adopted.MFRAC-11was run in two different modes to demonstrate the effects of some of theseparameters. In one case, the base model using the system defaults was run(designated MEYER-1 ); in a second case (MEYER-2) additional parameters (such asgreater friction drop in the fracture) were applied. In both cases, as a default, theviscous thinning assumption was made. Without viscous thinning, the effective frictionfactor would have increased, resulting in higher net pressures, greater widths and ashorter length. In addition, the fully implicit coupled model for height growth (Ver. 7.0)results in increased development of fracture height and net pressure for certain multi-Iayer formations.

4.3 Advani [Lehigh HYFRAC3D~

The 3 layer and 5 la er model results (Cases 5 through 8) are obtained from the1HYFRAC3D code. 1 This finite element mde is based on a set of coupled mass

conservation, fluid momentum, constitutive elasticity and fracture mechanics equationsgoverning planar hydraulic fracture propagation in a multilayered reservoir. A mappingtechnique of the baseline mesh (88 triangular elements representing half of thefracture) defined in a unit circle to arbitrary shaped fracture geometries is utilized in thenumerical scheme for tracking the moving fracture front.

The PKN model results (Cases 1 and 2) are also based on a twodimensional finiteelement model simulator with standard PKN model equations including vertical stiffnessand onedimensional fluid flow. These simulation results are obtained using 20 lineelements for the normalized, timedependent fracture half-length.

4.4 Shell (ENERFRAC\

ENERFRAC2°D21 is a hydraulic fracture model that predicts fracture dimensions foruncontained (circular) and contained (rectangular) fractures. ENERFRAC incorporatesfracture tip effects in addition to the other interacting processes of viscous fluid flow,elastic rock deformation, and fluid loss. Fracture tip effects are accounted for through adirect input of the rock’s apparent fracture toughness or the fracture tip net pressure(overpressure). This overpressure is defined as the instantaneous shut-in-pressureminus the closure pressure and can be determined in the field from a microfrac orminifrac test.

Page 20: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

8

Shell also provided 2-D PKN and GDK model results. The ENERFRAC resultsprovided a useful comparison of the effect of free model parameters (the “knobs”discussed earlier) on the results. Shell provided results for typical fracture toughnessvalues measured in lab tests (the base case, designated ENERFRAC-1 ) and also for aseveral tip overpressures. The particular case of a tip overpressure of 1000 psi(ENERFRAC-2) is shown in several plots for comparison with the base case. Thiscomparison allows us to see the effect of fracture tip overpressure on fracture geometryand net pressure.

4.5 Halliburton (PROP]

The PROP program~-~ is a 2-D fracture design model based on Daneshy’snumerical solution. Its numerical nature makes the model much more flexible thanmost analytical models. For example, the program has recently been modified for useof multiple fluids and rates within a single treatment, each fluid with its own set of time-and temperaturedependent theological parameters. In addition to the power-lawmodel normally used to characterize gelled fracturing fluids, PROP uses the three-parameter Herschel-Bulkley model for fluids containing a nitrogen or carbon dioxidephase. The program’s proppant transport calculations are of similar capability.

Although the model originally presented by Daneshy was based on the Khristianovic-Zheltov width equation (designated GDK in this paper), the PROP program has sincebeen expanded to include a similar numerical solution of PKN-type geometry with awidth profile based on calculated local pressures. The results presented here are forthe GDK-type solution only.

4.6 Chevron

Chevron’s 2-D fracturing simulator is capable of predicting the propagation of constantheight hydraulically induced vertical fractures for a power-law fluid. The simulator alsoincludes a proppant transport model with proppant settling and a production model.The simulator is capable of predicting the created fracture geometry based on eitherPerWs-Kem-Nordgren (PKN) or the GeertsmadeKlerk (GDK) models. It is mostsuitable to design fractures where the geologic conditions restrict height growth. Infracture propagation models, the equations describing conservation of mass,conservation of momentum, continuity of fluid flow, and linear elastic deformation of therock in plane strain are used to calculate mass flux, fracture width, pressure, and lengthas function of time. The proppant transport model calculates the final proppedconcentration, width, and bank height given a settlement velocity, and can predictpossible problems caused by proppant bridging or screen out.

The fractured well production model is based on an analytic solution developed by Leeand Brockenbrough 37 to study the transient behavior of a well intercepted by a finiteconductivity fracture in an infinite reservoir. This production model provides the short

Page 21: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

9

time production results. Combining this solution with the well known semi-logasymptotic solution for longer time periods provides a reliable tool for predicting thepotential productivity of the fractured well.

4.7 Conoco

Conom's fratiure design program isamnstant-height model 2-D)whereeither PKN$or GDK geometry can be selected, as described by McLeod.3 It has single inputs for

n’, k’ and Ieakoff coefficient. However, the model is capable of calculating the positionsand concentrations of progressive fluidlproppant stages. Fracture area can becalculated by either the Howard and Fast Model or an extremely accurate simplificationby CrawFord.39

4.8 Marathon (GOHFER~

Marathon Oil Company’s Grid Oriented Hydraulic Fracture Extension Replicator(GOHFER)l 8S19is a planar 3-D fracture geometry simulator with coupled multi-dimensional fluid flow and particle transport. As indicated by the name, the model isbased on a regular grid structure which is used for both the elastic rock displacementcalculations and as a planar 2-D finite difference grid for the fluid flow solutions. Theareal pressure distribution obtained from the fluid flow equations, including proppanttransport, is iteratively coupled to the elastic deformation solution. Using the finitedifference scheme for fluid flow allows modeling of multiple discrete fluid entry pointsrepresenting perforations at various locations.

Each grid node can be assigned an individual value of net stress, pore pressure,permeability, porosity, wall-building coefficient, rock strength, Young’s Modulus, andPoisson’s Ratio, as well as variables describing fracture wall roughness and tortuosity.The displacement of the fracture face at each node is determined by integration of thepressure distribution over all nodes, including the computed tensile stress distributionin the unbroken rock surrounding the fracture. The fracture width equation used is thegeneral formula for displacement of a semi-infinite half-space acted upon by adistributed load, given by Boussinesq. The solution is general enough to allowmodeling of multiple fracture initiation sites simultaneously, and is applicable to anyplanar 3-D geometry from perfect containment to uncontrolled height growth.

4.9 ARCO (usina TerraFrac\

TerraFracTM Code12-16 is a fully threedimensional hydraulic fracture simulator. Itwas initiated at Terra Tek in 1978 and its commercial availability was announced inDecember, 1983. The overall approach used in the model is to subdivide the fractureinto discrete elements and to solve the governing equations for these elements. Thesegoverning equations consist of(1) 3-D elasticity equations that relate pressure on thecrack faces to the crack opening, (2) 2-D fluid flow equations that relate the flow in thefracture to the pressure gradients in the fluid, and (3) a fracture criterion that relates the

Page 22: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

10

intensity of stress state ahead of the crack front to the critical intensity for Mode Ifracture growth. TerraFrac provides many distinctive features including(1) 2-D fluidflow for both proppant and temperature distribution, (2) multiple stages having differenlfluids, proppants, rates, with fluid and proppant properties being functions oftemperature if desired, (3) multiple layers, each having different in situ stress, Young’smodulus, fracture toughness, Poisson’s ratio, and Ieakoff, (4) poroelastic andthermoplastic capabilities for waterflooding and other applications, (5) a robust meshgenerator to handle a wide variety of fracture geometries and a quasi-Newton methodto solve the nonlinear system of equations for the fluid pressures (this approachprovides for fast convergence and high accuracy), and (6) a post-shut-in calculationcapability for which no additional assumptions are made (only the injection ratechanges).

4.10 NSI (STIMPLAN~

STIMPLAN is a state-of-the-art 3-D hydraulic-fracture simulator for fracture design andanalysis in complex situations involving height growth, proppant settling, foam fluids, tipscreen out, etc. The model has complete fluid/proppant tracking that allows foroptimum fluid selection and scheduling based on time and temperature history.Fracture height growth is calculated through multiple layers, and includes proppantsettling and bridging calwlations. A Fracture Analysis/History Matching moduleprovides for history matching of measured net treating pressures to yield the mostaccurate possible estimation of actual fracture geometry and behavior. Also,simulations during the fracture closure (pressure decline) period aid in pressure declineanalysis for fluid loss in mmplex geologic situations.

4.11 Resources Enaineerina Svstems (FRACPRO)

FRACPR022-25 uses measured values of flowrate, proppant concentration, and fluidrheology parameters to calculate the pressure drop down a wellbore of variabledeviation and diameter, and the time histories of the fracture growth and the netfracture pressure are calwlated. The wellbore model handles non-Newtonian fluidsand mrrects for the effects of nitrogen foam, carbon dioxide, and proppant phases.The model also accounts for friction variation from entrained proppant.

The fracture model is 3-D, in that spatial variations in resewoir stress, modulus,pressure, and flow distribution are taken into account. However, it does not need tocalwlate the variations at specific points within the fracture. Instead, the effects areintegrated into functional coefficients of governing differential equations, greatlysimplifying the calwlation of the fracture dimensions. The module can therefore runmany times faster than real time, as required for history matching on-site. Thecoefficients necessary to calwlate the spatial variations are calculated from a full threedimensional model and checked against experimental and field test data.

Page 23: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

11

FRACPRO handles up to three modulus zones, up to fifty stress zones, and up to fiftypermeable (Ieakoff) zones. Fluid loss is modeled as one-dimensional flowperpendicular to the fracture face, following Darcy-law behavior, including spurt loss,filtercake buildup on the fracture face, and a impressible reservoir-fluid region. Therise in confining stress due to poroelastic effects (backstress) is included. Heattransfer modeling assumes that there is a cubic-fit temperature distribution between thefracture and the end of the heat transfer region.

FRACPRO models the convection and settling of proppant in a fracture. Proppantconvection is a process whereby heavier treatment stages (e.g., proppant stages)displace rapidly downward from the perforations to the bottom of the fracture. Thosestages are then replaced by the pad, or by low-concentration proppant stages. InitialIaboratoty and computer simulations indicate that proppant convection maybe thedominant mechanism in propped-fracture stimulations. As well, FRACPRO can beused to model proppant settling. The proppant is carried with the fracturing fluid, andsettles. The model takes into account the effects of non-Newtonian fluids, hinderedsettling rates, and settled bank buildup.

4.12 Texaco (usina FRACPRO)

FRACPRO was also run by TEXACO for six different cases. These include single-layerPKN and GDK modes, a 3-layer case with mnstant frac fluid viscosity, and 54ayercases for constant fluid viscosity, power-law-fluid behavior, and power-law-fluidbehavior with the tip dominated rheology behavior not operating. The 5-layer runsprovide a good comparison of tipdominated vs. mnventional rheology results usingFRACPRO. The 3-layer and the tipdominated 5-layer cases provide a goodcomparison of the results for two different companies using the same model.

4.13 ARCO (usina STIMPLAN\

STIMPIAN was also run by ARCO for four different cases. These include both 3-layerand 5-layer cases. These results provide a good comparison of the results for twodifferent companies using the same model.

Page 24: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

12

5.0 SFE-3 FORMATION AND TREATMENT DATA

The input data for the fracture modeling com arisen is based upon the results obtainedat the GR1-sponsored SFE-3 experiment.3~4r SFE-3 was drilled as the Mobil CargillUnit No. 15 well in the Waskom Field, Harrison County, Texas. The well was spuddedin September, 1988, and drilled to a total depth of 9700 ft (2957 m). Of particularinterest was the Cotton Valley Taylor sand which was perforated between 9225-9250 ft(2812-281 9 m) and 9285-9330 ft (2830-2844 m). An extensive log program was run onthis well and detailed core analyses performed. Both prefrac well-testing and post-fracproduction testing were performed. Two minifracs and one full-scale treatment wereconducted as part of the stimulation program.

The SFE-3 data set was specifically chosen to insure that the model comparison wouldbe performed with actual field data and not for a contrived data set that might favor onetype of model over others. In addition, the SFE-3 data set is one of the most completesets of well information available, and includes stress, rock and reservoir and well-performance results.

For this initial study, the relevant rock and reservoir information are shown in Table 1.As will be described in the next section, three different physical mnfigurations wereconsidered: a single layer, three layers, and five layers. Stress and rock propertymeasurements were averaged over the appropriate depths for each interval to yield thephysical data given in Table 1. Most importantly, the stress contrasts range from 1450-1650 psi (1O-11.4 MPa), although the lower barrier is only 40 ft (12 m) thick for the fivelayer mnfiguration. Young’s modulus and Poisson’s ratio were obtained from sonicmeasurements, thus accounting for the elevated values of Young’s modulus.

The actual SFE-3 treatment was a thirteen-stage procedure using primarily a40 lb/1000 gal (4.8 kg/m3) crosslinked gel with sand stages varying from 1-8 ppg(120 kg/m3). For the purpose of this comparison, the treatment was simplified to asingle, constant-propetiy, fluid with no proppant, primarily because changes in fluidproperties due to temperature or the addition of proppant can not be easily quantifiedand any resulting mmparisons would be of questionable value.

Page 25: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

13

6.0 TESTCASES

As noted in the description section, most of the models are capable of accommodatingand processing a much broader range of complex data than presented in this data set(i.e., multiple rock properties, leak-off coefficients, n’, k’, etc.). Refer to Tables 1 and 2for the mmplete set of data input. However, the data set was arbitrarily restricted tolimit as many discretionary inputs as possible to allow a more direct comparison ofmodel performance. The treatment input is also not to be construed as optimum designparameters, but rather an approximation of that from SFE No. 3.

There were a total of eight possible cases each participant could model if they sochose. These were GDK, PKN, 3-layer, and 5-layer cases with separate runs for amnstant Newtonian viscosity and a constant n’ and k’ power-law fluid as follows:

Case 1 GDK Constant height -200 cp fluidCase 2 GDK Constant height - Power-law fluid (n’, k’)Case 3 PKN Constant height -200 cp fluidCase 4 PKN Constant height - Power-law fluid (n’, k’)Case 5 3-Layer -200 cp fluidCase 6 3-Layer - Power-law fluid (n’, k’)Case 7 5-Layer -200 w fluidCase 8 5-Layer - Power-law fluid (n’, k’)

The PKN and GDK cases were run with a constant height (2-D) set at 170 ft (52 m).The 3-layer and 5-layer cases were run using a 3-Dora Pseudo-3-D model allowingfracture height to be determined by the model. Of particular interest was if the fracturebroke through zone 4 in the 5-layer case.

The important rock propetiy data for the 3-layer case are shown graphically in Figure 1,and the data for the 5-layer case are shown in Figure 2. These stress and modulusprofiles are simplifications of the actual stress and modulus profiles measured at theSFE No. 3 site.

Page 26: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

14

7.0 MODEL RESULTS

A short summary of the final geometry at the end of pumping is given in Tables 3-5 forthe 2-D, 3-layer, and 5-layer cases respectively. A summary of the time tobreakthrough for the 5-layer calculations is given in Table 6. All of the submitted datafrom the modelers are given in Tables 7-83, in the following order

S.A. Holditch & Assoc. Trifrac Tables 7-14Meyer & Assoc. M-FRAC-11base case (Meyer-1) Tables 15-22Meyer & Assoc. M-FRAC-11“knobs” (Meyer-2) Tables 23-30Advani HYFRAC3D Tables 31-36Shell 2-D Models Tables 37+0Shell Enetirac. Tables 41-50Halliburton 2-D Prop Tables 51-52Chevron 2-D models Tables 53-54Conoco 2-D models Tables 55-58Marathon GOHFER Tables 59-ARCO (Stimplan) Tables 65%8ARCO (TerraFrac) Table 69NSI Stimplan Tables 70-73RES Fracpro Tables 74-77Texaco (Fracpro) Tables 78-83

The graphs of the data shown in this section were derived from this tabular data set. Inaddition, some modelers provided additional graphical information on the width andheight profiles along the length of the crack. These are given in the followingappendices:

S.A. Holditch & Assoc. Trifrac Appendix AMeyer & Assoc. M-FRAC-11base case (Meyer-1) Appendix BMeyer & Assoc. M-FRAC-11“knobs” (Meyer-2) Appendix CAdvani HYFRAC3D Appendix DMarathon GOHFER Appendix EARCO (Stimplan and TerraFrac) Appendix FRES Fracpro Appendix G

7.1 2-D Results (Cases 1AI

Considering first the 2-D summary results given in Table 1, the final half length for all ofthe 2-D models are shown in Figure 3. The well-known difference in length estimatesbetween the PKN and GDK models is evident in these results, but some differencesbetween different models in each group bemme apparent. Presumably, this differenceis because of other options included in some models. The effect of the differenttheologies is generally small. Besides the PKN and GDK models, GOHFER andENERFRAC-1 and -2 are also shown.

Page 27: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

15

The reduction in length between ENERFRAC-1 and ENERFRAC-2 is due to increasedtip overpressure. Likewise, the reduction in length between MEYER-1 and MEYER-2 isdue to options that were included in MEYER-2 which reflect the designers’incorporation of more complex physics into the fracturing process.

The net pressures for the 2-D models, shown in Figure 4, follow a similar pattern tolength, with the GDK models giving low pressures and the PKN models providing highnet pressures. GOHFER is different in that it predicts short lengths, like the GDKmodels, but high pressures like the PKN models.

The efficiencies for the 2-D calculations are shown in Figure 5. Values ranged from 70-95%.

The fracture maximum width is shown in Figure 6, while the average width at thewellbore is given in Figure 7, and the average width throughout the whole fracture isshown in Figure 8. As expected, the GDK models provide much greater width than thePKN models. GOHFERS width is more similar to the GDK models while ENERFRAC’Swidth is closer to the PKN models.

The time-history results for Case 1 (GDK with 200-cP fluid) are shown in Figures 9-11for length, net pressure and width at the wellbore, respectively. It is interesting to notethat even for this simple data set there is a significant difference between the variousGDK models.

Time-history results for Case 2 (GDK with power-law fluid) are shown in Figures 12-14for length, net pressure and width at the wellbore, respectively. As with the Case 1results, there is also a significant difference in the calculations of the various models.

Time history results for Case 3 (PKN with 200-cP fluid) are shown in Figures 15-17 forlength, net pressure and maximum width at the wellbore, respectively. Different PKNmodels also have considerable variation in their calculated output.

Time history results for Case 4 (PKN with power-law fluid) are shown in Figures 18-20for length, net pressure and maximum width at the wellbore, respectively.

Time history results for other 2-D models using a 200-cp fluid (these do not fit exactlyinto the Case 1 or 3 categories) are shown in Figures 21-23 for length, net pressureand maximum width at the wellbore, respectively. The effect of tip overpressure is seenby comparing the two ENERFRAC cases.

Time history results for other 2-D models using a power-law fluid are shown inFigures 24-26 for length, net pressure and maximum width at the wellbore,respectively. Tip-overPressure effects can be again seen for a power-law fluid.

Page 28: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

16

7.2 3-Laver Results

The 34ayer summary results (Table 4) show considerably more variability than the 2-Dcases. A comparison of all 3-Layer length calculations (Cases 5 and 6) is shown inFigure 27. The fracture half length varies from less than 1000 ft for FRACPRO togreater than 3000 ft for the conventional pseudo-3-D models. An interesting andillustrative comparison is seen in the differences between MEYER-1 and -2. MEYER-2,using some features that the modeler believes are more appropriate physics, results ina fracture length that is nearly 1000 ft less than the base case with no options. Manysuch options have probably been employed on the other models, but were notidentified as such for this comparison.

The favorable comparison between ARCO and NSI running Stimplan, and a similarfavorable comparison between TEXACO and RES running FRACPRO, show thatconsistent results can be obtained from a given model even if run by differentorganizations.

The fracture height comparison, given in Figure 28, shows that much greater heightgrowth is obtained by FRACPRO than by other models. Net pressures, shown inFigure 29, are particularly high in FRACPRO and GOHFER. Efficiencies vary from40% to greater than 950A,as given in Figure 30.

Fracture maximum widths (at the wellbore) are given in Figure 31, the maximumaverage width at the wellbore is shown in Figure 32, and the average width in the entirefracture is shown in Figure 33. In all three cases, Fracpro and GOHFER calculatemuch greater widths than the other models.

Time histories for Case 5 (3-layer with 200-cP fluid) are given in Figures 34-37 forlength, height, net pressure and maximum width at the wellbore, respectively. Thesegraphs clearly show that there is an amazing range of output from the different models,even for this relatively simple case.

Time histories for Case 6 (3-layer with power-law fluid) are given in Figures 38-41 forlength, height, net pressure and maximum width at the wellbore, respectively. Heightgrowth is extremely fast in FRACPRO, but much better contained in most of the othermodels.

7.3 5-Laver Results

The 5-layer (Cases 7 and 8) summary results (Table 5) are similar to the 3-layercomparison, except that the length in some models is shorter because the heightbreaks through the lower barrier. The half lengths are shown in Figure 42 and thefracture heights are given in Figure 43. Net pressures range from nearly 700 psi(4.8 MPa) to almost ‘1400psi (9.7 MPa), as shown in Figure 44. Efficiencies rangefrom about 60°A to 970A,as shown in Figure 45. Again, there is relatively good

Page 29: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

17

agreement between the same model run by two different mmpanies (Stimplan by NSIand ARCO and Fracpro by RES and Texaco).

The maximum fracture width at the wellbore is shown in Figure 46, the fracture averagewidth at the wellbore is given in Figure 47, and the average width throughout the entirefracture is shown in Figure 48. As in the 3-layer case, Fracpro and GOHFER providethe most width development.

Time histories for Case 7 (5-layer with 200-cp fluid) are shown in Figures 49-52 forlength, height, net pressure, and maximum width at the wellbore, respectively. Thelength development in this case is not uniform because height breakthrough into thelower barrier limits growth in some of the models. By mmparing all these results withthe 3-layer calculations, the effect of breakthrough into the lower low-stress region canbe seen.

Time histories for Case 8 (5-layer with power-law fluid) are shown in Figures 53-56 forlength, height, net pressure, and maximum width at the wellbore, respectively. One ofthe interesting results of this study is the behavior of the pressure response as thefracture breaks into the lower barrier. Some models have pressure decreasing, othershave pressure remaining flat, while others continue to have pressure increase.

8.0 DISCUSSION

The completion engineer now has a wide array of hydraulic models available for bothdesign and analysis of hydraulic-fracture treatments. However, these models calculatewidely different fracture geometries for the same input parameters, and it bemmesimportant to choose a model that meets the needs of that particular engineer. Thepurpose of this comparison study is to evaluate the size of the difference and to provides~lcient information for the engineer to make a studied choice.

It is clear that there are some models that predict results that are significantly differentfrom the majority. Considering the 5-layer cases shown in Figures 42-44, FRACPROcalculates very short fracture lengths and high net pressures and large height.GOHFER also predicts short fracture lengths and high net pressures, but the heightgrowth is not as severe. TRIFRAC, STIMPLAN, TERRAFRAC, and MFRAC-11are allin general agreement, with longer fractures, less height, and somewhat lower netpressures. HYFRAC3D is midway between the two end cases.

MFRAC-11(in 2-D, 3-layer and 5-layer geometries), ENERFRAC (in 2-D geometry), andTexaco’s FRACPRO cases (5-layer geometry) were run in two different modes and thusprovide a useful assessment of the importance of the options that are available to thefracture designer. In the original formulation of this study, the modelers were asked torun their models in both a base mode (no options) and then with a best-option mode,that is, a mode that reflected their expectations of the options needed to provide theclosest simulation of true fracture behavior. Such options may have included tip

Page 30: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

18

effects, ‘higher frictional pressure drops in the fracture, multiple fracture strands,enhanced toughness, or others.

In the three cases mentioned above, the modelers provided such a comparison, andthese results can be used to estimate how significantly the engineer can modify thefracture design by trying to incorporate his estimate of the “best physics” possible for agiven reservoir. Presumably, such an estimate would be guided by experience with thereservoir. For the 5-layer case with non-Newtonian viscosity, “best physics” results forfracture length differed by about 22% for MFRAC-11and 57% for FRACPRO run byTexaco. For the 2-D case with non-Newtonian rheology, ENERFRAC results differedby about 7%. Since many models have such options, these results should be a usefulguideline for estimating the differences in model designs that can be obtained.

The 2-D models, both PKN and GD~ generally provide self-consistent results and thedifferences between these types of models has been discussed in priorpublications.1 1140 Chevron’s 2-D model, however, yields considerably shorter lengthsthan the other PKN and GDK models. GOHFER is also of note because it yields alength typical of the GDK models with the net pressure of the PKN models. Otherdifferences in these 2-D models are minor.

This particular case was chosen because it was a realistic field situation for whichdetailed data were available. The committee and the modelers all recognize that otherformations, with different stress and Iithology data, may provide a considerably differentcomparison of the models. Good examples would be cases where there are minimalstress contrasts and where the stress contrasts are extremely large. h would bebeneficial if future model comparison studies investigated those cases as well.

It is also interesting to note that there was general agreement among the modelers atthe forum that pressure-history matching (not included in this report) would alwaysresult in similar fracture geometries, regardless of the model. This is because a matchof the pressure will constrain the width of the fracture, and hence length and height willlvaty by relatively small amounts. Such an agreement is not the case, however, fordesign modeling (the results of this report) where the pressure is determined by themodel.

Finally, in assembling this comparison, the members of the mmmittee (the authors)have purposely attempted to avoid making any value comparisons between the variousmodels. Only the results and quantifiable comparisons (e.g., model A frac length isgreater than model B frac length) are given, as it would take a committee with greaterpowers than this one has to truly know how the fracture is evolving in the subsurfaceand, thus, to decide which model is better.

Page 31: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

19

9.0 CONCLUSIONS

A comparison study of many of the available hydraulic fracture models has beencompleted. This study provides information on the relative differences in the models forthis one particular case.

These comparisons show that differences in calculated fracture lengths can be large,as much as a factor of three difference. Fracture heights, for the multi-layer cases, candiffer by more than 50%. Net pressures also differ by a factor of two.

Calculations from the same model with different options give a useful comparison of theimportance of all of the additional physical mechanisms that are continuously beingadded to the models to explain the wide variety of pressure responses observed indifferent reservoirs. Such options give the completions engineer considerableflexibility, but also difficult choices of when various options should be used.

Page 32: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

20

10.0 RECOMMENDATIONS

Two primary recommendations result from this study.● It would be beneficial to perform this same type of study for different input

conditions. This particular case was chosen because it was a realistic field situationfor which detailed data were available. Other warranted cases are those wherethere are minimal stress contrasts and where the stress contrasts are extremelylarge

● The pressure-history matches that were performed at the Fracture PropagationModeling Forum provided many interesting results, but were not suitable fordocumentation because there was no simple way to compare the various models.However, a comparison of pressure-history matches would be of value.

Page 33: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

21

11.0 REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

Holditch, S.A., B.M. Robinson, W.S. Whitehead & J.W. Ely, “The GRI Staged FieldExperiment,” SPE Form. EvaI., 519-533, Sept. 1988.

Robinson, B.M., S.A. Holditch & R.E. Peterson, “The Gas Research Institute’s 2ndStaged Field Exp.: A Study of Hydraulic Fracturing,” SPE 21495, Gas Tech. Symp.,Houston, TX, Jan. 1991.

Robinson, B.M., S.A. Holditch, W.S. Whitehead & R.E. Peterson, “HydraulicFracturing Research in East Texas: Third GRI Staged Field Experiment”, ~, Vol.44, 78-87, Jan. 1992.

Saunders, B.F., B.M. Robinson, S.A. Holditch & R.E. Peterson, “HydraulicFracturing Research in the Frontier Formation through the Gas Research Institute’sFourth Staged Field Experiment,” SPE 24854, 67th Ann. Tech. Conf., Washington,D.C., 909-922, Oct. 1992.

Northrop, D.A. & K-H. Frohne, “The Multiwell Experiment - A Field Laboratory inTight Gas Sandstone Reservoirs,” ~, Vol. 42,772-779, June 1990.

Cramer, D.D., “The Unique Aspects of Fracturing Western U.S. Coalbeds,” ~,Voi. 44, 1134-1140, Oct. 1992.

Martins, P.J., J.C. Abel, C.G. Dyke, C.M. Michel & G. Stewart, “Deviated WellFracturing and Proppant Production Control in the Prudhoe Bay Field,” SPE 24858,67th Ann. Tech. Conf., Washington, D.C., 955-970, Oct. 1992.

Menus, F.L., F.W. Broussard, J.A. Ayoub, & W,D, Norman, “FracturingUnconsolidated Sand Formations Offshore Gulf of Mexico,” SPE 24844, 67th Ann.Tech. Conf., Washingtonj D.C., 817-831, Oct. 1992.

Owens, K.A., S.A. Andersen & M.J. Emnomides, “Fracturing Pressures forHorizontal Wells,” SPE 24822, 67th Ann. Tech. Conf., Washington, D.C., 581-588,Oct. 1992.

10. Meehan, D.N., “Stimulation Results in the Giddings (Austin Chalk) Field,” SPE24783, 67th Ann. Tech. Conf., Washington, D.C., 195-205, Oct. 1992.

11. Gidley, S.A. Holditch, D.E. Nierode, & R.W. Veatch, Editors, “Recent Advances inHydraulic Fracturing,” SPE Monograph Volume 12, Richardson, TX, June 1989.

12. Clifton, R.J. & A.S. Abou-Sayed, “On the Computation of the Three-DimensionalGeometry of Hydraulic Fractures,” SPE 7943, SPE/DOE Low Perm. Gas Res.Symp., Denver, CO, May 1979.

Page 34: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

22

13. Clifton, R.J. & A.S. Abou-Sayed, “A Variational Approach to the Prediction of theThree Dimensional Geometry of Hydraulic Fractures,” SPE 9879, SPE/DOE LowPerm. Res. Symp., Denver, CO, May 1981.

14. Clifton,R.J. & J.J. Wang, “Multiple Fluids, Proppant Transport, and Thermal Effectsin 3-Dimensional Simulation of Hydraulic Fracturing,” SPE 18198, 63rd Ann. Tech.Conf., Houston, TX, Oct. 1988.

15. Clifton, R.J. & J.J. Wang, “Modeling of Poroelastic Effects in Hydraulic Fracturing,”SPE 21871, Joint Rocky Mt. Regional/Low Perm. Res. Symp., Denver, CO, April1991.

16. Clifton, R.J. & J.J. Wang, “Adaptive Optimal Mesh Generator for HydraulicFracturing Modeling,” 32nd U.S. Rock Mech. Symp., 1991.

17. Advani, S.H., T.S. Lee & J.K. Lee, ‘Three-Dimensional Modeling of HydraulicFractures in Layered Media: Part I -Finite Element Formulations,” ASME J. EnercwRes. Tech., Vol. 112, 1-9, 1990.

18. Barree, R.D. “A Practical Numerical Simulator for Three Dimensional FracturePropagation in Heterogeneous Media,” SPE 12273, Reservoir Simulation Symp.,San Francisco, CA, 403411 Nov. 1983.

19. Barree, R.D. “A New Look at Fracture-Tip Screenout Behavior,” ~, Vol. 43, 138-143, Feb. 1991.

20. Shlyapobersky, J., “Energy Analysis of Hydraulic Fracturing,” Proc. 26th U.S.Symp. on Rock Mechanics, Rapid City, SD, June 1985.

21. Shlyapobersky, J., G.K. Wong & W.W. Walhaug, “Overpressure Calibrated Designof Hydraulic Fracture Simulations,” SPE 18194, 63rd Ann. Tech. Conf.,Houston,TX, October 1988.

22. Cleary, M.P., “Analysis of the Mechanisms and Procedures for ProducingFavorable Shapes of Hydraulic Fracturing,” SPE 9260, SPE Ann.Tech. Conf.,Dallas, TX, Sept. 1980.

23. Cleary, M.P., “Comprehensive Design Formulae for Hydraulic Fracturing,” SPE9259, SPE Ann. Tech. Conf., Dallas, TX, Sept. 1980.

24. Cleary, M.P., C.A. Wright& T.B. Wright, “Experimental and Modeling Evidence forMajor Changes in Hydraulic Fracturing Design and Field Procedures,” SPE 21494,SPE Gas Tech. Symp., Houston, TX, Jan. 1991.

Page 35: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

23

25. Cleary, M.P. & Amaury Fonseca, “Proppant Convection and Encapsulation inHydraulic Fracturing: Practical Implications of Computer Laboratory Simulations,”SPE 67th Ann. Tech. Conf., Washington, D.C., Oct. 1992.

26. Meyer, B.R., “Design Formulae for 2-D and 3-D Vertical Hydraulic Fractures: ModelComparison and Parametric Studies,” SPE 15240, Unconv. Gas Tech. Symp.,Louisville, KY, 391401, May 1986.

27. Meyer, B.R., ‘Three-Dimensional Hydraulic Fracturing Simulation on PersonalComputers: Theory and Comparison Studies,” SPE 19329, Eastern Reg. Mtg.,Morgantown, VW, p.213, Oct. 1989.

28. Meyer, B.R., G.D. Cooper& S.G. Nelson, “Real-Time 3-D Hydraulic FracturingSimulation: Theoty and Field Case Studies,” SPE 20658, 65th Ann. Tech. Conf.,New Orleans, LA, 417-431, Sept. 1990.

29. Hagel, M. & Meyer, B., “Utilizing Mini-Frac Data to Improve Design andProduction,” CIM 92-40, Pet. Sot. of CIM Ann. Tech. Conf., Calgaty, Alberta, June1992.

30. Kristianovich, S.A. & Y.P. Zheltov, “Formation of Vertical Fractures by Means ofHighly Viscous Liquid,” Proc. Fourth World Pet. Cong., Rome, Volume 11,579-586,1955.

31. Perkins, T.K. & L.R. Kern, “Wdths of Hydraulic Fractures,” ~, Vol. 13, 937-949,Sept. 1961.

32. Geertsma, J. &F. deKlerk, “A Rapid Method of Predicting Width and Extent ofHydraulic Induced Fractures,” JPIQ Vol. 21, 1571-1581, Dec. 1969.

33. Nordgren, R.P., “Propagation of Vertical Hydraulic Fractures,” SPEJ Vol. 12, 306-—1314, Aug. 1972.

34. Daneshy, A.A., “On the Design of Vertical Hydraulic Fractures,”~, 83-93, Jan.1973.

35. Daneshy, A.A., “Numerical Solution of Sand Transport in Hydraulic Fracturing,”~, 132-140, Jan. 1978.

36. Poulsen, D.K. & W.S. Lee, “Fracture Design with Time- and Temperature-Dependent Fluid Properties,” SPE 12483, 1984 Formation Damage Control Symp.,Bakersfield, CA., Feb 13-14, 1984.

Page 36: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

24

37. Lee, S.T. & J.R. Brockenbrough, “A New Analytical Solution for Finite-ConductivityVertical Fractures with Real Time and LaPlace Space Parameter Estimation,”SPE12013,58thAnnualTech.Conf.,SanFrancisco,CA,October5-8, 1983.

38. McLeeod, H. O., “A Simplified Approach to Design of Fracturing Treatments UsingHigh ViscosityCross-LinkedFluids,”SPE11614,LOWPenn. Symp., Denver, CO,121-136., March 1983.

39. Crawford, H.R., “Proppant Scheduling and Calculation of Fluid Lost DuringFracturing,” SPE 12064, 58th Ann. Tech Conf., San Francisco, CA, Oct. 1983..

40. Geertsma, J. &R. Haafkens, “A Comparison of the Theories for Predicting Widthand Extent of Vertkal Hydraulically Induced Fractures,” ASME J. Enerav Res.Tech., Vol. 101,8-19, March 1979.

41. -“ Staged Field Experiment No. 3,” GR1-91/0048, GRI Final Report, Feb. 1991.

Page 37: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

25

Tables and Figures

Page 38: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

26

Table1 Rockand ReservoirData

Interval Depth Zone In Situ Poisson’s Young’s Fractwe(ft) Thickness (ft) Stress Ratio Modulus Toughness

II

1 8990-9170 180 7150 0.302 9170-9340 170 5700 0.21 8.5x10° 20003 9340-9650 310 7350 0.29 5.5X100 2000

S-Layer(3-D) Case) 4 I .-6A ,,70 I 180 I 7150 I 0.30 I 6.5xlo~ I ,~nnn i

170 5700 0.21 8.5x10°40 7350 0.26 5.4xlo~75 5800 0.20 7.9xlo~. a. .-A. - . . A-..4-h

Luuu

+=

200020002000A...

) I 1m I OAJU I U.au 1 4.UX1 u“ I

Table 2 TreatmentData

Bottom-holetemperature 246° FReservoirpressure 3600 psi

Qpul LIu

FluidIeakoffheight I entkefractureheight I

I FluidIeakoffcoefficientI 0.00025ftNminVkcositv-Casa A 200 co I

1 Viscositv - Case B i n’= 0.5- k’= 0.06 I

1- Injectionrate 50bpm~ Proppsnt I none !

Page 39: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

27

Table 3 2-D Resultsat End of Pump

15 0.91 0.76 0.73- 93) 0.79 0.79 0.62 83.118 0.55 0.43 0.32 72.2

3 I 170 I 1474 I 0.68 I 0.53 I 0.4 I 76.64 170 53 0.78 0.78 0.61 84

. 1 ..- 1 ---- 1 -.. . , -.. . 1 --- 1 ----

)7 1 0.64 1 0.5 I 0.36 I 74.31.24 0.97 I 8[

=LL(GDK) I 2142 1 170 I 89 I 1.03 I 1.03 I 0.81 I 89

Page 40: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

28

Table 4 3-Layer Resultsat End of Pump

k -mm 1 81i AVED I 1 I i I I I iLuu a-w I I=n

CPMODEL LENGTH HEIGHT PRESSUREW MAX W AVGW

— — — — —SAH 3408 318 1009 0.65 - r

NSI 3750 903 283 0.56 0.:

Dee .17AA MA 4’

--- ---- . ii 0:;5 ;;

lX=- 11-- — ,227 0.9 0.54 0.36 80

MARATHON 1360 442 1387 1.04 0.68 0.64 96

MEYER-i 3549 291 987 0.58 0.35 0.29 70.3

tI ...-.-..- , --J2 360 1109 0.72 0.41 0.34 74.3

I ARCO-STIM I 3598 306 992 0.57 0.31 0.25 67

~uwr r :401 1 1561 1.333 891 I AR\/AMl 9“nYQ 357 1113 0.66 0.33 0.25 43

I...—.—-..

I MFYFR.7 I 26~

. .. --— -. ..-.

m- 1 . . m

I1 $-s W.nm.u I -.”. 1 -- . , . ..- _.—_

I I I I I I I

t

... ————

I SAH I 32!

[-- ! NSI 1 328- , --- , .pcrs t3n- Kria 4

...- . -. . - .—.—

ARCO-STIM iiii ‘--353 1083 I 0.65 I 0.33 I 0.26 I 69

ADVANI 2424 435 1171 0.74 1 0.34 0.21 47/

Page 41: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Table 6 6~ayer Resultsat End of Pump

n’,k’ 3-LAYERMODEL LENGTH HEIGHT PRESSURE W MAX W AVG W W AVG F EFFIC

SAH 2642 430 1035.5 0.82 0.46 0.31 81.8NSI 2765 388 935 0.71 0.42 0.25 70RES 1042 600 1358 1.18 0.9 0.6 87

MARATHON 1158 476 1262 1.04 0.71 0.66 93—MEYER-1 2535 330 766 0.6 0.46 0.37 73.7

MEYER-2 1980 349 891 0.75 0.57 0.42 77.8ARCO-STIM 2926 405 968 0.7 70

A~co-TF 3124 449 1160 0.74 62,Cv cm 1089 578 1365 1.19 88.5

.. . 1168 614 1285 1.077 87.7

AtiWA~; 1870 458 1151 0.85 0.47 0.34 641 I

Table 6 Timeto breakthroughinto lower layer

MODEL i Newtanian I n’. k’ I

ARCOTemarARCOSTlm*-’

SAHTRINSI STlkr

TEXACOFRmTEXACOFRACPb- I Ir

RES FRACPRO 10 ;MARATHONGHOFER <75 <75

MEYERMFRAC

._---%ac I I 60

IM#LAN 63 50 I

--->-11-;’ 113‘-- 69

MEYERMFRAC-11-2 44 30ADVANI 55 40

Page 42: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

30

Tab& 7 S.A Witch& Aaaoc. - GDK Constant height P200 q

I I I III (rein) I I11Time I Hei@t I Half Length I Net Presaura I Efkiancy I Max.Wm I Avg.Wti Avg.Wti

(ft) (R) (F@ (%) (in) inFrac atWl?llboletire\ fin)

w264 0.426>370 0.537.429 0.614

76. ..27

%7 I 0.772mn nn49

,,,,, 1 \o 170 10 721 99 0.039 0.032 I O.a25 170 661 119 69 0.426 0.2so 170 1036 96 66 0.537 0;75 170 1348 84 67 0.614 0.$Im 170 1624 77 87 0.676 0.475 I O.t%125 170 1876 72 66 0.727 0.514 ox

150 170 2110 66 66 0.772 0.5175 170 65 66 0.612 0.5, “ 1 W.wn&200 170 2542 62 66 0.646 0.605 I 0.646 II

Tabie 8 SA Hdditch & Aaaoc. - GDK Constant heigM nW.6,k’=0.06

Tima Hai@t HatfLanglh Na! Pmaaum Effbkncy Malt.width A~. Wh A~. Wdlh(rein) (ft) (it) 0$0 (%) (In) in Frac at Wellbua

(i)o 170 10 662 99 0.037 O.& 0.;72s 170 626 134 90 0.452 0.267 0.45250 170 942 118 89 0.597 0.365 0.59775 170 1195 109 89 0.704 0.436 0.704100 170 1415 103 69 0.769 0.494 0.789125 170 1613 99 66 0.663 0.543 0.663160 170 1796 96 66 0.929 0.567 0.62s175 170 1967 63 66 0.966 0.626 0.966200 170 2120 91 66 1.04 0.662 1.04

TaMa 9 SA Hdditch & Aaaoc. - PKNConatant hdgM p=200 cp

fl-ii H*M Hau Laflglh Nat Praaaure EffI Max.Wti AVO.Wa Avg.Wtdlh(mill) (ft) (it) (%) 00 In Frac at Wellbom

o 170 10 42 96 0.079 0.13 0.01525 170 1067 712 63 0.327 0.157 0.25650 170 lnl 627 80 0.379 0.203 0.29675 170 2379 901 76 0.413 0.229 0.325100 170 2934 %5 76 0.436 0.247 0.344125 170 3452 998 75 0.4s8 0.260 0.3601!50 170 3941 1035 74 0.475 0.271 0.373175 170 4406 lm 73 0.469 0.261 0.362

b 200 170 1094 72 0.502 0.290. 0.3W

Tabk 10 SA Witch& Aaaoc.. PKN Constant ha@M n’=0.6,kW.06

--- -.—..;

-. —..I 989 I G I iii< I 0235 I 03s6 II

--- ,“ , --- ,-

m 1 1/u..- I

50 170 ;; 1 -, 1 1 ..— I “. .-6 I75 170 2342 I 919 I 7B 1 0.422 I 0.217 I100 170 266!. ---19S 47n !33A1 1 1M>

i 7’ i ‘A;’ E-l ‘i ‘

..- ---- ---- -.=. -iii 170 3793 1069 G OS(M175 170 4220 1131 74 0.5192cm 170 4629 1166 74 0.536

b

Page 43: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

31

Table 11 SA. Holdiih & Aaaoc. - ~~yW p=200 q

Time HeigM upper Lower Half Net Preaeure Emciancy Max.Wm Avg.Width Avg.Width(rein) (R) HaigM HeigM Length (P9 (%) (in) in Frac et Wellbore

(ft) (ft) (ft) (in)o

(in)172 86 86 15 164 95 0.076 0.059 0.059

25 233 121 112 769 768 84 0.423 0.2227 0.27350 253 133 120 1288 846 82 0.486 0.248 0.30175 268 142 126 1720 894 81 0.529 0.264 0.319lCN) 281 150 131 2105 928 80 0.561 0.275 0.330125 291 156 135 2458 953 79 0s88 0.283 0.338150 301 182 139 2792 975 78 0.610 0.290 0.343175 310 167 142 3107 993 77 0.629 0.296 0.348m 318 172 145 3408 1009 77 0.647 0.301 0.353

Tabk 12 SA. Hoklitch & Aaaoc. - Wayer n’=0.06, k’=0.06

II ITime HeigM(rein) (n) I %&iI ii% I G%I ‘%%’”I ‘“WI ‘N’”’I ‘WTrzErI1.----- .,-, -,- ,.. ., .-, . ,, ,- ---— ..

(m (m (ft) (in) (in)o 172 86 86 16 164 95 0.076 0.059 O.m25 238 124 114 810 787 84 0.438 0.216 0.28050 266 141 125 1319 886 82 0.522 0.241 0.31675 289 155 134 1729 947 81 0.581 0.259 0.338100 308 166 142 20E6 991 80 0.627 0.273 0.347125 326 177 148 2415 1024 79 0.664 0.283 0.359150 342 187 155 2717 1051 78 0.696 0.291 0.368175 357 197 161 2995 1073 76 0.724 0.299 o.3n200 371 206 165 3259 Iw 77 0.751 0.306 0.384

Tab& 13 S.A. Holditch & Aaaoc. - 64eyet p=200 q

The HelgM upper Lower Haif Net Ptesaure Effdancy Max.Wm Avg.W~ Avg.W~(rein) (n) HeigM Height Length (F@ (%) (m) In Frac at Wellbofe

(ff) (it) (it)209

(in)o 173 87 86 12 96 0.097 0.075 0.:7525 231 120 111 781 760 85 0.420 0.224 0.27350 250 132 119 1318 838 82 0.480 0.244 0.29975 269 141 128 1767 883 80 0.522 0.258 0.316lm 328 155 173 2124 912 79 0.604 0.271 0.363125 369 165 204 2338 930 80 0.660 0.283 0.394150 387 171 216 2525 943 80 0.689

, 175 3910.292 0.410

174 217 2710 953 80 0.705 0.299 0.417m 394 In 217 2906 m 80 0.716 0.305 0.423

.

Table 14 SJL Hdditch & Aaaoc. - 64ayer nW.06, k’=0.06

tTm HeigM upper Lmwr Half Net Preaaure Efficiency Max.width Avg.W& Aq. Width(rein) (f!) HaigM HeigM Length (F@

(R)(%) (in)

(ft)In Frac

(ft)al Wellbore

(in)o

(in)173 87 86 12 m 96 0.097 0.075 0.075

25 235 123 113 822 777 84 0.434 0.213 0.27950 263 739 124 1356 874 81 0.512 0.236 0.31275 364 164 200 17C6 929 61 0.653 0.255 0.391100 396 178 217 1886 964 81 0.722 0.273 0.425125 405 186 219 2071 985 82 0.754 0.286 0.438150 414 194 220 2264 1006 82 0.781 0.295 0.447f 75 422 201 221 2442 1021 82 0.801 0.303 0.454m 430 207 222 2642 1036 82 0.618 0.309 0.481

Page 44: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Table 16 Meyer& Aaaoc. - GDK Conatent height pa cp Beee Caae

/Time Height Half Length Nat Preseum EfRdancy Max. Wm Avg.W~ A~. Wti(mIn) (R) (n) (F@ (%) (in) in Frac at Waiibore

(in)

o 170 0 0 100 0 0 :25 170 669 136 88 0.402 0.315 0.40260 170 1082 110 86 0.504 0.395 0.50475 170 1406 M 85 0.575 0.451 0.575100 170 1697 88 85 0.631 0.495 0.631125 170 1961 82 84 0.679 0.532 0.879150 170 2207 77 84 0.720 0.564 0.720175 170 2439 73 83 0.757 0.593 0.757m 170 70 83 0.7W 0.619 0.790

Table 16 Meyer& Aaaoc, - GDK Conetent height nW.6, kW.08 Beee Ceea

Ha@ht Heif Length Net Pmaeure EfWancy Man.Wm Avg.Widih A~. W~(rein) (ft) (ft) w (%) 00 in Free et Walibora

0)o 170 0 0 lW o : :2s 170 611 176 69 0.459 0.380 0.45950 170 822 154 68 0.603 0.473 0.=75 170 1173 142 86 0.708 0.555 0.708100 170 1391 134 67 0.783 0.621 0.793126 170 1588 129 87 0.885 0.676 0.665160 170 1769 124 67 0.930 0.729 0.930176 170 1S39 120 67 0.986 0.774 0.986m 170 2098 117 66 1.041 0.616 1.041

TWe17 Meyar&Aeaoc. -PKNCcmetantheight IP200cp Beee Caea

Time Hai@tt Half Len@ Nat Praeeure Effidenq Malt.width A~. W~ Aq. width(mill) (n) (n) (P@) (%) (w h Free et Welibofa

m) m)o 170 0 0 la o 0 025 170 948 613 84 0.:. - . ---60 170 1605 924 60 0.424 0747s 170 917R 90s 78 n A= 1 n

lt3EEEE373 I 0.219 0.292

..148 0.332-.—. X%7 0.358

I -ii G I 0.481 0.281 o.3nr 1092 75 0.s01 0.292 0.393

llm 7A I 0.518 0.302 0.4LM. .— .- 0.532 0.310 0.417,. aa I . t .me.e A--- . *- 1L!

--- ..- --.. ..— ..17s 170 1 4086 I Ilm 1 73 I f

170 4507 1100 I /L I u.- 1 U.a 10 I U.*LI q

Table 18 Meyer& Aeaa. - PKN Conetent heigM n’-O.6, kW.08Baee Ceae

T- Hei@t Half Length Nat Praeeure Effdency w Wm A~. W~ Aq. Wm(mIn) (n) (n) (F@ (%) (in) in Free al Wenbom

im)o 170 0 0 lm o 0 :25 170 934 862 84 0.395 0.222 0.31050 170 1539 1013 81 0.485 0.260 0.36476 170 2057 1114 79 0.511 0.286 0.401100 170 2524 1180 78 0.548 0.305 0.426125 170 2Q57 1253 77 0.575 0.321 0.451150 170 3363 1307 76 0.600 0.335 0.470175 170 3749 1354 75 0.621 0.347 0.487200 170 4118 1397 74 0.641 0.356 0.502

Page 45: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

,,, .,

33

Table 19 Meyer& Aaaoc. - Ueyaf p=200 cp Beae Ceee

Time H*M upper LWer Helf Net Pmeeure Effdancy Max.Wm Avg.W~ Avg.W~(rein) (R) Height HeigM Length (m (%) (in) in Fiat et Wellbofe

la} (R) (ft) (in) (in)0= n n 4M n n n

,,,,0 170 85. ,Uw “ . “25 214 110 104 8;2 7k 83 0.385 0.206 0.26850 234 122 112 1421 826 80 0.445 0.232 0.29575 249 131 118 1867 876 77 0.482 0.247 0.311 IlW 280 138 122 226

J2& 970 IM 17(3 262

ltbz$EH 910 75 0.510 0.257 0.322

, -. - , . . . .-- 0 935 74 0.632 0.266 0.331I 278 I 149 129 G 956 72 0.550 0.273 0.338

131 3258 973 71 0.566 0.279 0.3454- -Ma 987 70 llm n 9a6 n ’111 ITable 20 Meyer 6 Aeeoc. - 34eyer nW6, k’4.08 Beae Ceae

Time HeigM upper Lower Half Net Preeeure Effdancy Man.Wm Avg.width Avg.Wti(rein) (ft) He#IM He#JM L? (pi) (%) (in) in Free et Wellbore

0) (in)o 170 85 85 0 0 100 0 : 025 217 112 105 846 784 84 0.414 0.214 0.28650 247 130 117 1307 m 80 0.426 0.246 0.32375 269 143 126 1668 957 78 0.549 0.267 0.345100 287 164 133 1975 lWO 77 0.590 0.282 0.361125 301 la 138 2?44 law 76 0.622 0.295 0.374150 315 172 143 2487 1057 75 0.650 0.305 0.385175 326 179 147 2708 Ion 74 0.673 0.314 0.394m 337 186 151 2915 low 73 0.694 0.322 0.402

Table 21 Meyer& Aeaoc. - S-layer p=200 cp Beee Caee

Time HdgM upper Lower Half Net Preeeure Efkiency Max.Wm Avg.Wti Avg.Wm(rein) (ft) HeigM HeigM Length (@) (%) (in) in FRIC et Weflbra

(m (f!) (ft) 0) a)o 170 85 85 0 0 100 0 : :25 183 111 104 672 743 83 0.367 0.206 0.268!K) m 124 113 1414 829 80 0.446 0.231 0.29475 212 132 119 1863 879 n 0.483 0.248 0.310lW 219 1s 123 2257 913 75 0.511 0.257 0.321125 232 144 138 2564 933 73 0.536 0.260 0.321150 259 143 lm 2626 799 72 0.520 0.268 0.336175 269 132 206 2716 674 71 0.487 0.267 0.341m % 123 70!5 2962 m 71 0 A97 0232 0364

Tabfe 22 Meyer & Aeaoc. - 64ayer nWA, kW.06 Beee Ceee

The He@M upper m Half Net Pniaiin Effii Max.Wm AVSI.W~ Avg.W~(rein) (fu ~ ~He@M HeigM Length w (%) m in Free et Welibore

(ft) (in) in

o 17n R< R=! 0 n lm 1) o ‘)(1 I25-a-7?7100

19s.--, - .- -..15013301131% I Gl% 1 ?5 1 Osw , “..Ie“175 1 329 122 I 207 2 7!51 75 05a3 0.327 I o:

Page 46: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

34

Table 22 Meyer& Aaaoc. - GUK Canatant halgM p=200 CP Knobs on

Time Height Half Langlh Nat Praaaura Efkiancy Max.Wti Avg.Wm Aq. Wti ‘

(rein) (n) (it) (m (%) (in) in Frac at Wallbcm.?(in) (in)

o 170 0 0 lW o 0 0

25 170 589 192 89 0.479 0.376 0.479

50 170 927 153 88 0.601 0.471 0.601

75 170 1208 134 88 0.686 0.538 0.666

1(N 170 1457 122 87 0.754 0.591 0.754

125 170 1685 f14 88 0.811 0.835 0.811

150 170 1698 107 88 0.860 0.674 0.660

175 170 2098 102 66 0.904 0.709 0.904

200 170 2288 97 85 0.944 0.740 0.944b

Table 24 Meyer& Aaaoc. -GDK Constant haigM nW.6, kW.08 Knobs on

T- Ha@M Half Lan@h Nat Praaawa EfWancy Max.Wm Aq. W~ A~. W* ‘

(rein) (ft) (ft) (P@) (%) 00 in Frac at Wallbora(in)

o 170 0 0 100 0 0 ;

25 170 515 255 91 0.556 0.436 0.556

50 170 784 218 90 0.724 0.568 0.724

75 170 1002 1s9 89 0.846 0.683 0.846

100 170 1192 187 89 0.945 0.741 0.945

125 1 m 4- 478 69 1.030 0.807 1.030

150L- 4 1s

175 . --- 173

200 170 I lti I 161 I 88 I 1.235 I 0.968 I 1.235

, 1 ,.” m ..-) 1 170 I ;& I 171 I s I 1.105 1 O.cmu 1 1.

i 170 1= 166 69 1.173 0.919 1.

TaMa26 Mayar&Aaaoc. -PKN~ti~M W200CP Knobaon

Time Height Half Lan@I I(Inin) (ft) (It) (%) m) h Frac atw

(in)

o 170 0 0 lW o

25 170 785 la 87 0.460 (

50 170 1337 1141 84 0.524 c

75 170 1620 1231 82 0.565 c

100 170 1298 80

125 fm

175 , ..” I200 1 “-- 1

2676. m ..- ----

150 I 170 I 3088 I 1399 I 78 I aK 47n

m)o 0

D.273 0.360D.31O 0.411D.334 0.443

0.598 0.352 0.467

I 1353 1 79 I 0.621 0.367 0.4867.842 0.379 0.503

I 1438 I n I 0.660 0.390 0.5171A7A n 0.676 0.399 0.530

Table 26 Meyer& Aaaoc. - PKN Conatanl haigM n’-O.6, kti.w Knobs on

lima H*M HatfLength~ Effi Max.Wti Avg.W& Avg.Wti

(rein) (R) (ft) (P@ (%) m) h Ftac at Wallbora(i) (in)

o 170 0 0 lW o : 0

25 170 741 1110 87 0.509 0.291 0.399

50 170 1238 1298 85 0.595 0.339 0.467

75 170 1867 1422 63 0.652 0.371 0.511

100 170 2056 1517 82 0.898 0.395 0.548

125 170 2417 1598 81 0.732 0.415 0.574

150 170 2759 1862 80 0.763 0.433 0.598

175 170 3083 1721 80 0.790 0.448 0.619

2W 170 3395 1774 79 0.814 0.461 0.638

Page 47: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

35

Tabk 27 Meyer a Aaaoc.. Wayar p-2W cp lcnoba on

upper LOWr Half Net Preeaure Effii Max. Wtih Aq. Wti IAvg.Width(mIn) Haight HeigM Length (F@ (%) (in) in Frac @Wellbore I

11 n ! ,9A g g (:’ , ,~ , (.’ fi;)

in

122 113 m 870 86 0.477 0.255 0.3196 1109 960 83 0.553 0.283 0.349

.“ . I ,- ,W4 1446 1008 81 0.599 0.301 0.365100 307 167 140 1740 1040 79 0.632 0.313 0.377125 321 176 145 20(5 lW n 0.659 0.323 0.3871s0 332 183 149 2250 1082 76 0.660 0.331 0.395175 343 190 153 2478 1097 75 0.699 I 0.338 0.401200 380 195 155 2692 1109 74 0.715 0.344 0.407

Table 26 Meyer& Aeeoc. - Weyar n’=0.6, k’=0.06 Knobs on

Time He@M upper m Half Net Pmaaure Effii Max.Wm Aw. Width Avg.Width(rein) (ft) HeigM He@M Length (@) (%) (h) in Frac at Wellbore

(ft) (n) (ft) (in)o

(in)170 85 85 0 0 100 0 0 0

25 246 129 i17 637 944 87 0.534 0.276 0.35250 291 156 135 968 1048 84 0.834 0.313 0.39275 322 175 147 1225 1102 82 0.697 0.335 0.415100 347 191 168 1444 1138 81 0.743 0.352 0.433125 367 204 163 1636 1163 80 0.780 0.368 0.447150 385 216 169 1811 1183 79 0.811 0.378175 m 226

0.459174 1971 1199 78 0.837 0.388 0.489

m 413 235 178 2120 1212 n 0.861 0.397 0.478

Tebk 28 Meyer & Aeaoc. - 64eyer P=2W cp Knoba on

l-he He@ht upper m Half Net Pmeaure Effii Max.Wm AVU.Width(mIn)

Avg.Width(ft) HeigM He@M Length (@) (%) m) h Frac et Wellbom

(R) (ft) (ft) )n

(h)17n R6 85 0 0 100 0 : 0

113 69s 874 06 0 47Q 02s5 0318G ;; 124—50 262 144 iii l-i I iii7s 346 138 210 1162 687100 325 119 206 lW ‘ -“”125 325 118 207 17&150 325 118 X)7175 326 118 208 , --- , .“,m !a97 lIQ %la %u-47 I 7AR

u.:.: ; : o.!

I i977 743 n 0194 m I 7m 7R ns

----- --- .- 7I iii I 0.556 ii% 0.337

81 0.517 0.296 0.3731 1 - -s37 0.316 0.404

X56 0.328 0.420572 0.338 0.435

I ,“ I . ..586 0.346 0.447I = 1 n can n *C* n A-

P-- , “.. , J ,0 ”,-- 1 a.-r 1 ,- 1 r“ 1 “.- 1 “.- 1 w.-r q

Tab& 30 Meyer& Aaaoc. - 64ayer n’=0.6, k’=0.08 Knoba on

mne HeiEJM upper LWer Half Net Praaaure Effdency Max.Wm Avg.W~ Avg.Wdh(rein) (n) HeigM HeifIM Length w) (%) (in)

(II)in Frac et Wellbore

(ft) (ft) (in) (in)m .9A . . . . . I .- 1

t -, 1 re, I 1 .I 4n9n I 77n I 9* I II

w w I I I lW I

; M 131 118 (&3 S&l 87 O.&s 0.;76 0.s050 341 144 197 I nnl I 7a7 1 AA I W580 0.313 0.39975 337 128 209 , ,“& w 1 d.807 0.348 0.455100 336 127 209 125! 81 I n M’? nw o Aa7 ~I12!150 341 129 212 1638 654 79 0.699 0.398 0.533175 345 132 213 1814 874 79 0.724 0.411 0.551200 349 135 214 1980 891 78 0.748 0.423 0.587

. 1 ,,” I--- —-- 5

51336 iltiI 805 I ----- -. -.

I 211 I “--1454 832 ii I ii; I 0.383 I 0.513 II

Page 48: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

36

Tabla 31 Advani - PKN Constant ttaight @OO cp

IF - ..-

1125 170 968 804 M- 0.369 0.216 I 0.!50 170 1638 91!5 81 0.420 ~ 7A6 n

170 SuIy 987 79 o.~~ f

2 fo41 78 0.470 I uw nm

HaigM Half Langth Nat Praaaum Efficiency Max.Wm Avg.W~ Avg.W~;; (n) (ft) (m (%) (in) in Frac at Wallbofa

(in)n

(in)170 n n IM o 0 0

289--- .- -.329

1 0.285 0.358.* 1 2.280 0.375

IA= i o.= 0.391!.”,“ 1 0.302 0.404529 I 0.310 I 0.415

n U7 Omfl 0.426

I 1 OR..-— w. --- mi I 1121 ;; O,G1=. I

5 1153 75 0.!

I 11R9 I 7A I

Tabla 32 Actvani- M(N Constant Haight n-.6, k’=0.06

4mm Haight Half Lan@ Nat Prasaura EfWancy Max.wkllh AVU.Width Afl. W~(fnin) (ft) (R) (P@ (%) (w in Frac at Wallbua

an) on)170 0 0 100 0 0 0

; 170 919 9W 85 0.413 0.229 0.32450 170 1513 1062 83 0.487 0.271 0.38375 170 2020 1170 81 0.537 0.298 0.421lm 170 2479 1252 80 0.575 0.319 0.451125 170 2904 1320 79 0.806 0.337 0.475150 170 a 1378 78 0.632 0.352 0.496175 170 3683 1429 78 0.656 0.365 0.515200 170 4048 1474 77 0.676 0.377 0.531

Tabla 33 Advml - $byw @OO cp

Tima Ha@M Uppaf LOwf Nat Praaaura Effi Max.width Avg.W~ Avg.Wdh(rein) (ft) HaigM Haighl G (%) m) h Frac at Wallbla

I&\ In\ (ft) (in) (in)c) a lno o 0 n

I 1 ,,,, 1 ,,,0 170 85 85 ---25 240 124 116 & & 67 o.& 0.;18 O.kw 274 143 131 1089 972 58 0.513 0.220 0.29875 298 158 141 1303 1040 58 0.571 0.245 0.316100 316 189 147 1501 1048 52 0.598 0.248 0.326125 326 177 151 1635 lon 51 0.624 0.265 0.329150 340 185 155 nm 1090 48 0.634 0.285 0.326175 352 193 159 1983 ““-- . . 0.649 0.238 0.327ZU3 357 Is 162 2aa91 1113 I A3 I 06s8 nzin n 33I

1 1114 I QQ I

Tabla 34 Adwni - 34.ayw nW.6, k’=0.06

Time H@M u~ LWer Half Nat Praaaura Effdancy Max.W* A~. Wm Avg.W~(Min) (n) HaigM HaigM Langth (@) (%) (In) in Frac at Waubora

(it) (ft) (R) (in)n 47A se e= n m 4- 0 0 ‘) ~. I

0.422 0.1650.530 0.1910.568 0.1980.598 0.2180.648* 0.2W a

0.;10.2880.3030.3W0.318

3190.659 0.213 o.~

1 1 1142 I 52 0.7W 0.216 0.334d 1171 A7 n 7A- n944 n xaa II

Page 49: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

37

Table 36 Advani - 6-Layer IL=200cp

Time Height Upper Lmvar Half Net Preaaure Effciency Max.Wti Avg.Wti Avg.W~ 7(rein) (rt) HeigM Height Length (m (%) (in) in Frac et Wellbora

(ft) (R) (ft) (i) (in)o 170 85 65 0 0 100 0 : 025 240 124 116 654 665 67 0.434 0.216 0.26750 276 144 132 1073 W5 58 0.513 0.220 0.29975 380 151 229 1194 1065 62 0.667 0.295 0.366lW 392 161 231 1227 1051 65 0.702 0.340 0.408125 403 169 234 1273 1048 63 0.727 0.359 0.421150 413 177 237 1363 1047 58 0.720 0.337 0.402175 430 190 241 1506 1076 57 0.749 0.336 0.406200 438 195 243 1594 1129 56 0.805 0.364 0.445

Table 36 Advani - 64ayer nWJ, k’=0.08

Time HeigM uppar w Half Nat Preeeure E- Max.Wm Ag. Width Avg.Width(rein) (ff) Ha@M~ H~M ~ (w (%) (in) tn Frac at Wetlbora

(i) (in)o 170 65 85 0 0 100 0 ; o25 249 131 117 905 865 71 0.422 0.165 0.25150 378 147 231 1150 992 72 0.597 0.244 0.34075 388 1s7 23i 1159 1021 76 0.662 0.299 0.377100 398 166 232 1206 1044 70 0.695 0.308 0.396125 422 187 235 1502 1027 65 0.697 0.278 0.373150 430 193 237 1751 1035 62 0.704 0.267 0.370175 449 205 244 1853 1095 61 0.770 0.289 0.410m Am 94 n 9AR 4 nml 1151 M nfun n 7*7 n *K

Page 50: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

38

TaMa 37 Shall - GDK Cmatmt Hai@ p=2W CP

Tm HaigM Half Langth Nat Praaaura Effi Max.Wklth Avg.W~ Avg.Wdth

(rein) (ft) (ft) w) (%) (in) in Frac at Wailbora(in) (in)

o 170 0 0 100 0 0 0

s 170 704 104 86 0.398 0.311 0.398

170 1107 w I 01 1 u.

ra 170 1441 73 86 0.lM 170 1736 m I m i I

%.- 1 .? I ’496 0.390 0.498

-. 566 0.445 0.566,- 1 ..- ----

0.622 0.489 0.622125 I 170 I 2007 62 G 0.669 0.525 0.669

150 170 2261 56 85 0.710 0.557 0.710

175 cc M n 7A6 05a6 0.748—. r1 170 I 2499 I . 1 , -.. .- -----

.-.,. — =- I RA I r!770 I 0617 1 07

Tabla 33 Shall - GDK Constant HaigM n_.6, kW.08

l-ha Ha@M Half Langth Nat Pfaaaum Efhdancy Max. Wm Avg.Widlh

(mIn) (ft) (ft) (@) (%) (m) in Frac(m)

o 170 0 0 lUI o 0

25 170 624 1s m 0.453 0.356

50 170 942 117 89 0.596 0.466

75 170 1198 108 89 0.6.99 0.549

100 170 1421 102 86 0.7s4 0.615

125 170 1622 98 66 0.856 0.672

150 170 1607 94 88 0.920 0.722

175 170 1979 91 86 0.977 0.788

200 170 2142 69 67 1.030 0.809/

Tabla 39 Shall - PI(N Constant HaigM P=200CP

aAvg.widthatWalbra

o0.4530.5WO.sw0.7840.8560.9200.9771.030

Tuna HaigM Half Lar@h Net Praaaura Effdancy Max.Wm Aq. W~ Aq. WWI

(rein) (n) (it) (%) (w h Frac at Wallbora

o 170 0 0 100 0 0 0

25 170 948 848 84 0.358 0.225 0.281

50 170 1540 Q93 61 0.423 0.286 0.332

75 170 2044 1092 79 0.468 0.293 0.368

lW 170 2496 1166 78 0.499 0.314 0.392

125 170 2917 1232 77 0.528 0.331 0.413

1s 170 3310 1286 76 0.550 0.345 0.432

175 170 3663 1334 76 0.570 0.356 0.448

200 170 4039 1378 75 0.589 0.370 0.463

labia 40 Shall - PKN Cad@ HaigM nW.6, k’=0.06

Tm Ha@M Half Langth Nal Praaaun? EKdancy Max.Wm Ag. W& Avg.W~

(Irlh) (It) (ft) (P$J9 (%) m) in Frac at Wabra(’in) (m)

\ 41n o 0 0) 251 0.314

0 170 0 0 .--

25 170 863 950 85 O.h 0.-.

s 170 1= 1160 83 0.493 0.310 0.387

75 170 1767 1307 82 0.567 0.350 0.437

100 170 2132 1424 81 0.607 0.382 o.4n

125 170 2465 15Z 80 0.650 0.408 0.511

1s 170 2776 1606 80 0.s87 0.432 0.540

175 170 3069 1885 79 0.720 0.452 0.565

200 170 3347 1754 79 0.750 0.471 0.589

Page 51: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

39

Table 41 Shell ENERFRAC p=200 cp Baae Caae

Time Height Half Length Net Praaaura Effcierrcy Max.Wti Avg.W~ Avg.W~(rein) (ft) (ft) (@) (%) (in) in Frac et Wellbore

(in) (in)o 170 0 0 1(XI o 0 025 170 811 1093 85 0.423 0.261 0.33250 170 1373 1237 83 0.483 0.2W 0.38075 170 1863 1332 81 0.522 0.322 0.410100 170 2311 1405 79 0.551 0.340 0.433125 170 2729 1464 78 0.575 0.354 0.451150 170 3125 1513 77 0.594 0.367 0.487175 170 3503 1557 76 0.612 0.377 0.480200 170 m 1595 75 0.627 0.367 0.492

Table 42 Shell ENERFRAC n’=0.6, k’=0.06 Baae Caae

E o2s

Time HeigM Half Len@ Net Preeeure Effii Max.Wm Avg.W~ Avg.W~(rein) (ft) (it) (L@ (%) (in) in Frac et Weilbore

(in) (i)170 0 0 100 0 0 :

i 170 no 1160 66 0.448 0.278 0.352. -- . -— . --,. u 0.530 0.327 0.417

, ..-. 62 0.585 0.361 0.459I 1598 81 0.626 0.366 0.492

.,..-.. .* a ee. A .m. -e.-

50 1m Iimf I 13X475 170 1693 1AU100 170 2079125 170 2436 I 1- 1 w. -- , . -- . .- . .

175 I 170 I 30!32 I 1WI200 170 3396 4nmn

“w’~~ A

15U I 1{U ! Z{{z ! I1 la{ Um--- --- ---- ----

: 0.713 1 LI 1= ~ 0.736 c.-

Table 43 Shell ENERFRAC p=200 cp 0verpreeeure=609 pai

Time HeigM HaifLength Net Preaaura Effdmy Max.Wm Avg.W~ Avg.W-(rein) (ft) (ft) w) (%) (in) in Frac at Weilbore

(in) (in)o 170 0 0 lcm o 0 025 170 772 1120 88 0.448 O.m 0.35250 170 1322 1259 83 O.m 0.312 0.39675 170 1806 1353 81 0.543 0.335 0.427lW 170 2249 1424 80 0.571 0.352 0.449125 170 2663 1482 79 0.594 0.366 0.467150 170 3054 1531 78 0.613 0.378 0.462175 170 3429 1574 77 0.630 0.389 0.495200 170 3789 1612 76 0.645 o.3w o.5w

Table U Shell ENERFRAC n’-O.6, k’-O.O6 0verpreaaure=600 pal

Tm HaigM Haif Length Net Praesure Eff@ency Max.Wm Avg.W~(rein) (ft) (ft)

Aw. W~w) (%) (in) in Free et Weiiimre

(in) (in)o 170 0 0 lW o 0 025 170 730 12C0 87 0.477 0.294 0.37550 170 1220 1392 84 0.556 0.X3 0.43775 170 1642 1524 83 0.608 0.375 0.478100 170 2024 1= 82 0.649 O.m 0.509125 170 Z379 1710 81 0.682 0.420 0.535150 170 2714 1782 80 0.710 0.438 0.558175 170 3031 1846 79 0.735 0.453 O.m200 170 3336 1903 79 0.757 0.467 0.5s5

Page 52: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

40

Table 46 Shell ENERFRAC p=200 CP Ovqmeeure=1000 @

l-me Height Half Len@ Net Preeaura Effii Max. width Avg.Wm Avg.Wm(mh) (R) (n) (90 (%) (in) in Free at Wellbore

an) (in)o 170 0 0 lm o 0 0

) 1262 86 0.536 0.332 0.422

I 11/4 1372 66 0.585 0.361 0.429II 25 I 170 I *m 170 ..-

% “--170 1634 I iA<l Iml nfi16 I 0.360 0.464100 170 2080 .W 0.395 0.50212s 170 24s0 .659 0.407 0.518150 170 101U w u.676 0.417 0.531175 170 3205 1649 79 0.691 0.428 0.543m 170 1664 79 0.704 0.434 0.553 i

Table 46 Shell ENERFRAC nW.6, k’-O.O6 Ove@reeaura=1000 pd

Time He@t Half Lenglh Net Preaaura Effdancy Max.Wti Avg.W~ A~. W*(rnin) (It) (ft) (@) (%) (in) in F= at Wellbore

o 0 100 : 01359 69

o.!-- i

7s 1 170 l– 1496 I 1635 I 65 I 0.662 I (

i 1605 62 0.’J 1872 62 0.’.. -i5 1932 61 0.796 I ox 1966 60 0.817 0.— . --- . . q

Table 47 Shell ENERFRAC p=200 CP Overpraaaure-1600 pal

IHai@ Half Length Nat PreaauIu Effciency Max.Wm Avg.Wa Avg.W~:2) (it) (R) (P@ (%) (w In Ffac a! Wallbore

An\ fin]

II o I 170 I o I o I 100 I o I o 1 0 II25 170 524 1591 91 0.695

E r lsa I 63 I 0.794 I 0.490 I o.

Table 46 SIMMENERFRAC n’=0.6, k*.08 0verpreaaure=1600 pal

fThe Ha@M Half Len@ Nat Praaaura Effciancy Mar. Wm Avg.W~ Avg.W~(rein) (R) (ft) (f@ (%) (w h Free at Waubora

on) (i)o 170 0 0 lW o 0 :25 170 507 1672 91 0.721 0.445 0.566 i

lBai13F1776 89 0.774 o.4n 0.6081662 87 0.609 0.499 0.s3s1934 66 0.637 0.518 0.6!57

1.661 0.531 0.6760.544 0.s93

0.707

7 1996 6s o150 170 2291 2054 w 0.662 I175 170 2591 2105 63 0.901 0.556 I (200 170 2661 2152 62 0.918 0.566 0.721 1[

Page 53: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

41

Table 43 Shaft ENERFRAC @OO Cp 0verpreasure=2000 pai

4Time HeigM Half Length Net Preaaure Efficiency Max. Wdh Avg.W~ Avg.Width(rein) (ft) (ft) (f@ (%) (in) in Frac at Wellbofe

(in) (in)o 170 0 0 lW o 0 025 170 420 2035 93 0.884 0.545 0.69450 170 878 2059 90 0.921 0.568 0.72375 170 1141 2061 89 0.937 0.578 0.736lm 170 1482 2102 87 0.947 0.584 0.744125 170 1813 2122 86 0.956 0.590 0.751150 170 2133 2141 85 0.963 0.594 0.757175 170 2446 2159 84 0.970 0.598 0.762m 170 2750 2175 84 0.978 0.802 0.767

Table 60 Shefl ENERH?AC n’=0.6, k’4.08 0verpreaaure=2000 pai

Time Heighf HalfLength Net PreaaurE Effiincy Max.Wm Aq. W* Avg.Wm(rein) (ft) (ft) (L@) (%) (in) in Frac at Wellbore

(in) (in)

o 170 0 0 100 0 0 025 170 413 2088 93 0.900 0.555 0.707Xl 170 765 2148 91 0.951 0.588 0.74775 170 1098 2203 89 0.978 0.603 o.78a100 170 1414 2252 88 0.999 0.616 0.784125 170 1717 2297 67 1.016 0.627 0.798150 170 2008 2339 86 1.032 0.637 0.811175 170 2290 2378 85 1.047 0.646 0.622m 170 2583 2414 85 I 1.060 0.654 0.833

Page 54: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

42

Tabla 51 Halliburton GDK Constant He@ht P-200 cp

Tima HaigM HaKLangth Nat Praasura Efficiency MaK.Wm Avg.W~ Avg.W~(rein) (ft) (R) (m (%) (in) in Frac at Wellbore

(in) (in)o 170 0 0 100 0 0 025 170 535 188 91 0.53 0.42 0.5350 170 858 141 89 0.88 0.52 0.8875 170 1132 120 88 0.74 0.58 0.74100 170 1378 108 88 0.80 0.83 0.80125 170 1805> 98 87 0.85 0.87 0.851s0 170 1818 92 87 0.90 0.71 0.90175 170 2020 88 88 0.94 0.74 0.94m 17n 7917 87 86 O!atl 077 nem

Tabla 52 Haliiburton GDK Constant Haight nW8, kW.08

/Tii Ha@M HaKLan@ Nat Pmaaura Efficiency Max.Wm Aw. W* Avg.W*(mIn) (f!) (ft) (@) (%) (m) in Frac at Wellbore

(in) (in)o 170 0 0 100 0 0 025 170 580 188 91 0.51 0.40 0.5150 170 881 140 89 0.85 0.51 0.8575 170 1108 128 88 0.75 0.59 0.75lm 170 1322 117 88 0.84 0.88 0.84125 170 1518 110 87 0.90 0.71 0.s0150 170 1899 105 87 0.97 0.78 0.97175 170 1a70 101 86 102 080 107

Page 55: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

43

Table 63 Chavron GM Constant HaigM w200 q!

Time HeigM HaKLength Net Preaeure Effiincy Max. Wm Avg.W~ Avg.Wtih(rein) (ft) (ft) (I@ (%) (in) in Frac at Wellbore

(in) (in)o 170 0 0 lW o 0 025 170 366 116 65 0.333 0.262 0.33350 170 561 102 64 0.436 0.343 0.43675 170 774 94 63 0.530 0.416 0.530lm 170 906 90 63 0.569 0.462 0.569125 170 1026 67 63 0.640 0.502 0.640150 170 1137 64 62 0.565 0.536 0.565175 170 1241 82 62 0.726 0.570 0.726200 170 1347 60 82 0.767 0.602 0.767

4

Tabk 64 Chevron PKN Constant Hdght 11=200CP

\Time HeigM HaKLength Net Praaaum Effi Max.Wm Avg.W~ Avg.W~(rein) (i’t) (ft) (@) (%) (in) in Fmc at Wellbore

(in) (in)o 170 0 0 100 0 0 .

25 170 454 637 82 0.364 0.216 .

9 170 744 966 60 0.453 O.m .

75 170 1049 1106 77 0.508 0.265 .

100 170 1267 1179 76 0.541 0.304 .125 170 1470 1239 75 0.569 0.319 .150 170 1660 1291 74 0.592 0.332 .

175 170 1641 1336 73 0.613 0.344 .200 170 2029 1360 73 0.633 0.355 .

Page 56: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

44

TaMe 66 Conoco GDK Conatent Height p=200 cp

Time He@M Half Length Net Preaaure Effkkncy Max.Wm Avg.Wm Avg.Wklth(rein) (it) (rt) (P@) (%) (in) in Ffac et Wellbofe

(in) (in)

o 170 0 . 1(KI o 0 025 170 704 . 87 0.391 0.307 0.39150 170 1108 . 86 0.489 0.384 0.46975 170 1439 . 85 0.556 0.438 0.558lW 170 1734 . 64 0.613 0.461 0.613125 170 . 84 0.659 0.517 0.669150 170 . 63 0.699 0.549 0.699175 170 2492 . 83 0.735 0.577 0.735200 170 2716 . 83 0.787 0.602 0767

TeMe 66 Conoco GDK Conatenl He3gM nW.6, kW.08

Time Height Half Length Net Praeeufu Effii

I

Max.Wti Afl. W~ Avg.W*(mill) (R) (n) (@) (%) (in) in Free at Weflbofe

I I I 1 I I (in) I (m)--- .--+1 ,,” 1 “. T m ..... -.

I . I G I 0.5I . 86 0.(

i- 1 I . .. . . -.--- . .. . .I . iii 0.~6 0.609 0.776I . 86 0.833 0.654 0.833I . 85 0.886 0.695 0.888I . 65 0933 0733 0933

Tab3e67 Conoco PKN Cmatmt He@M P=200 Cp

Tim I He@M IHalf La@ Net Preaaure Effibiancy IMax.WmIAvg.Wti IA~. Width(rein) (ft) (ft) (%) (w in Fmc at Wellbore

(in) (3n)o 170 0 . 100 . 0 025 170 639 . 85 . 0.250 0.37550 170 1418 . 82 . 0.286 0.428

=’-’” ”-’””’o”k-..

h I m . G . 0.325 0.4. 77 . 0.339 0.5

1 .— J . 76 . 0.351 0.5--h 1 %44 . 75 0.381 0.541

-. a ..* -em.

Table 63 Conoco PKN Constant He3gM n’=0.6, k’=0.06

Time I He@M Half Len@ Net Preaaure Effdancy I MaltWmI A-. W*I

Avg.Wti(tin) (R) (n) W) (%) (in) in Frac at Wellbofe I

(in)o 170 0 . 100 . 0 :25 170 831 . 85 0.253 0.380-- --- .-— -- - --- ----‘) II .

I--- . , , , ,5 I . I ii I . I3 . 77 .

1- 177 1.

Page 57: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

.,

45

Tab& 59 Marathon GHOFER Conatent Heighl IF200 cp

Time Hei@t Half Length Net Preeeure Efficiency Max.Wm Avg.W~ Avg.Width(rein) (tt) (rt) (I@ (%) (in) in Frac atWellbora

(in) (in)o 204 0 0 lcm o 0 0.7525 204 374 1819 97 0.91 0.66 0.7550 204 714 1742 96 0.91 0.71 0.7575 204 1054 1666 95 0.66 0.69 0.75lW 204 1360 1694 95 0.90 0.72 0.75125 204 1666 1863 94 0.90 0.72 0.75150 204 1972 1664 94 0.91 0.72 0.75175 204 2312 1678 94 0.90 0.72 0.78m 204 2564 1665 93 0.91 0.73 0.76

Table 80 Mmthon GHOFER Constant HaigM n’=0.6, k’=0.06

Time He@M Half Length Net Preaaur@ Effdency MaYc.W~ Avg.Wti A~. W~4

(mIn) (ft) (ft) (M (%) (in) in Frac at Wellbore(in) fin)

o m o 0 lW o 025 204 374 1632 97 0:1 0.66 0.7650 204 714 1767 96 0.92 0.71 0.7675 204 1020 1764 95 0.93 0.72 0.77lW 204 1360 1754 95 0.93 0.72 0.77125 204 1632 1~6 94 0.95 0.74 0.78lEO 204 1936 1766 94 0.s6 0.73 0.79175 m 2244 1605 94 0.97 0.74 0.60m 204 2516 1625 93 0.98 0.75 0.62

Table 61 Marathon GHOFER 3Layer I@s200t+

Time HaigM upper m Net Praaaure Effciency Max.Wm A-. W~ Avg.Wm(rein) (R) Height He@M G (@) (%) (in) in Frac al Wellbora

(It) (ft) (ft) (in) (in)o - - - 0 0 100 0 0 025 374 204 170 306 1423 98 0.64 0.51 0.5550 374 236 170 476 1435 97 0.95 0.59 0.6675 408 236 170 612 1426 97 1.00 0.61 0.67100 408 236 170 782 1413 97 1.01 0.63 0.66125 442 236 204 916 1391 97 1.02 0.62 0.67150 442 236 m 1C64 1394 97 1.m 0.63 0.66175 442 236 m 1190 1396 97 1.04 0.65 0.69m 442 238 204 1360 1369 96 1.04 0.64 0.68

Table 82 Marathon GHOFER Weyar n’-O.6, k’=0.08

Time He@M upper Lcwer Half Net Praaaure Effi Max.Wm [email protected]~ A~. W~(rein) (n) H*M H*M Length (@) (%) (in) in Frac atWellbora

(n) m (n) (in) (in)o - - - 0 0 100 0 0 025 374 204 170 m 1434 96 0.64 0.51 0.5550 374 204 170 476 1450 98 0.98 0.59 0.6675 406 204 170 612 1441 97 1.04 0.61 0.66lm 442 204 204 782 1414 97 1.02 0.61 0.67125 442 236 204 664 1434 97 1.06 0.64 0.70150 442 236 204 102Q 1434 97 1.07 0.65 0.71175 442 236 204 1190 1431 97 1.07 0.65 0.72200 442 23a 204 1326 1433 96 1.08 0.88 0.71

Page 58: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

46

Tabk 63 Marathon GHOFER 6Layar IF200 cp

m-la HaigM Uppaf m Half Nat Praaaura Effdancy Max. Wm A~. W~ Avg.Wti(rein) (ft) HaigM H~~ y (PO (%) (in) in Frac at Walibora

(R) a) (i)o - - - 0 0 100 0 ; :

2s 340 204 170 308 1447 98 0.84 0.!53 0.5850 442 204 238 408 1323 96 0.98 0.59 0.647s 442 204 238 544 1303 97 1IX) 0.63 0.711(X) 442 204 238 714 1266 97 0.99 0.63 0.70125 476 238 236 850 1251 97 1.00 0.63 0.67150 476 238 238 952 1257 97 1.02 0.64 0.89175 476 238 238 1088 1254 97 1.03 0.65 0.70m 476 736 n6 1224 1%11 97 103 065 070

Tabb 64 Mmathm C3HOFER6Layar nW.6, k’4.08

Tima HaigM Uppaf w Hatf Nat Pmaaura Effi Max.W* Avg.Wti Avg.Wti(rein) (It) Ha@M~ Haight Lan@h w) (%) (w in Frac at Wabra

(ft) (ft) {m) (in)o - - - 0 0 100 0 0 025 308 170 136 306 1455 98 0.84 0.54 0.62

.50 442 204 238 408 1316 % 0.95 0.59 0.8675 442 204 238 544 1289 95 0.98 0.61 0.88100 442 204 238 880 1285 94 1.01 0.84 0.71125 442 204 238 816 1268 94 1.01 0.65 0.74150 476 238 238 916 1265 94 1.03 0.64 0.70175 476 238 238 1054 12s7 93 f .03 0.65 0.70

~200 476 238 238 1156 1263 93 1.04 0.88 0.71

Page 59: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

47

Table 66 ARCO Stin@an 34diyer p=200 cp

Time Height Upper m Half Net Preeaure Eftwency Max. W&h Avg.Width Avg.width(rein) (ft) Height HeigM Length (I@ (%) (in) in Frac et Wellbc+a

(ft) (R) (ft) (in) (in)o 170 85 85 0 0 lW o 0 025 249 154 w 920 824 80 0.19 .50 259 159 lW 1422 868 76 . 0.21 .75 269 164 105 1850 W2 74 . 0.23 .100 280 171 110 2248 927 73 . 0.23 .125 288 175 113 2616 955 71 0.24 .150 295 180 116 2960 963 70 0.24 .175 300 162 118 3286 976 68 . 0.25 .m m 186 121 3598 992 67 0.57 0.25 0.31

Table 66ARC0 Stknplm Wayar nW.6, k’4.06

ElTime(rein)

o

~He@M

(R)

170

Half Net Praaaum Efkiency Max.Wm Avg.width Avg.W~Hai@t Length (F@ (%) (in) in Frac et Wellbtxa

(It) (m 0) (i)85 0 0 lW o : :.-

81 . 0.19 .

I 1356 911’I 77 . 0.22 .---- --- -—

25 252 155 97 I 800 I 64550 271 166 10575 28s 176 113 1746 me 1 {3 I . I U.z I .100 305 185 120 2094 990

— ---

125 315 191 124 2409 1016 71 . 0.2!150 328 196 130 2703 1043 71 . 0.25175 340 205 135 2976 1061 89 . 0.26 Im 1%~ 713 1Al .373!! 1om 69 065 026 03?!

I 1 73 I . I 0.24 I .—

“ “5 .II

I . II

Table 67ARC0 Stin@an S-yer p=200 cp

Time HeigM upper LWer Half Net Praaaure Effkiancy Max.Wm A~. W~ Avg.W~(mIn) (it) H*M Ha@M Length (i@ (%) (in) in Free et Wellbon?

(ft) (n) (n) (in)o 170 85 65 0 0 100 0 0 025 251 157 95 928 816 80 . 0.19 .50 268 168 100 1425 860 77 . 0.21 .75 354 175 180 881 74 . 0.22100 369 176 194 % 685 72 . 0.22 .125 3s9 176 194 2540 891 70 . 0.24 .150 3s0 176 205 2848 900 89 0.24 .175 380 176 205 3118 908 88 0.25ml 394 180 215 3399 944 68 0.64 0.24 0.36

Table 68 ARCO Stknplan 5&yer nW.6, k’-O.O6

Tim? Height upper m Half Net Pmsaure Effii Max.Wm Avg.W~ Avg.W~(rnbl) (It) He@M He@M Length (@) (%) (in) in Frac et Wellbore

(ft) (rt) (f!) (in) (in). . +- 85 85 0 0 100 0 0 0

80 . 0.191 .-

1 1{ I . 1 U.m 1

75II

0.2207A +-+---IIJ 74 . L .

--- —J & 73 . 0.257 I 216 2497 931 71 0.28 .

948 2717 967 71 . 0.26 .ii X9s 966 70 0.70 0.27 0.40

Page 60: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

48

Table 69 ARCO TefraFrac S-Layer nW.5, kW.08

4

Tim? HeigM upper Law Half Net Pressure EffI Max Wdh Avg.W~ Avg.W&

(rnin) He@M(n) ~ Height~ Length 0$0 (%) (in) in Frac at Wellbore(ft) 0) (in)

o 170 85 85 0 0 lW o ; o

25 228 142 84 921 884 81 0.37 . .

50 248 150 96 1371 981 71 0.45 . .

75 358 170 188 1802 997 73 0.47 . .

100 370 182 188 2133 1030 87 0.52 . .

125 399 211 188 2378 1080 87 0.83 . .

150 408 220 ~~ =1 1120 8s 0.87 . .

175 423 234 1= = 1150 84 .07 . .

Im 449 239 210 3124 1180 82 0.74 . .

Page 61: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Tabla 70 NSl Tach. Stir@an 34.ayar @OO cp

Tima Haight Uppaf LaWr Half I Nat Praaaura I Avg.W* I Avg. Wii [1

(rein) (ft) Haight Ha@M Langth (@) (%) in Ffac(ft) (ft) (R)

6“ -r , ,“ a ! ,“ 150 246 122 I 124 1 14475 252 ,-- .-. , .“.100 256 126 1301233125 259 127 1321~150 267 131 13647C w= 4*C 4A4

+ --+8544a

+

-.l%2-1185 –I t-l I n I 4M I n i n I n ‘-11

T1 , . --

I G & 81 0.-% 0.:9 O.-n.-. ..J7 746 75 0.43 0.20 0.26497 1 IQ44 787 73 0.46 0.21 0.28 I

6 818 71 0.49 0.22 0.296--- 840 69 0.50 0.22 0.30

) 3089 86s 66 0.52 0.23 0.3117J 3428 884 67 0.54 0.24 0.31lAA 37s0 QI13 t% 056 on 037 ~I

Tabla 71 NSI Tach. Stknpbn S-yaf n’=0.6, k’-O.O6

G iii 1% 1% &l50 253 125 128 134b75 265 130 135 1756 E ;100 % 139 145 2123 910 72125 298 148 142 9Afi0 m! 71 I150 308 151 158 , --- , “v- , .- , -.— -.—175 322 157 16513032 1003 I 69 I 0.65 I 0.26!mo 32!2 160 168 3289 I 1005 68 .- .-

1 OHI-— - .- . . ---- --- . ----I 77AQ I 97n I 7n 1 n= I n9s I nm II

1=al---.0.340.35I Uml I U.& I !

Tabla 72 NSl Tach. Stknplan S4.ayaf p=200 cp

lima Ha@ht Uppaf m Half Nat Praaatue Effciency Max.Wm Avg.W~ Aq. W~(rein) (tt) Haight Ha@M Langth (@) (%) (in) in Fmc at Wallbom

(ft) (ft) (ft) (i) (i)o 170 65 85 0 0 100 0 : :25 172 124 1s 911 682 78 0.38 0.17 0.2430 238 123 112 14s9 757 76 0.43 0.21 0.2775 242 126 117 1945 799 74 0.46 0.22 0.29100 248 126 120 2373 828 72 0.49 0.23 0.31125 342 149 193 2739 828 70 0.56 0.23 0.33150 359 153 2a3 3079 848 68 0.60 0.23 0.35175 364 157 206 3424 871 67 0.63 0.24 0.38m 361 155 2W 3709 852 66 0.63 0.25 0.38

Tab& 73 NSl Tach. Sth@an 6Layar W=O.S,k’=0.08

Tima HaigM Uppar m Half Nat Praaaura ‘ Effi Max.Wm “A~. w~ A~. W~(mtn) (R) Ha@M HaigM Langth w) (%) m) in Fmc at Wallbof’a

(tt) (It) (ft) (in) n

o 170 85 85 0 0 lW o 0 0‘). I25233125108 m50 244 126 118 136475 354 152 203 1757 w I U.ol 1 U.u I U.37100 365 157 209 2089 878 ; 0.65 0.23 0.39125 375 162 213 2333 904 1 - .- 1 --. I “391= 381 165 215 2555 8s0 ..38+= a lfw 91 R 77& ).41

u U.oo U.L4 u.<

71 0.66 0.24 o?

ll~-i=-i;=i=i 1 Gi 70 0.70 0.25 0...

I %65 935 70 0.71 0.25 0.42 II

6 I -708 I 80 1 0.40 I 0.18 I 0.25y 810 77 0.47 0.21 0.?” II

1 - .A 1 -. i ,. -a I .- 1 m.

Page 62: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

50

Table 74 RES Fraqm ~-yW p=2W q)

–J Net Pressure EfWency Max. Wti Avg.WidthI

Avg.Wtiil&Ywl (Dsi) (%) (in) in Frac at Weiibore I

Time Height upper Lwer I Half(rein) (ft) He@M Hei@. -- _ .. , . .

(ri) (ft) (ft) (in) (in

o 170 85 85 0 0 Im o 0 0

448) I

25 347 218 129 1130.- .- .- - .-

50 4W 262 136 711 1162 I 69 I 0.69 I 0.34 I 0.51 !175 439 294 145100 469 319 150 1124125 495 340 155 1=4 =n =4 e Qcn 4C7 4 ARl

I 932 1185 87 0.73 0.34 0.51

4 1202 85 0.76 0.35 0.53

D 1215 84 0.78 0.35 0.53

-Iv - 1 ,- 1 1222 82 0.87 0.35 0.53

;; 531 373 ;G I 1606 1223 81 0.66 0.38 0.54

m 544 385 1= 1744 1227 60 0.90 0.36 0.54

Table 76 RES Fracpro 3-byer nW.8, kW.06

Time Hei$jht upper w HW Net Pmswm Effdency Max. Wm Avg.Width Avg.Width

(rein) He@M Hd@t Lengih(n) ~ * (m (%) 00 in Frac at Weiibora(ft) )

o 170 85 85 0 0 100 0 : :

25 337 189 146 325 1334 60 0.72 0.39 0.59

50 404 231 173 468 1363 75 0.s4 0.4 0.43

75 452 261 191 571 1361 71 0.91 0.44 0.44

100 4w 285 204 656 Is w O.M 0.46 0.46

125 521 305 216 729 1405 67 1.01 0.47 0.47

150 54s 323 = 793 1413 65 1.04 0.46 0.46

175 574 340 234 650 1421 63 1.06 0.46 0.46

m 598 354 242 902 1426 62 1.10 0.4!3 0.49

Table 76 RES Frupro 54.ayer P=200 cp

lime HeigM upper- H~ Net Pressure Effii Max.w~ Aw. W- Avg.W&

(mill) (ft) Hd@t Hei@t Length w (%) m) h Free at Wedibore(f!) (it) (It)

o 170 85 65 0 0 100 0 0 0

25 396 m 1= 408 979 91 0.57 0.30 0.45

50 420 222 193 665 1013 69 0.67 0.34 0.51

75 43s 239 ~ 867 1042 67 0.71 0.36 0.54

lai 458 253 203 1- 1064 66 0.75 0.37 0.56

125 469 265 204 1= 1061 65 O.n 0.36 0.57

150 480 275 = 1~ 1098 84 0.80 0.39 0.59

175 491 265 m 1600 110s 63 0.61 0.40 0.60

200 501 m 207 1754 1119 62 0.83 0.40 0.60

Table 77 RES Fracpro 64ayer n’=0.8, k’=0.06

Time He@M upper m H~ Net Pressure EftWency MaX.wkml Avg.W~ Aw. W~

(rein) (ft) H@M H*M Len@ (@) (%) m) in Frac at Weiibolu(R) (n) (n) (in) (in)

o 170 85 85 0 0 100 0 0 0

25 406 202 m 293 1233 m 0.74 0.42 0.63

m 475 252 223 424 1317 92 0.91 0.49 0.74

75 516 286 230 535 1343 90 1.01 0.52 0.76

100 545 312 233 632 1360 90 1.cs 0.s 0.64

125 559 333 236 719 1375 89 1.14 0.56 0.87

150 583 347 238 648 1355 86 1.14 0.57 0.66

175 592 357 235 952 1352 87 1.16 0.56 0.87

200 600 366 234 1042 1356 87 1.18 0.60 O.w 1[

Page 63: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

51

Table 78 Texaco Fracpm GDK Conetent Height P=200 cp

HeigM Half Len@! Nat Pressure EK~ Max. width Avg.Wti Avg.Wti {(rein) (ft) (R) w) (%) (in) in Free et Weiiimre

(in) (in)

o 170 0 0 100 0 0 025 170 636 144 91 0.39 0.39 .50 170 1002 113 89 0.48 0.48 .

75 170 1307 99 88 0.55 0.55 .ltnl 170 1577 89 88 0.60 0.60 .125 170 1824 83 87 0.84 0,84 .150 170 78 87 0.88 0.88175 170 74 88 0.71 0.71 .m 17n 9m 71 06 074 074 .

Table 78 Texaco Fracpro PKN CcmatantHeight p=200 CP

mfne He@M HalfLen@ Ne4Preaaure Efikianq Max.width A~. W~ Avg.Wm(rein) (ft) (R) (F@ (%) (w in Frac at Weiiimle

(i) (in)

o 170 0 0 tm o : 025 170 849 653 88 0.33 . .50 170 1449 732 65 0.39 . .75 170 1978 783 83 0.42 . .lW 170 2460 823 81 0.44 . .125 170 2915 854 80 0.48 . .150 170 3348 881 79 0.48 . .175 170 3759 m 78 0.49 . .- 47n A4 C7 - n ncn

Table 80 Texaco Frecpro Uayar P=200 cp

He@M upper m Half Net Pressure Effciency Max.W* Afl. WMlh Afl. W~k?) (R) He@M HeigM Lengnl (w (%) (in) in Free et Weiibora

(rt) (It) (ft) (in) (in). -- --

85 0 0 100 0 0 0 .

, --- , 1 1

I 0.64 I . I . II, .— m ...” , . .

, ---- , ,

— III “.. . 1 11 .- 1 1 III u.[L I 1 .

q

Table 81 Temco Fracpro Wayer p=200 cp

Time He@M upper Lwer Half Net Preaaute Effciency Max.Wm Avg.W~ A~. W~(rein) (ft) HeigM He@M Length (@) (%) (in) in Fmc at Weiibore

(n) (ft) (rt) m) (in)o 170 85 85 0 0 100 0 0 025 367 176 191 483 872 84 0.50 .

193 751 915 80 0.67 . .50 383 ‘ lW75 396 201 I 195 ilm a 208’”-125 411 214 1s(150 418 220 198175 422 224 198 i200 428 229 199

i QAA i n i n m i i II.— -.” ,

I lW 1233 E % 0.63 . .. -- 1449 976 73 0.64 . .

1649 988 72 0.86 .---

5 m 70 0.67 . --- . 1 lm 69 0.68 . I

Page 64: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

52

Table 82 Texeco Frecpm 64eyer n’=0.6, kW06

,,”

k 414 m7 207 283 I 12550 473 255 218 442 1%

75 505 285 220 =100 530 310 220 7M

125 552 330 222 , “.. , ..-150 571 346 223 1257175 588 364

~,. ! .=. ! .-—

m Rn9 a7n

.“ ..-.

78 1.= . .4 1 10Z5 I

,= 77 1.08 . .a I 99A 14% * 77n 76 1 11 . :’ I

Tebk 63 Tmeco Frecpm 6-YW n’-O.6, k’=0.06 No tip effects

Time Height upper Lmmr Helf Net Preeewe Emdency Max. width Avg.W* Avg.W~(mill) (ft) Height He@M Length (@) (%) m) in Frac et Weilbore

(n) (R) (n) 0) m)o t 70 85 85 0 0 100 0 : 025 256 164 92 659 857 80 0.35 . .50 288 168 100 1308 930 74 0.40 . .75 348 161 187 1603 m 70 0.38 . .100 360 171 189 1802 845 67 0.42 . .125 370 179 191 2020 678 65 0.44 . .150 378 188 192 2234 900 84 0.46 . .175 385 192 193 2440 919 63 0.48 .m am 4a7 4aA 9$ra6 m m OAQ .

Page 65: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE HALF LENGTHCONSTANT HEIGHT MODELS

5,000 GDK -200 CD

GDK - n’=0.5, k’=0.06*------4,000

g PKN -200 Cp

● **.**G“”””””

I 3,000t-(9z 2,000

1- . .“. ..”

1~-..“

“. .“● .“

●“. “. .“

● ●*

“m .* .=----“w-””*- -&-- ““

PKN - n’=0.5, k’=0.06-+-

0TH:et2& 200 Cp

..-

W 0

OTHER 2D - n’=0.5, k’=0.06 @

--&-1,000

Ot’ I I I I I 1 I I I I 1 I

MODEL

Figure 1 Length comparison for cases 1-4

Page 66: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE NETPRESSURECONSTANT HEIGHT MODELS

2,000 Aa GDK -200 Cp

n r c1&d&@”

.- nw

(#3Q-1,500w

~ 1,000wu

o

u -* .-“. ●“

“. 0’

b’”I,h, ,P A

““-**A”H*”A

#‘@l&

●* “**.“ “** ,*..Q* p

,.’2*”” ““”f=”””““”” “:””‘FJ●

I I I I

GDK - n’=0.5, k’=0.06*------

PKN -200 Cp

. ..00.0“”””””

PKN - n’=0.5, k’=0.06–@-

OTHER 2D -200 Cp

-“”A- -il

OTHER 2D - n:=O.5, k’=0.06-“+”-

MODEL

Figure 2 Net pressure comparison for cases 14

Page 67: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

100

90

80

70

60

FRACTURE EFFICIENCYCONSTANT HEIGHT MODELS

+j

g,

i),h,

,m. A----- /!rii. ./-9-

/ ,$.O...,, =-

~.-.:*”””” “*O *“”” ““””””’w........-”●*O... k“”’””

I 1 I I 1 I 1 I I I I 1

GDK -200 Cp

GDK - n’=0.5, k’=0.06*------

PKN -200 Cp

●. . . . . . . . . . . .

PKN - n’=0.5, k’=0.06-+-

OTH:,12& 200 Cp

..-

m

m

OTHER 2D - n’=0.5, k’=0.06-“&=-

MODEL

Figure 3 Efficiency comparison for cases 1-4

Page 68: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE MAXIMUM WIDTHCONSTANT HEIGHT MODELS

,B..*

--------- ---

.-t-l I I 1 I I I 1 I I I I I

GDK -200 Cp

w

GDK - n’=0.5, k’=0.06*------

PKN -200 Cp

● . . . . .0“”””””

PKN - n’=0.5, k’=0.06--f+–

oTHIRg- 200 Cp●.-

OTHER 2D - n’=0.5, k’=0.06-.&-

MODEL

Figure 4 Comparison of maximum width at wellbore for cases 1-4

Page 69: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE AVERAGE WIDTH AT WELLBORECONSTANT HEIGHT MODELS

-1-1UJ3$x1-n

3(5><

1.2

1

0.8

0.6

0.4

\+ca ,,Q

“i,:\/\ ----- - -cl \;&#~

o....* ● \ ●.A.O, ..*.**

. . . . ...** h“O.... I I I I I I I

MODEL

GDK-:00 Cl)

GDK- n’=0.5,k’=0.06*------

PKN -:00 CP.....* ● . . . . . .

PKN - n’=0.5, k’=0.06-+-

OTHER 2D -200 CD

OTHER

--4--* ,

k’=0.06

0-1

Comparison of average width at wellbore for cases 14

Page 70: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE AVERAGE WIDTHCONSTANT HEIGHT MODELS

w’ F. GDK -:00 Cp

c# ●# +*

3*< --------- -

1- 0“8 - ‘w’‘r GDK - n’=0.5,k’=0.06

o 88 *------

< PKN -&OO CpE 0.6IL

. . ...0 . . . . . . .

\\,

z A ‘------- v!k””~ PKN - ~=~, k’=0.06— 0.4 - 0..@..*~‘.@............@...*.@...*8 &./z .&.#.B””” “o”’”” OTHE:.ZIJ-200Cp1- ..-.n 0.23 r

OTHER 2D-~=0.5, k’=0.. .—Gel’ I I I I I I I I I I I

MODEL

06

Figure 6 Comparison of average width in fracture for cases 1-4

Page 71: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GDK–CONSTANT HEIGHT: 200 Cp3000

2500

2000+w

~ 1500c1zw-1

1000

500

0-0

Figure 7

I I I I I 1 I

25 50 75 100 125 150 175 2

TIME (rein)Length history for case 1

%SAH

—A-MEYER-1

+MEYER-2

~SHELL

--I---TEXACO(FP)

~CHEVRON

+HALLIBURTON+e+CONOCO

o

Page 72: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

200

w

1-Wz 50

GDK–CONSTANT HEIGHT: 200 Cp

\

o

0 25 50 75 100 125 150 175 200TIME (rein)* 8

+SAH

~MEYER-1

-B-MEYER-2~SHELL

-t--TEXACO(FP)

~CHEVRON

+HALLIBURTON

Figure 8 Net pressure history for case 1

Page 73: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.0

● ✍

w

x1-0

0.0

GDK–CONSTANT HEIGHT: 200 Cp

I [ [

o1 I I I

25 50 75 100 125 150 175 2

TIME (rein)

Figure 9 History of width at wellbore for case 1

+SAH

~MEYER-1+MEYER-2

~SHELL-+-TEXACO(FP)

~CHEVRON

+HALLIBURTON-I@- CONOCO

o

Page 74: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GDK–CONSTANT HEIGHT: n’, k’2500

2000

n

~ 1500

x1=az~ 1000

500

0

,I+SAH

~MEYER-1

+MEYER-2

-SHELL~HALLIBURTON

~CONOCO

o 25 50 75 100 125 150 175 200TIME (rein)\ J

Figure 10 Length history for case 2

Page 75: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

300

250

200

150

100

50

0

GDK–CONSTANT HEIGHT: n’, k’

o 25 50 75 100 125 150 175TIME (rein)

m

A

m

A

I#

o

SAH

MEYER-1

MEYER-2

SHELL

HALLIBURTON

Figure 11 Net pressure history for case 2

Page 76: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.25

-J-1

x1-0

0.00

0

GDK–CONSTANT HEIGHT: n’, k’

+!+SAH

—1A-MEYER-1+MEYER-2~SHELL~HALLIBURTON

~CONOCO

s!

25 50 75 100 125 150 175 200~pvf~ I-:n)\lll Ill)

Figure 12 History of width at wellbore for case 2

Page 77: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

5000

4000

1000

0

PKN–CONSTANT HEIGHT: 200 Cp

I

/t’ %SAH

o 25 50 7-5 100 125 150 175 2(

TIME (rein)Figure 13 Length history for case 3

—A-MEYER-1

+9-MEYER-2

~ADVANl

~SHELL-+--TEXACO(FP)

-CHEVRON~CONOCO

o

Page 78: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1600

1400

200

000

800

600

400

200

PKN–CONSTANT HEIGHT: 200 Cp

o

0 25 50 75 1TIME

Figure 14 Net pressure history for case 3

00 125 150 175 2(rein) .

+3-SAH

~MEYER-1+MEYER-2

+ADVANI

~SHELL

++ TEXACO(FP)

+CHEVRON

o

Page 79: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

0.7

0.5

0,4

0.3

0.2

0.1

0.O

PKN–CONSTANT HEIGHT: 200 Cp

+SAH

—AI-MEYER-1-e3-MEYER-2-4+ ADVANI

~SHELL-+-TEXACO(FP)

+CHEVRON

I

o 25 50 75 100 125 150 175 2TIME (rein)

Figure 15 Historv of width at wellbore for case 3● ✍

� ✎�✎ ✍�✎ �

Page 80: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

5000

4000

1000

PKN–CONSTANT HEIGHT: n’, k’

25 50 75 100 125 150 175 210

Figure 16

TIME (rein)

Length history for case 4

+!+SAH

—A-MEYER-1+9-MEYER-2+ADVANI~SHELL~CONOCO

Page 81: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

● ✍

(/)CL

w

wCY3mcen-

1-Wz

1800

1600

1400

1200

1000

800

600

400

200

0

PKN–CONSTANT HEIGHT: n’, k’i

I 1 1 I I

oI 1 I

25 50 75 100 125 150 175 2

TIME (rein)

1

)L

)

+SAH

—A+MEYER-1+MEYER-2+ADVANI~SHELL

Figure 17 Net pressure history for case 4

Page 82: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

0.9

-J-J

g 005

2 0.4

3x 0.2az

0.1

0.0

PKN–CONSTANT HEIGHT: n’, k’

+SAH

~MEYER-1+MEYER-2~ADVANl~SHELL

I

1 1 1 i I

of [

25 50 75 100 125 150 175 2TIME (rein) #

Figure 18 History of width at wellbore for case 4

Page 83: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

OTHER 2D–CONSTANT HEIGHT: 200 cp

o

TIME (rein)

.

‘ %MARATHON

1 ~ENERFRAC-1+ENERFRAC-2

)

Figure 19 Length history for other constant height-models -200 w

Page 84: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

2000

1800

1600

‘~ 1400v

w 1200

V-& 1000

w

& 800

L

w 600z

400

200

0

OTHER 2D–CONSTANT HEIGHT: 200 Cp

o 25 50 75 100 125 150 175 200TIME (rein)

+ MARATHON

=s-ENERFRAC-1+ENERFRAC-2

-1N

Figure 20 Net Dressure historv for other constant heiaht-madels - 2(Y) en

Page 85: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.0

n

m-J~ 0.6

3

1-4

= 0.41=(a

3

0.0

OTHER 2D–CONSTANT HEIGHT: 200 Cp

I I 1 I I I I Io 25 50 75 100 125 150 175 200

TIME (rein)

+!+ MARATHON

~ENERFRAC-1+ENERFRAC-2

Figure 21 History of width at wellbore for other constant-height models -200 cp

Page 86: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

3500

3000

2500

4-

W 2000

1000

500

0

OTHER 2D–CONSTANT HEIGHT: n’, k’

‘ +MARATHON1 ~ENERFRAC-1

+ENERFRAC-2

)

o 25 50 75 100 125 150 175 200

Figure 22 Length history for other constant height-models - n’, k’

Page 87: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

2000

1800

16001

4ooj

200

0

OTHER 2D–CONSTANT HEIGHT: n’,

o 25 50 75 100 125 150 175 200

k 9

mA

m

MARATHON

ENERFRAC-lENERFRAC-2

TIME (mIn)

Figure 23 Net pressure history for other constant height-models - n’, k’

Page 88: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1 .C

0.8

0.6

0.4

0.2

0.0

0

OTHER 2D–CONSTANT HEIGHT: n’, k’

I J I I I I I

25 50 75 100 125 150 175 2

TIME (n-dn)

+ MARATHON

~ENERFRAC-1+ENERFRAC-2

o

History of width at wellbore for other constant-heiaht models - n’. k’

Page 89: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE HALF LENGTH3-LAYER MODELS

e 4,000 ~I1-0zw-1

LuK3

3,000

2,000

1,000

0

L

I I I 1 I I I I

200 Cpw

n’=0.5, k’=0.06*------

-1-d

MODEL

Figure 25 Length comparison for cases 5 and 6

Page 90: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

700g

wu 40031-0300

s

L 200

FRACTURE HEIGHT3-IAYER MODELS

MODEL

200 Cpw

n’=0.5,k’=0.06*------

Figure 26 Height comparison for cases 5 and 6

Page 91: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1,600

n.-CnQ-1,400

1,200

1,000

800

FRACTURE NETPRESSURE3-IAYER MODELS

200 Cpw

n’=0.5, k’=0.06m----- .

PKN -~00 CP● **..* ... . . .

MODEL

Figure 27 Net pressure comparison for cases 5 and 6

Page 92: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

90

80

70

60

50

40

FRACTURE3-MYER

EFFICIENCYMODELS

II I I I I I I I

MODEL

200 Cpw

n’=0.5,k’=0.06*----- .

PKN -:00 CP..... . .* ..*.

Figure 28 Efficiency comparison for cases 5 and 6

Page 93: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE MAXIMUM WIDTl-3-IAYER MODELS

1.2 r

1-

50 I I I I I I I I I

MODEL

200 Cpw

n’=0.5, k’=0.06m------

00

Figure 29 Comparison of maximum width at wellbore for cases 5 and 6

Page 94: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE AVERAGE WIDTH AT WELLBORE

(9><

0.4

0.2

0

3-IAYER MODELS

.

I I I I I I I I I

MODEL

Figure 30 Comparison of average width at wellbore for cases 5 and 6

200 Cpw

n’=0.5, k’=0.06*----- .

PKN -~00 Cl).. . . . . . . . . . .

Page 95: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

z—

(5>a

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

FRACTURE AVERAGE WIDTH3-LAYER MODELS

MODEL

200 Cpw

n’=0.5,k’=0.06*------

PKN -~00 CP.. . .. . . . . . . .

00cd

Figure 31 Comparison of average width in fracture for cases 5 and 6

Page 96: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

400C

3000

n

w-1

1000

0

3–LAYER MODELS: 200 Cp

k—A-NSI

) +RES

-+- MARATHON

-t-ARCO(STIM)

, +w+MEYER-1

‘ +MEYER-2~ADVANl

+-TEXACO(Fp)RL

TIME (m!n)Figure 32 Length history for case 5

Page 97: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

3–LAYER MODELS: 200 CD

10011 I I I I I 1

0 25 50 75 100 125 150 175 200

TIME (rein)Figure 33 Height history for case 5

J

2

5

)/k

+SAH

~NSl-B-RES

~MARATHON

--+- ARCO(STIM)

+MEYER-1

+MEYER-2-@- ADVANl

---4--TEXACO(FP)00m

Page 98: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1500

1200

900

600

300

0

3–LAYER MODELS: 200 Cp

/4?3—4 m m m m

I I I 1 1

0

Figure 34

I I

25 50

Net pressure history

75 100 125 150 175 2TIME (m In)

for case 5

-f9-SAH

~NSl+RES-e--MARATHON-+ ARCO(STIM)

+MEYER-1*MEYER–2-E$-ADVANI

-4-TEXACO(Fp)m0)

Page 99: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.2

0.0

3–LAYER MODELS: 200 CP

o 25 50 75 100 125 150 175 2(

TIME (rein)

+ SAH

~NSl

-E3-RES

~MARATHON~MEYER–1

~MEYER–2

~ADVANl

EXACO(FP)

Figure 35 History of width at wellbore for case 5

Page 100: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

3500

3000

2500

w 2000

~ 1500-1

1000

500

0

3–LAYER MODELS: n’, k’

o

Figure 36

*SAH

~NSl+RES-+--MARATHON--+-ARCO(STIM)+MEYER-1

*MEYER-2~ADVANl

oTIMF (~in). . . ..-

Length history for case 6

Page 101: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

600

500

y 300

200

3–LAYER MODELS: n’, k’

100

0 25 50 75 100 125 150 175 200TIME (rein)

+SAH

~NSl+ZI-RES

~MARATHON---tARCO(STIM)~MEYER-1+MEYER-2~ADVANl

Figure 37 Height history for case 6

Page 102: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1600

1400

~ 1200

E

1000

800

600

400

200

0

3–LAYER MODELS: n’, k’

o

Figure 38

25 50 75 100 125 150 175 2(

*SAH

~NSl+RES--+- MARATHON-i- ARCO(STIM

+MEYER-1

*MEYER-2~ADVANl

o

Net pressure history for case 6

Page 103: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

n

1.2

1 *O

0.8

0.6

0.4

3x4x

0.2

3–LAYER MODELS: n’, k’

+9-SAH

~NSl

+RES~MARATHON~MEYER-1~MEYER-2~ADVANl

0.0 I

o 25 50 75 100 125 150 175 200

co

TIME (rein)Figure 39 History of width at wellbore for case 6

Page 104: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

= 4,000

FRACTURE HALF LENGTH

3,000

2,000

1,000

0

5-LAYER MODELS200 Cp

w

n’=0.5, k’=0.06●--- e-.

MODEL

Figure 40 Lenath comparison for cases 7 and 8

Page 105: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

L 300

FRACTURE HEIGHT5-IAYER MODELS

---200 Cp

w

n’=0.5. k’=0.06--- ‘=--”

MODEL

Figure 41 Height comparison for cases 7 and 8

Page 106: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTURE NETPRESSURE5-IAYER MODELS

1,400 j

~.-U)cl

-1,200w

p 800w t

z t6001 I I I I I I I I I

MODEL

Fiaure 42 Net cressure com~arison for cases 7 and 8

200 Cpw

n’=0.5, k’=0.06*----- .

Page 107: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

90

80

70

60

50

FRACTURE5-LAYER

EFFICIENCYMODELS

I I I I I I I I I I I

MODEL

200 Cpw

n’=0.5, k’=0.06*------

fnvl

Figure 43 Efficiency comparison for cases 7 and 8

Page 108: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.2

I1-a 0.8

0.6

0.4

0.2

0

FRACTURE MAXIMUM WIDTH5-LAYER MODELS

200 Cpw

MODEL

n’=0.5, k’=0.06●------

Figure 44 Comparison of maximum width at wellbore for cases 7 and 8

Page 109: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

FRACTUREAVERAGE

1.4

1.2

1

0.8

0.6

0.4

0.2

5-LAYER

WIDTH ATMODELS

WELLBORE

w\4 \) \

#

#8

I I I I I I I I I

MODEL

200 Cpw

n’=0.5, k’=0.06m------

w4

Figure 45 Comparison of average width at wellbore for cases 7 and 8

Page 110: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

z1- (),2n—

FRACTURE AVERAGE WIDTH5-IAYER MODELS

(gOil I I I

MODEL

200 Cpw

n’=0.5, k’=0.06--- * ---

Fiaure 46 Com~arison of averaae width in fracture for cases 7 and 8

Page 111: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

4000

3500

3000

1000

500

0

5–L/4yER MODELS: 200 Cp

o

Figure 47

25 50 75 100 125 150 175 200

TIME (rein)

Length history for case 7

+SAH

~NSl+RES

~ MARATHON

--+-- ARCO(STIM)

‘ +MEYER-1

*MEYER-2~ADVANl-+--TEXACO(FP)

co(0

Page 112: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

600

500

200

5–L14yEf? MODELS: 200 Cp

,

.,.

. —

Ill

/

1000 25 50 75 100 125 150 175 2(

?~+~ /rein)\llllll/

+SAH

~NSl

+RES+MARATHON--+--ARCO(STIM)~MEYER-1+MEYER-2-1$11- ADVANI~TEXACO(FP)

Ao0

Figure 48 Height history for case 7

Page 113: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1600

1400

~ 1200

Ew

1000

800

600

400

200

0

5–LAYER MODELS: 200 Cp

I I i ! I I I

o 25 50 75 100 125 150 175 2TIME (rein)

Figure 49 Net pressure history for case 7

+SAH~NSl-P3-RES-e-MARATHON-+-ARCO(STIM

~MEYER-1

+MEYER”2~ADVANl

~TEXACO

o

FP)

Page 114: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.2

?1.0

wEom-1-1w31=a

xl--n

z

xaz

0.8

0.6

0.4

0.2

0.0

5–LAYER MODELS: 200 CP

I I I I 1 I i

o 25 50 75 100 125 150 175 200?’!ME (m!n)

*SAH

~NSl+RES+MARATHON

--t- MEYER-1~MEYER-2

+ADVANI

--+$+ TEXACO(Fp)

Fiaure 50 Historv of width at wellbore for case 7

Page 115: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

3500

3000

2500

+

I&l-1

1500

1000

500

0

5 LAYER MODELS: n’, k’

.

0 25 50 75 100 125 150 175 2(

TIME (rein)

I

i

+SAH

~NSI+Z+RES~MARATHON

-+-ARCO(STIM)

-++ ARCO(TERR)

+MEYER-14$- MEYER-2

~ADVANl

4+ TEXACO(FP)

+E+TEX-FPNOTP

AoW

Figure 51 Length history for case 8

Page 116: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

700

600

500

wI

300

200

100

5-LAYER MODELS: n’, k’..

o 25 50 75 100 125 150 175 ;T~}JE (rein)

fllll l,,

Figure 52 Height history for case 8

*SAH

~NSl

+RES~MARATHON-+-AR CO(STIM)-++-ARCO(TERR)~MEYER-1+$-M EYER-2

+ADVANI

++-TEXACO(Fp)~TEX-FPNO’ P

Page 117: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1600

1400

1000

800

600

400

200

0

0

5–LAYER MODELS: n’, k’

//

[

i I I I I i i

25 50 75 100 125 150 175 200

TIME (rein)

+9-SAH

~NSl+RES

~MARATHON-+--ARCO(STIM)

++--ARCO(TERR)

+MEYER-1~MEYER-2~ADVANl~TEXACO(FP)~TEX-FPNOTP

Figure 53 Net pressure history for case 8

Page 118: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1.2

.5 1.0

wQi

~ 0.8-J I

x

: 0.2

0.0

5-LAYER MODELS: n’, k’

I i I I 1

0I I

25 50 75 100 125 150 175 21?~}~~ (rein)

\llllll,

+9-SAH

~NSl+RES-+- MARATHON

--+-ARCO(TERR)

+MEYER-1

+MEYER-2~ADVANl-+--TEXACO(FP)~TEX-FPNOTP

Figure 54 History of width at wellbore for case 8

Page 119: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

107

Appendix A Width and height profiles for SAH Trifrac

Figure Al -A8 give the height profiles and width profiles calculated by Trifrac as afunction of length for cases 543. These profiles were provided by S.A. Holditch &Assoc. and have not been changed for publication.

Page 120: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

-

Fracture Height Profile Plot

200 “ case a, constant 200 cp fluid [f$-200.OAT)— ..- ..- Flrst ~nl~id~lon Layer

150–

100-.—— _ ——-- — — -.— .— — ----------— --..-.._-_——

——— ——— .— — — --- ——— — -. — -- -- ..- .._

-1oo -— — .—.-——. — —— ___ _

.~~ ~

-150- -L

t LEGEND— At Shut-In-200t I I I 1 I I I I I

o1 I I I I I I I I 1 I I I I 1 I I I I I I I I500 ~~(-j~

i500 2000Figure Al Height profile -case5

2500-...Ciuuu >500

Fracture Half-Length (ft)

Page 121: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Width Profile Down Fracture (At Shut-In)200 constant 200 cp fluid (F3-200,DAT)

1:.&5,. . 852,

150 —- 1270,‘- 1704. / i

[

----2130,— 2556+

100F— 2982,‘- 3407.

I -———..—._

50

nv

-50

I

——— — —- ...—

-100

-150.

t

. ..- ..—

-- —.

— ---

— -—

/

IIII

III\

\

;\

‘i.\

1II

III/

/

\

\\”J\\.\

\

‘++\

_- ‘AN’, .:y\

--- --- —--. —-- —___ ——— ,__\,$

\

/

,/.,.+,., ~

[

,,+:& —— __ __ —— .—— .-“-/ // —-——,{/+[“7’

I I I I 1 I I I I I I I 1 I I \

75 -,501 I I I I

-.251 I I I

0I I I

.251 I

Figure A2 Width profile -case5.50 ,75

Fracture Width (in)

Page 122: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

-4-JcO)

Fracture Height Profile Plot300 case b, variable viscosity fluid (f3-v.DAT)

i“’200

100–

o -

-100 z-

—- —--- — . . - t----

— -- -- -- --- --- .— .----- .. - .-.. _ _ _ ....- -,.,- -— . .- ---- -.-— -. .- ___ .... -_ --- .- ..._-—-— ------ ---

- —-

-—

-200

[ LEGEND— At Shut-In-300 I I I I I I I I I

o

I I I I I

500I I I I

f~~~ ~500’ I I I I I I I I I I I I I

Figure A3 Height profile - case 62000 2500 3000 3500

Fracture Half-Length (ft)

Page 123: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

n-+-J

w

Width Profile Down Fracture (At Shut-In)3001 ~~~~ case b, variable viscosity fluid (F3-V,DAT)

, FROM WELL (FT) — -. .— Frost ~nltlfitiufl [_ay~p

1—o,–-407.““” 815.‘“- 1222,

200– - 1630,---- 2037,— 2444,

I— 2852,– -3259.

b

100-...--.._--,-...-

0-

— — -—..—.—-100

[

.-.

- ___

-, . . .. . .. .

. ..----- ----- - -.

\

--

- - _,._ ....-

- --- —- _ - --

- .. - . . - ,, _ ._ -

.- —.— _ -..-,---

-200I I I I I I I 1 I I I I I I I

-1.00 III-.75

1 I I I 1-.50

I I I I 1

-,25I I I

oIII1I

.25I I I 1

Figure A4 Width profile - case 6,50 ,75 1400

Fracture Width (in)

Page 124: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

100

1.——-....----...-----0

Fracture Height Profile Plot300 case b, 200 cp fluid (f5-200.DAT)

--—-...- F-lrstInitiation l_aycr

.-----.---------._-,,-------,...-..,.-.,,,_....-...._........_.-..--,,-—,--------------..__,_-_

u

?

}

-.-—- —.. ----... ... .,--, -,,_

LL -100LF–––––––––

- . -- ..-.- - - - ..- .-.....-”. .-, ,,-. . . . . . . --------- -...--., ,- ....- ... .. . .... ... . ,. ------- .,

-—— ———L ——— ——— ——— ,____ ———

-200-––– __

-300t — At Shut-InI I I I I I I

o1 I I I 1 I

500I I I I 1

1000I I I 1 I I I

1500I I I I

2000Figure A5 Height profile -case7

2500 3,Fracture Half-Length (ft)

Page 125: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

4-J

Width Profile Down Fracture (At Shut-In)200‘- case b, 200 cp fluid (F5-200.DAT)

jST . FROM WELL (FT) — ..—.... Flr::k .Inltlat~un Lzi\/ur4

1—.

0,,

—.-

100 :..:

363.726.1090,1453.1816.

1–=--2 .f7g: -----------

— 2542,

t

—- 2905.

0

1——.-—...-.....-,.-,..._-1oo‘-–-

———,___,——

1-200 ––––––––––– <

/’\ ‘.. ,,

\

—.—— —-

\

——— ___, .—/“

) “\.’ /

/

.- ...- .---- -.._ __ , ._ --- -----

.- ....- --- - —., -,- . ... .. ..- ..-—

+--------------

-300 I I I I I I I I I I I I-.75

1 I I I-.50

1 I 1 I I-.25

I 1 1 Io

I I I

.25

I IFigure A6 Width profile - case 7 .50 ,75

Fracture Width (in)

Page 126: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

al

-M

Fracture Height Profile Plotvariable viscosity fluid (f5-v,DAT)

100

1———————--.--.,..

0

—-- — --—— — ..— _ -.._ -— — -.. —— ———

um .—

2 -100– — — — ‘--—‘-- ““–“–‘--‘-‘--‘–‘– “’”-‘- ‘-’- ‘“- “-– — “-- ‘- ----- -– -~

— —. ———

‘------T -----------------200” –––––––

.— -_ _-

———

I

LEGEND-300 t — At Shut-InI I I 1 I 1 I I

~1 I I I

~fJfJI I I 1 I

~~~~I 1 I I I I~~~~ I I I I2000 p~~~ ~~~~

Figure A7 Height profile -case8 Fracture Half-Length [ft)

Page 127: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Width Profile Down Fracture (At Shut-In)300, case b, variable viscosity fluid (F5-V.DAT)

;ST. FROM WELL (FT) — .—..- Frost Inlt~at~c)nLayer.

I–-3300“o 6600

200—“- 991,– - 1321,

1----1651,— 1981.

I—2311,–- 2641,

z 100

u———_----,.------.,-—--—zm.I-l

$? oal tL

.3; I —---________--._k -100‘-’----

I——————————_

-200 –––––––––––

t

— . - ..._

.—

,

!.——— ____ ... .-,,- ,-—-. . __

—- _ _ ___—.— ___ _

——— _——— _

——— _____

———

-300 I I I I I I I I I I I 1 I I

-1.00 I11I-*75

I I I I-,50

I I I I 1-.25

1 Io

I I I I I.25

I I I

Figure A8 Width profile - case 8,50 .75 1.00

Fracture Width (in)

Page 128: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

116

Appendix B Width and height profiles for Meyer-1

Figure B1-B8 give the height profiles and width profiles calculated by MFRAC-11 (no“knobs”) as a function of length for cases 5-8. These profiles were provided by Meyer& Assoc. and have not been changed for publication.

Page 129: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

:@

i!co

‘i

Stress Profile1 I I

.

— —

puy zone

o% I I ! I 1I -500 0 500 1000 1500 2000

Net Stress (psi)

Vert. Width ProfileI u

8

. —

++

0

-1,0 -0,5

— —

\

—__ —__

+--

).0 0,5

/

___ —

Figure B1 Height profile - case 5

Page 130: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

!-

4

I

d

Width Profile Contours8 I 1 I I I 1 I 8 I I I 1 I 1

““’ . . .. . .

. .$. .

. . . .““o

‘ ~Q

#J$’..”Q”,.,.

....

,●

,.”. .

,

. . . . . . . . . . . . . . . . . .. . . . . . . . .

. . . . . . . . . . . ...>- . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . , . .. . . . . . . . . . . . . . . . . . . .

.“* . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ... .

. . . . . . . . . . ... . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . “.. .!....- . . . .-.-..—. —--. .--.* ..=S.Q. .w. - ...+a.-.--.m..~. . ..=.. . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . ...

. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . .“.. . . . . . . . . . .

. . . . . . .. . .

‘. $..... . . . . . . . . . . . ● .$............ *.. ‘.. . . . . . . ‘...., ... ‘.

. . . . . . . ... , . . .. .. . . . . . . . .

. . . . .

.*. .

..

, e “, “, ‘t, ‘, ‘,

# ,,,.

,,’ ,,,

, ,’ ::.“ ,’ ,..-

. . . . . . . ?. ..’....... ..” .’.,. . .“ ,, .,, ,, .,... . ..”...

. ...’.

. . . . . . (),43 . ....”.”..””-..:;:;...,..::’””..’””;:

. . . . . . . . . . . . . . . . . . . . . . ....‘.’. ”.432 ..”” . . . . . . . . . . . . . . . . . . . . . . ..- ““.””

.-, _. -. +.,. . . .. . . . . . . -. .”.””.” “-8%

.. . . .,. .. . . . . ... . . . . . — . . ...”-.... . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. ..=..-.. —.-.—. . . . . . . . . . . ...=.. —“.. . . . . . . ..”. ”O.14

.—. _. . . . . . . . . . . . . . . . . . . . .. . . . . .

0.09. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ... .. . . . .0103........ ...... .... ... ... ... .....

1 I 1 I ! 1 1 I t I

10t I I I I

500 1ooo 1500 ‘2000 2500 3000 3500 4000

Length (ft)I

Figure B2 Width profile - case 5

Page 131: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Stress Profileo

%r

I 1 I

o0 -

— —

pay zone

—o —o

-i’

8 ,. I

Y -500 0I I 1

500 1000 1500 2000Net Stress (psi)

Vert, Width Profile

.—

/

cc

—. —

, cI

-1.0 -0,5

.—— __

I I

1

I),0 0,5

t

——

1

(ir

Figure B3 Height profile - case 6

Page 132: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

%-lWcm

boo●I-I

F-1

I

!-l

. . . . -... . . . .

‘.‘.* ‘.‘. .

t,$

#($3’” ..,.*Q” 4

.“”,,. #. . .

Width Profile ContoursE IN I 1 I 1 I r I 1 I I.........................................”..........................................,.................................................““........““......~..o........*

‘..‘. ‘. . ,. ., . \ \. ,t ,,I $#,’, 4, ,’, ,,,’ , . ,.,”,,....’””,.......*..........................

............................”. ........0.10

. .. . . . ...”., . . ..-.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 500 1000 1500 2000 2500 300Length (ft)

o

Figure B4 Width profile - case 6

60

Page 133: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Stress ProfileI I 1

.—— -

.—— .

A —pay zone

— —

I

ozI -1000 0 1000 2000

t I I

Net Stress (psi)

Vert. Width Profile

.— .

(

(il

II , I

Figure B5 Height profile - case 7

Page 134: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Width Profile Contours%’ 1d I I I I I I I I I 1

la

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

~ - . . . . . . . . . . . . . . . . . . . . . . .

-1 _. . . . . . . . .-------- . . . . ..$. . . . . . . . . . . . . . . . . .>O................................................= -.+.- .. ...........=..= ..

u. SAA.. .-. . . . .-. .—..- ..-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.—, -.. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....**

. . . . . . . . . . . . . . . .

—._. . . . . . . .

. ..*...... .... . . . . . . . . . . . . . . .’ . . . . ..O .... . . . . . . . . . . . . . . . . . . . “.. . . . . . . . . . . “’. . . . .. . . . . . . . . . .z. ........ .... ........................ ............... ....-... ... ............,0 .... ......... ........ ...

......... ... ... .... ..... ‘,

- .“.. 0,47.. . . . . . . . . . . . . . . ‘.... . , ,*. . ‘...* ,*’. . ‘. ,. . . . . . . . . ,-@O.

. .‘. . ,

●. ‘, ,w

. \ I. \ ., ,$ I #. ,t o I. ,’ t’ t

. . . # ;,-. . ,’@g

# #’ :. . . . .“. . . . . ...’. .

.,”.Ql- . . . . . . . . . . . . . . ..Q.43 . . . . . ..”*.. ””..”

e,..@” ,,... ” ,,” ,,’” ,/’. . . . .’

*y. ., ., . . . ...”” ,..

. . . . . . . . . . .. . . . . . . . . . . . . . . . . ...8 . . ., ,.,. .$ ,., ,.. d. . ...*. ,,. .

~:rn:w:rnQd~?R.n%-. . . . . . . . . . . . . . . . . . . .. . .* *....-., ,.. . .

0s. .. . . . . .. . . . . . . . . . . . . . . . . . . .“”. . . . ...” ..” ,’ ~,

. . . . . . . . . . . . . . . . . . . . . . . .. . . . ..=..-..- . .. . .—..-. .U . .u..~ . ...’. ‘1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

.,.- ..: I

z~-—. —.”L. . . . . . . . . . . .. ,=. . . . . . . . .*

. . . . . . . . . . . . ..-O ... ..- . ..”,“. '". ".. "". Q.2p.F.2:;.::::; j:}:::; ::::::..:: ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ‘;; ,,,... . . . . . . . . , #‘ . . . . . . .z , ‘.. .’. . ;

. ..*T -, .,...,.;-.., . . . . . . . . . . . . . . ..””’ ””’...

. “’. . . . . . .* .,’.. *.”.” ,. .,..,, . . . . .. . . . . . . . .z:

. . . . . . . . . . . . .***. . . . . . . . . . . . ...o.~.’ “;::~;;;o;x2::”:* :;:::~.!(iz::::::::: ””’”

N“........-....tt.t$l$:t~ ......

.................

,,I,

1

,

,,I

1

;o,

,1,.t

,’ :

I

:N

1 I I I I 1 t10

1 1

500I 1

1000 1500 2000 2500 3000Length (ft)

E

Figure B6 Width profile - case 7

Page 135: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

oStress Profile

pay zone

— — —

2M

‘3 g —y’ -

0

y

: I

‘?-1OOO ot t

1000 2000 3000Net Stress (psi)

Vert. Width ProfileI 0] I

— .

I, I 1

JFigure B7 Height profile - case 8

Page 136: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

1-

0in!+

I

I

Width Profile ContoursI 1 I I I I ( I I I I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . ... . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . .~. .-. .----- .-l-. .n.. . . . . . . . . . . . .

. . . . . . . .. . . . . . . . .

“.. . . . . .““’ . . . . . . ● . . . . . . . . .‘“. . . . . .. . . . . “’. . . ..,. ..fik . ..- . . .

“.u.tj~..,., -. ..* . . .... . .,, ., .. . . . ,,,

. . .‘..,, . . . . ,$

●.*.

. .. ,

:., . . . . ● . , , $,

. . . . . . . . . ,*. . . .

1$“.. .

. . . \$!l‘.,

,. . . . , ,’::

. , . ,$ ,,,0,,,, I

. .*

,. Q@q.....

\ $.

‘1 ,*t * ,*

t , ,,;

,,,,

,’,’,$,,.’ ,,

.’ #..- ,

.4 ‘i,,,,, .“ il. ,

, *11:,. . ..-. . . . . .

~~ ‘ )@3- .*.O.*’ ,.’ ,,’ ,8’ ; ~;

. . . . ...6... +.”. . . . . . . ,“. . . . . . ,’ ,

. . . . . . . . . . . . . . . . . . . . . . ..x:-:-:-"m?::-.o~?-:-:~:-:~-:'*.;:::;:-;:-;::::O..=:::."_._i_

,OO.,.,...O” . . . .0$.”.””” . . . . . . ...””. . .--.”-.”.. . . . . .

,; -’”.,,,. .’!

●** . .’........~-......o,~~ . . . . . . . . . . ...’.............. (., “,’ ;;:::::........................... .....*......... ... .$. . \ ● . . .. -. % \ . ,.

# ,r,“ .#

,..~,~f-j ..0.’

(),33 .“.’”,’;:. . . . . .. . . .... ... . . . ... . . . . . . . . . . . ...’... .“ :.,,.

‘~~~~~~~;~:Q~i~~.~Q~2.~;:~:;:;:;:~l-&.;j;;j.,........M.;.:.;~...,.."."..8... . .. . . . . . . . . . . . . . . . . .

N’1 I 1 1 1 I 1 I

101 I

500I

1000 1500 2000 2500 3000Length (ft)

Figure B8 Width profile - case 8

6A

Page 137: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

125

Appendix C Width and height profiles for Meyer-2

Figure CI-C8 give the height profiles and w“dth profiles calculated by MFRAC-11(“knobs”on) as a function of length for cases 5-8. These profiles were provided byMeyer & Assoc. and have not been changed for publication.

Page 138: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

ccr-

--d“w

Stress ProfileI I , I

.——

.— _

pay zone

I I I II -500 0 500 1000 1500 2000

, I o I

.— _ __——_ _-

1 0I

1

-1.0 -0.5I

0.0 (3,5 1.(

( in,

.— _ __ ———–

0

8i I I, , I

Net Stress (psi)

Figure Cl Height profile - case 5

Page 139: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Width Profile Contours

d

o0+

I

II

E““-...*..............-.

““”............................‘. *.....

. . . . . . . . . . -. ‘“” . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . ..+.

. . . . . . ..O ..O““. . . . . . .,

“’- . . . . . . . . .‘------- . . . . . . .

. . . . . . .. . . .

,., ‘., ‘. .. .

.‘. \

. . ,

. ,,

. . . . . (@ .’ ,. . . . . ,.. ..” .

..-.. ,

.-. . . . .,

.,’ ,. . . . . . , ,’ , ‘t

. . . . . . . . . . . ‘,. . . . ., .“ ,,. . . . . . . . . . . . . .

,.”. . . . #/.

. . . . . . . . . ..".""..""'"."""""...̀"".."....a.""."...."`""t,.. ,’ ‘,

..”,. ”,”,

. ..” . .,.

,. ..”........ ...”.............................” ..,......””. . . ...’ ...-------- —.—.-..6. .. s. ... ...”.”” ● “ . . ...”

,,. .

.... ....”. 0.32..~..~ ... ........... ....- ..=..- “-—”.-OO.,.~..-.-

“.00””0,25 ........... .. .. .. .. . .. . ....”.””. ““””

.... .... ... ......’.. .. .. ... ... .. .... . . .... ....”.””

.... .. .. .. ....... ......

I

. . .

1

102’

1 I t 1 t I t I I I

10 500J

1000 1500 2000 2500 3000Length (ft)

Figure C2 Width profile - case 5

Page 140: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

--c-@C~.

Stress ProfileI I I ,

.——

.— _

pay zone

Vert.Width Profile

---L-1,0 -0.5

1 I , t I 1 II -500 0 500 1000 1500 2000——

Net Stress (psi)

.— _

1

1

).0 IQ.5 1

Figure C3 Height profile - case 6

Page 141: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

I

Width Profile ContoursF

I

I I 1 I I I 1 I I

“’. . . . . .. . . . . . .

. . . . . . .. . . . . . . . . .

. . . . . . . . . . -. . . . .. . . . . . .

. . . . . . . . “........... ................ ............ ... .................. ..... .,.,

‘. .-..,. . . . . . . . . . . .. . . . . . . . . . . . . . . .’ . . . . . . . . . . .

. . . . .. . . . . . . .. . . . . . . .

. . . . . . . . . .. . . . . . . .

. . . . . . . . . . . . . . . . . . .k..ti”,&.+ti.. . . . . . . . . . , . . . . .. A.._

‘ . . . . . . . . . . .,, ...,,

. . . . . . . . . .

. ...,. .

. . , ‘. , . .\ ,

,:, #.. . #

...’” . . . ,, . , ,*.’. . . . . . . . . . ..’............’ . . . . . . . ..’ .,”,,.~ .’

. . . . . ... .,1

;:; :_:_. ~56::::::::::::"::~.~+.:::...:::::;::;:;:::.:::::;::;;.;;::::.".m.-.—.a-

,...................’0,30 . .. . . . . .. .. . . . . . . .... . . .. . . ..”. . . . .

. . . . ... .. ... . . .. .. .. . .. . .. . .. .... . .... . . . . . .. ...-..’. . .. .. . . ... . . .. . . . . . . ... . . . . . . . .

. ,

#,,. .

s

. .

\#

., ~oaz.’

— —

NI I 1 I I I

101 I

500I

1000 1500 2000 2500Length (ft)

Figure C4 Width profile - case 6

Page 142: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Stress Profile~02

I I I

o0 -1+_

zo -=

~.

pay zone

o

z “ I I I

I -1000 0 1000 2000Net Stress (psi)

Vert. Width Profile~

.

i

Figure C5 Height profile - case 7

Page 143: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

o0r-l

z“ Iom

Width Profile Contours

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . ._.. Q.._ .. ----- .+. .—. .— .._. ._-. m ..=..+.. a.. —.. —. . . . . . . . . R

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .. . . . . . . . .

. . ‘->-..*.F. . . . . . . . . . . . . . . . . . . . . . . . .. --..= ..-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . ... . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,,. . . . . . . . . . . . . . . . . . . .... . .. . . . ..*,. . . . .

. . . . . . . o,~~ . . . . . . . . .“...’.. . . . . . . . . . .. .. . ... . . .,. . . ‘.-. .,. ,,

. . . ,. . . . ‘. \ *,

. . . . . . . . . . . . .. . ‘, .’, ::-.. . . .

. . . . . ‘. ,““....

.

o,~~ .. ,., ‘. ,’, ::. . . . ,,

. . ‘. ,,::. . \ ,,

. .\\ 0::,. $

,,,1+,# .,,

l,,.’.,.. . . . , (% : : :::.....’ .’.. . . . . . ,., , .“ . 0’:’!’”;:

.... .,’, :,........””.

.’ .’

. . . . . . . . . . . . . . . . . . . . ...

. . . . . . . . . . . . . . . . . . . . . . . . . . - ...’.....~045 . . ...”.”....’,........’’”....,,.,.” ,/.. ” ,,.” ,,” j~

-o—.. -.=.. =.. =.. AOJ39 . . . . . . . . . . . . . . . ...”. _. . . . . . . . . . . . . . . . . . . . . . . . . . ...?=. . -.. —. —”-. . . . . . . . ...”.. . ...”.,.

..-” +::: &. . .. . ,,’:, - ...,,,,.. . . . . . ...= ,.-..- ~. .- +: —

, . . . . . . . . . . . . -....”. -.. . . . . . . . . .,. . ,. . .. ...-”.

:’.:..-.”.:.0:33 :::::::::::::. . . . . . . . . . .

. . ‘,. . . .. . ..’ #.’. . . . . ..”. . . . .. . . . . . . . . . . . . . . . ...”.” . . . . . .. . . ...* . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ...”””

. . . . . . . . . . . . . . . . . . . ,.. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . ...

E)(J(J 1000 1500Length (ft)

2000 2500

Figure C6 Width profile - case 7

Page 144: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Stress Profilec)oN

l-+

o0N

.——

-——

.—

pay zone

1

I 1 I

I -1000 0 1000 2000 3000

1

Vert,Width Profile

oC.3mt

Net Stress (psi)

Figure C7 Height profile - case 8

Page 145: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Width Profile Contoursor) I I 1 1

Y-1 ,I I 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

-- . . . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 .“- . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 -. . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ., . .. ...&. .= ._. _

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . ...

. . . . . . . .

$ ....................... .,, ,●.. .. .

‘., .,, ,

.. ,,, ,‘. \ ,,, ,

., s ,,, ,

t ,,, ,

, ,,, ,t ,

, ,,, ,

,,, ,,

, , !,

+ ,...,... ”.” ;,,f#“ . ,4

●. ..Q’ ., ,1 ::

G! “. ,1, ,

,.” .’ ,!

. ...”””” ,... . . .. . . . . . . ...”.”.’.

..’ :; -

. ...”.. # :

Qf) . ..*’..’ ,’ ,’

........4’:

...... .... ..............-,.. 4.49 .“”..”””””;... ...”.. ”.”’.. ...”. ”’. OJ“’’JQ; -

‘z z ‘-... ....... .....=..=. .tl-,.w-..-. ~. .~... ... .... . .... . .. ....” .=------- .- —,= ..- —,. ~.4t

~. ..... ... . :. .

E...* .,. . ,;,,. . ,.. ,.’ ,,.

T -..,

, ,’. ,’-*Q...... ‘. ... .. ... .. .-----,

................. .. .0 . 0.4Q

.. ... ... .... . . .. .. . ... ‘... ’..., ,m

\ ,, ,d - ,.” ,,’ ,. ,.’., ..” ,,..1

.,...’. ,..’ ,.. .. ... ....”.. ,.

... ........” ,.,. ... ....”

-... ...... .....". -."".. "."."".".".Q.. . . ........ ........ .. ... ........ ....-.............""...".'.."."z ‘. ......... ..””.””..”.”...” . ...”.iv -j!!~~~~~:[email protected]

.:.”:.................. ..“..“.“-. . ... .... .. ... .. .

I

zN’

1 I 8 I 1 I I10 500 1000 1500 2000

Length (ft)

A

cdcd

Figure C8 Width profile - case 8

Page 146: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

134

Appendix D Width and height profiles for Advani model

Figure DI gives the height profiles calculated by HYFRAC3D for cases 5-8. Theseprofiles were provided by S. Advani of Lehigh University and have not been changedfor publication.

Page 147: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

SFE NO. S FRACTURE GEOMETRY

400.0

200,0

0,0

-200.0

-400.0

--.+3-: ---- 8 WOa—x-r-%wso aian a z.a*Oa- Cca.e 43>-----

--------- ------------ ---- .,--- -------

--- *d------- -

-------- ------- --=---z--- -------- -

0 750 1500 2250 3000x

Figure D1 Height profiles - cases 5-8

Page 148: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

136

Appendix E Width and height profiles for GOHFER

Figure El -E8 give the height profiles and width profiles calculated by GOHFER as afunction of length for cases 5-8. These profiles were provided by Marathon. and havenot been changed for publication.

Page 149: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

200

0

-200

GRI/SFE #3 Case 5 -3 Layer Const. Vise.

\\\\

+#

r

I

o 1000 2000

Fracture Half Length, ft

o,4.8

Figure El Height profile - case 5

Page 150: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GR1/SFE #3 Case 5-3 Laver Const Vise.Width Profile at Wdl

080

06,

04a

O*2

0

-0

-0.4

-06*

I 1 I-0.8.“400 -300 -200 -1oo

1

0 100 200 3

A

toco

)0Frac Height, ft.

Fiaure E2 Width nrdile - CaSa 5

Page 151: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

200

0

200

GR1/SFE #3 Case 6 - 3 Layer Variable Vise

o 1000 2000

Fracture Half Length, ft

o,25,50,751,00

Figure E3 Height profile - case 6

Page 152: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GR1/SFE #3 Case 6-3 Layer Var. Vise.at Well”

081

06,

04s

02*

0

-0 2“*

-o 4“*

-06*

-08 .1

-4

Width Profile

.— —. —

. .....——ri I I

I

10I I

-300 -200 -100 0 100 200 3(Frac Height, ft,

Figure E4 Width profile - case 6

Page 153: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

200

is,Q oi!

(J(dt

-200

GRllSFE #3 Case 7-5 Layer Const Vise,

I ~ \ \\l’

/111

0 1000 2000

Fracture Half Length, ft

Figure E5 Height profile - case 7

Page 154: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GR1/SFE #3 Case 7-5 Layer Const Vise.Width Profile at W~l

08,

06*

04*

02,

0

-02*

-04a

-06●

-088-400

I I I-300

I-200 -100 (j

I I100 200 300

Frac Height, ft.

Figure E6 Width profile - case 7

Page 155: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

200

0

-200

GRIJSFE #3 Case 8-5 Layer VariableVise.

L1

0 1000 2000

Fracture Half Length, ft

o.25.50,751,00

Figure E7 Height profile - case 8

Page 156: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

GR1/SFE #3 Case 8-5 Layer Var. Vise.at WellWidth Profile

08*

06-,

04-9

02 .a

o-

-02-1

-04-0

-06-,

\

-08!● I-400

I-300

I-200 -100 (

\

I I

100 200 3 oFrac Height, ft.

Figure E8 Width profile - case 8

Page 157: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

145

Appendix F Width and height profiles for ARCO (Stimplan & TerraFrac)

Figure FI-F8 give the height profiles and width profiles as a function of length for cases5-8 using Stimplan. Figure F9 gives the height profile as a function of length for case 8using TerraFrac. These profiles were provided by ARCO and have not been changedfor publication.

Page 158: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

7—

......

. ‘

.

I

Page 159: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

SFE#3 (3-Layer, 200cp)

8900T

9000 - -

9100 Im-o —*. —4—---*. ~ —m ‘-—~8~.~.-..m-_m —---m---.-+-_+._+\

9200 ““-%

‘h,

9300 --

•——9—+—-+-+-~-~-- ~’9400 ~a~.~

9500 --

9600 ~~~

9700 . ------------ ~~-1--- --.---. --+------- 1----–-----—1------–----–-+–-. —--——t---- +.-—-+

0 500 1000 1500 2000 2500 3000 3500 4000

x

Figure F2 Width profile (Stimplan) - case 5

Page 160: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

.-.

..................................................

7—

......

...........................................................

I

,

i. ...!.....

!

..... ........,,-.................................

..

,.,:.:.,$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..:

I~.

s,

. .

.

.

.

“i< . . .)

-. . .t

,\%, : 2“ ..-.., . / ;

“:’. .7.

.,. : ..’. t.;;’

:...::...,,. ,.!, .,.,,.,. .+.’-.!.’-.:;:..:.*..:.*’.:.,.., ,

u)

i?

Page 161: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

SFE#3 (3-Layer. Var. Vise.)

“8900-

[9000 .

Ir9100 -- ~~. =—--+–--_-m.-_.. m....._*_+—*—. •.--..~~

----9,

9200 .

93001)

,em.—e. d“

9400 ....-...*B -----*’---”’” *—-”’ *”—-*

.--.-w----””-” —~—--=..--~-a—--~--— -’”--”’”v”

4--- ●

9500

‘1

9600 -

9700 4~- ~— I—-. .-— ——”l---- —t---- –t”- 1

0 500 1000 1Soo 2000 2500 3000 3500

x

Figure F4 Width profile (Stimplan) - case 6

Page 162: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

5590 $WS (psi).

. .

.. . .

! . . . . ...”..... . . . . . . . . . . . . . . . .

.

, .

.

H

.

.. .

.

....... .......... .

. ....

. .,.

I.....................>...,,,..,,.,,,,.,,.......”..

.

.

. .

. .

,. ,“, .,.,,......s . . . ...”. ,..,O,, ,,.,. ,,.,, . . . . . . . . . . . . . .

. .

,

.

.

. .

.

d.

,.., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...”.. . . . . ...”..

. .

. .

. .

. .

. .

. . . ●

o . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

0 . ●

. . .

. . .

. . 0

. . . .

, *

. .

150

SIIT#3(5-layer,COnst,Uisc)

ill IJidth(in) 050s

9100

9200

9300

9400

9500

. . .

. . .

. . .

. . .

. . ., , ,

. .. . .

............................. .............................(

.

,

.

.

.

,

.

.

,

.

. . . . . . . . . . . . . . .

.

.

.

.

.

.

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..., . . . . .

. , 0

. ● ●

.s . .

. . ,

b

Page 163: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

STIMPLAN, SFE#3 (5-Layer, 200 cp)

8900

9000

9100

9200

9300

9400

9500

9600

9700

0 500 1000 1500 2000 2500 3000 3500

x

Figure F6 Width profile (Stimplan) - case 7

Page 164: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

152

Stress(psi). .. . .

. .. .* o

. .

. .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

, ,

. . .

. -. .

. .

. .

. .

.

.

. .

. .

. .

. .. ...”.........”..

. .

*

. .

. .

. .

. .

0 ,

. .

* ● ✌

✎ ✎ ✎

✎✎✎✎✎ ✎✎✎✎✎✎✎✎✎✎ ✎✎✎✎✎✎✎✎✎✎✎

✎ ✎ ✎ ✎ ✎

✎ ✎ ✎

✎ ✎ ✎ ✎ ✎

✎ ✎ ✎ ✎

✎✎ ✎ ✎ ✎ ✎

✌ ✌ ✌ ▼ s

. . . .

0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...”..

. . . . .

, *’, * *. . . . .

F“ ~●... . .... . .. ,. . ...........................................“..

. . . .

. . . .

. ● .

. . . . .

. . . . .

. , . ● ✎

✎ ● ✎ ✌✎ ✎

✎✎✎ ✎ ✎✎✎✎✎✎ ✎✎✎ ✎✎✎✎✎✎✎✎✎ ✎✎✎✎✎✎✎✎✎ ✎✎✎✎✎✎✎✎✎✎ ✎✎

o . . ● o

-, , , * *

. . . . .

. . . . .

. . . . .

. . . . .

* , . ● ,

. . . . .

WE#3

3500

9100

9200

9309

9400

9500

(5-laym,Uar,(Jisc)

-0,50 Hidth(in) 05Ra.

.

.

.

.

.

.

.1

......................... ..........................

.

.

.

............... ........................... ..................

.* !’,0 . . . . . . . . . . . . . . . . . . . . . . . . ..OO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. .

* , ,

. .

.

h IJidth:0,79 inco

Page 165: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

SFE#3 (5-Ltiyer, Var. Vise.)

8900

9000

9100

9200

9300

9400

9500

9600

9700

~..m —-—-9-—-—m————*—_.~ .-m.-—m_m_.,m-, m __m -

-----0 -—.., — .—. ._-*

\

\

A

●,T,—~-o---~*- ~“ 3

~—~t-—m—

0 500 1000 1500 2000 2500 3000

x

Figure F8 Width profile (Stimplan) - case 8

Page 166: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

60(3,0

400,0

20(3, 0

0.0

.. ...... . . . .

Men IdL::3FE#3Fi 1e I%me:

-200,13

‘40L3,0

-600.0I 50 ,0

Ilooi.o

I1500.0

I2000.0

I I2500.0 3000.0

I3500.0

LENGTH (ft )

Figure F9 Height profile (TerraFrac) - case 8

Page 167: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

155

Appendix G VWdthand height profiles for RESFracpro

Figure G1-G8 give the height profiles and width profiles calculated by Fracpro as afunction of length for cases 5-8. These profiles were provided by RES and have notbeen changed for publication.

Page 168: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

6300

6900

7500

8100

8700

8g 9300

&

9900

1Osa

1110

1170

1230

Stress Profile#IIIII. . . ..-. ----IIII1----- -1-”----IIII

----- a. . . . .IIIII------- ----III

-1III

1 -----IIII

;-----IIII1 -----IIII

1 -----IIII

‘-m-----I

11-----. . . ---- ------

II III II II I

----- -1 ------f -----

I II II III------ ------II I:-----

dIII

. . . . . 1 ------, -----

II

II

CASE 5:200 CP; 3-LAYER

Permeablllty

Low High

5200 6250 7300 8350

Closure Stress (psi)

.3000 .1500 0 1500 3000

Lenglh (feel)

ii

Figure GI Height profile - case 5

Page 169: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

Stress Profile8600

III

8740. . ---- .-:-----III

8880. .--. J----1II

9020. ---- ‘---1 -----

II

IIIIL -----

I

9160. ..----J-----

Is$

II

; 9300. --- .- ‘--1 -----

AI III II

9440. . --- J------: -----II II II I

9580 .I I

.--- .--+- -.. ---, -----I II II II

9720 .. ----- J------ : -----II II I

I9860 ..__:--- ‘--1 -----

I II II II 1

10000, I 1

IIIIr -----IIIII. -----IIII

}-----IIII

-+-----

CASE 5:200 CP; 3-LAYERI I II I II I II I II I II t II I II I II I II I II I II I II I II I II I II I II I II I II I III I

IIIIIIIIIIIIttII

dI

I I I I

I II I II I II II I II I

IIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIII1IIIIIII

IIIIIIII1IIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIII

5200 6250 7300 8350 1.00 0,60 0.20

IIIII1IIIIIIIIIII

hII

I II II II I I II I

I II

I

I I II I II I II I II I II III I II I 1I I 1I I II I II I II I II I II # II I II I II I 1.I I II I II I I

IIIIIIIIIIIIIII1IIIIIII

IIIItIIIIIIIIIIIIIII1III

IIIIIIIIIIIIIIIIIIIIIIII

I t+

IIIIIIIIIIIIIIIIIIItIII

+

0.20 0,60 1,00

Closure Stress (psi) Widlh (inches)

Figure G2 Width profile - case 5

Page 170: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

7300

7700

8100

8500

8900

~&g 9300

8

9700

1010

1050

1090

1130

StressProfileIIII

------ -----IIIII----- -1-----IIII

-l------ ----II1II------ -----III

IIIIL -----IIIIIr

------

IIIIL ------1III

:-----IIII--wnr----

! II I------ ------ . -----I II II II dI I

----- -i ------i -----I II II II I

I----- ----- -- -----II II II I

4 ----- --

A

mco

5200 6250 7300 6350

Closure Slress (psi)

-2000 .1000 0 1000 2000

Lenglh (feet)

Fiaure G3 Heiaht mofile - case 6

Page 171: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

~GOOStress Profile CASE 6: 40# X-1 VIS; 3-LAYER

8740

8880

9020

9160

=%=~ 9300

&

9440

9580

9720

9860

1000

II

II

------ -----IIII1.---- -1-----1III

.---- -1..--.-IIII1.-

.-

.-

--

--

--

----”-- ---F

II

I

I-. + ------ +-----

I I1 i’I I

I I

I I------- ---- ---.-I

I I

! I

I I

I t--- -1 ----- -, -----

I I

I 1

I III----- ----- ; -----II II II II I---- --.-- -----1I I

IIIIL -----IIIIIr -----

1IIIL -----IIII

}-----IIII

-d-l-5200 6250 7300 8350

Closure Stress (psi)

IIIIIIIIIIl\1:IIIIIII1I

I I II I II I II 1 II I II I II I II I I11 II I II I II I II I II I II I II II I II I I‘/

4I II 1I I I

I II I I II 1 I II I I II I II I I I

I I II I I II I I III I III I II I I II I I I

I I I I1 1 I II I I ,1I I I II I I II I 1 It I I II I I II I I II I I II t I II I I II I I II I I II I I II I I I

-i-u-L-

1,00 0,60 0,20

1’ I I II I I IIll II I 1’1I I I II I I II 1. I II I I II I I II I 1 II I I II I I II I I II I I IIll I

Ill

I

II II II III

II I II I I II I i II I I II I I 1I I I II I I tI I I II I I II I I II I I II I I 1I I I II I 1 II I I II I I II I I II I III I I I

-&LL&--0,20 0,60 1,00

Width (Inches)

Figure G4 Width profile - case 6

Page 172: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

6300

6900

7500

8100

8700

T=~ 9300

&

9900

1050t

1110(

1170(

123(X

Stress ProfileIIII

------ -----IIIII

------ -----II

I

II

-t-------- ----

IIIII------ -----IIII

t

III

1-----IIII~-----

I

II

IL -----IIII

:-----IIII

------ ------ -----t ,

t II II II I------ ------ ------

II II II II I

----- -1 ------ -+ ----- .

I II II III------ -..---- :------1 II II II II I

------ ------ ----1 r

I II II I

~

CASE 7:200 CP; 5-LAYER

5200 6250 7300 8350 -3000

Closure SIress (psi)

-1500

Permeability

Low High

o

Lqj!!?(fee!)

1500 3000

Figure G5 Height profile - case 7

Page 173: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

8600

8740

8880

9020

9160

1g 9300

&

9440

9580

9720

9660

1Ooc

Stress Profile CASE 7:200 CP; 5-LAYERIIIII----- ----- -IIIIi-----

-1 -----IIII

-1----- -----IIII

.-

.-

..-

1III

L -----IIIIIr -----IIII1 -----IIII

I-

IIII

-1.. ---- . -!------1 II 11

1-----IIII

-.---- ------ ---I II II II I

-.-.-- l ------ t-----I II II II

------- ----- ~----.II II II I

I I----- -l ------ r--- .-

1 II II II I

,I I I II I I I

I I I I

I I I I

I I I I

I I I I

I I I I

I I I I

I I I I

I I 1 I

I I I I

I I 1 I

I I I I

I I I I

I I I I

I I II

I I I I

I I I I

IIIIIIIIIIIIIIIIIIII

III

I

IIIIIIIIIItIIIIIIIIII

II

~

I I II I I II I I

I I I II I I II I I II IllI I I II I I I

I IIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIII

III

t I I I

5200 6250 7300 8350 1.00 0,60 0.20

I I I II I I II I I III I II II II I 1 II I I II I I II I I II I I II I I II I I II I I II I I II I I II I I II I I II I I II I I I

II

II1IIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIII1IIIIII

&-I I I II 1“1 II I I I

I II

IIIIIIIIIIIIIIIIIIIII

III

IIII

IIIIIIIIIIIII

III

-0,20 0,60 1.00

Closure Stress (PsI) Widlh (inches)

Figure G6 Width profile - case 7

Page 174: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

7300

7700

8100

8500

8900

s4~ 9300

r?!

9700

Iolc

105C

109C

113(

Stress ProfileIIIII-----. ” -

IIII

----- -1--IIII

-. -..4..-1IIII. . . . . . .-1II

III

-- 1.....IIIII

------ -TIIII

-- L--.,--IIII

,--1 -----II

--- -L -----

-“wI II II I------ ------ .I II II II II I

----- -1------tI II II III------ .----- LI II I

I I1 I

I I----- 1------I’

I I

I I

I I

-

---

---

---

. ..-.

5200 6533 7866 9200

Closure Stress (PsI)

CASE 8: 40# X-1; 5-LAYER

-2000 .1000 0 1000 2000

Leng[h (feet)

Figure G7 Height profile - case 8

Page 175: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

~GOOStress Profile-1

II

I

8740. .--.. -. J.-1IIt

8880 -. --.-.;--1I

I

9020 .. ----.-;--1I1I

ILL9160 .- .-.-J--

I-3

1I

~9300 .-. . ‘---1 ..- .. -+-- ---

&I I

II

I I9440 .--. . - J------L-

1II

I

L----- ---III

1I

---- ---rIIII

,-- 1 -----1III

---:-----IIII

9580

I II II II I

----- l------t-1 II II I

49720 .---.--~------~-

9860

1 II II II I------ ------1 T-1 I

I I I

---

---

---

--

CASE 8: 40# X-1; 5-LAYER

5200 6533 7866 9200

Closure Stress (psi)

I I I

I I I

I t I

I I I

I I I

I I I

II I

t 1!I t 18 11

II I

1 I I

I I I

I I 1

I I I

I I I

I I I

I I I

I I I

I I I

I

I

1

I

I

I

IIIIIII

I

I

I

IIIIIIIIIIIIIII

II

IIII

ItIIIIIII1IIIIIIIIIIIIII

I

II

III

I I I

I II I1 II II II I

IIIII II I

I II II I

I I

I I

I I

I I

I I

I I

I I

t I

t I

I I

I I

I I

I I

I I

I It I t I

,

1,00 0,60 0,20

I

I1IIIIIIIIIIII

i

k

I

I

I { I I

I I II I II I 1

I II I IIt I I

I I

1 I I

I I I

I I I

I I I

I I I

I I I

I I I

I I I

I I t

I I I

I 4 I

I I I

I I I

I I I

I I I

I I I

I I I

I I II I I

I I I

/

I I

t I

I1“1

I I

I I

I I

I I

I I

I I

I I

I II II II II II IIII II II II I

II1I1IIIIttIIIIIIIIIIII1

I

I

1

IIIIII1

IIIII

IIIIIIIII

-0,20 0,60 1,00

Width (Inches)

Figure G8 Width profile - case 8

Page 176: Hydraulic Fracture Model Comparison Study: Complete …prod.sandia.gov/techlib/access-control.cgi/1993/937042.pdf · Hydraulic Fracture Model ... SFE No. 3, fracture height, Fracpro,

THIS PAGE INTENTIONALLY LEFT BLANK