32
Hydration Technology Innovations Presentation to Coconino Plateau Technical Advisory Committee January 29 th , 2015 www.htiwater.com

Hydration Technology Innovations - Coconino Plateau Water

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Hydration Technology Innovations

Presentation to Coconino Plateau Technical Advisory Committee

January 29th, 2015

www.htiwater.com

2

World Leader in Forward Osmosis Membrane Technology

HTI Background

• Corporate Headquarters – Scottsdale AZ

• Engineering and Manufacturing - Albany OR

• R&D - Corvallis OR

• Established 1990

• 50 plus employees including 5 PhD’s and 12 engineering / scientific technical staff

• Over 20 patents

Water Purification for NASA

World Class R&D Staff along with

support of over 15 Research Collaborative

Initiatives including CSM’s and NASA

Prototype of the Forward

Osmosis Water Treatment

System for the

International Space Station

Sponsored by the Advanced

Life Support Division of

NASA

HTI Personal Hydration

Products flew on STS-135

Atlantis Shuttle Mission, the

final mission of the US

space shuttle.

4

Pilot Provider and Operator

Systems Engineering, Fabrication, Start-up and Operations

Plate & Frame FO Systems Multi-element spiral FO Systems

Membrane Processes (μm = micron = 0.001 millimeter or 0.00004 inches 70 microns = thickness human hair)

Na+1 Cl-1 Mg+2

Bacteria > 0.1 μm Virus > 0.01 μm Mg2+ ≈ 8 x 10-4 μm Cl1- ≈ 3 x 10-4 μm Na1+ ≈ 4.5 x 10-4 μm

Microfiltration

(MF)

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Cl-

1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Pore size: 0.1 – 0.4

μm

Na+1

Na+1

Cl-

1

Na+1

Membrane Processes UF REJECTS BACTERIA

Na+1 Cl-1 Mg+2

Bacteria > 0.1 μm Virus > 0.01 μm Mg2+ ≈ 8 x 10-4 μm Cl1- ≈ 3 x 10-4 μm Na1+ ≈ 4.5 x 10-4 μm

Microfiltration

(MF)

Ultrafiltration

(UF)

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Pore size: 0.1 – 0.4

μm

0.01 – 0.1 μm

Membrane Processes NF rejects viruses and some salts

Pore size:

Na+1 Cl-1

Na+1

Cl-

1

Mg+2

Bacteria > 0.1 μm Virus > 0.01 μm Mg2+ ≈ 8 x 10-4 μm Cl1- ≈ 3 x 10-4 μm Na1+ ≈ 4.5 x 10-4 μm

Microfiltration

(MF)

Ultrafiltration

(UF)

Nanofiltration

(NF)

Na+1

Na+1

Cl-

1

Cl-

1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Na+1

Cl-

1

Na+1

Cl-

1

Cl-

1

Na+1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Na+1

0.1 – 0.4

μm

0.01 – 0.1 μm ≈ 0.001 μm

Membrane Processes RO / FO rejects all but water

Na+1 Cl-1

Na+1

Cl-

1

Mg+2

Bacteria > 0.1 μm Virus > 0.01 μm Mg2+ ≈ 8 x 10-4 μm Cl1- ≈ 3 x 10-4 μm Na1+ ≈ 4.5 x 10-4 μm

Microfiltration

(MF)

0.1 – 0.4

μm

Ultrafiltration

(UF)

0.01 – 0.1 μm

Nanofiltration

(NF)

Reverse / Forward

Osmosis (RO and FO)

Non-porous

Na+1

Na+1

Cl-

1

Cl-

1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Na+1

Cl-

1

Na+1

Cl-

1

Cl-

1

Na+1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Mg+2

Mg+2

Mg+2

Mg+2

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Na+1

Pore size: ≈ 0.001 μm

Forward Osmosis Fundamentals

FO

Cl-

1

Na+1

Cl-

1

Na+1

Na+1

Cl-

1

Cl-

1

Na+1

DS Feed

Cl-

1

Na+1

Cl-

1 Na+1

Na+1

Cl-

1

Cl-

1

Na+1

Na+1

Cl-

1

Na+1

Cl-

1

Active layer:

Dense non-porous

Support layer:

Porous (MF) Water flux (JW) – Flow of water per membrane area

A = water permeability

Membrane thickness

Membrane material

DS = draw solution (NaCl)

JW = A(πDS – πF)

Wastewater Fractions

Three components of municipal wastewater:

Water

Energy: available carbon energy – if conversion of organics to methane gas

Nutrients (nitrogen and phosphorous) 99%

0.01% 0.05%

Fertilizer Human Footprint

Nutrient contribution

Nitrogen discharge = 7,400 g-N/year-capita

Phosphorus discharge = 2,600 g-P/year-capita

Problems with nutrient discharge

Toxic to aquatic life

Concern for drinking water

Contributes to eutrophication (algae blooms and low aquatic oxygen)

Fertilizer consumption and nutrient discharge can be reduced with nutrient recovery

Current Water Use & Reuse

410 BGD (billion gallons per day) withdrawn

Power = 200 BGD

Irrigation = 127 BGD

Public = 45 BGD

1 BGD reused

Irrigation = 0.6 BGD

Public supply = 0.15 BGD

GW recharge = 0.13 BGD

Industrial = 0.10 BGD

Potable Reuse

Currently, limited regulations in place

National Research Council recommends multi-barrier approach for safety – which include:

Biological

Chemical

Physical (membranes)

Contaminants of concern

Carbon and nutrients

Bacteria and viruses

TOrCs (Trace Organic Compounds – pharmaceuticals, endocrine disrupting compounds, flame retardants, … )

TOrCs Removal – Step 1. clarify and adsorption – TOrCs binds with solids in raw waste water

Conventional treatment Primary clarification

Sorption

Removal of TOrCs with high adsorption coefficient – naturally settle out with the sludge

Dependent on wastewater characteristics

Fate of adsorbed TOrCs still unknown

TOrCs Removal – Step 2. the supernatant from the clarified sludge is fed to BNR

Conventional treatment Activated sludge

Biodegradation

Biological nutrient removal (BNR)

Removal efficiencies depending on compound

Increased removal with increased concentrations and retention times

TOrCs Removal Step 3. BNR supernatant still requires additional tertiary treatment

Conventional treatment Primary clarification

Sorption

Activated sludge

Biodegradation

Tertiary/advanced

treatment

Primary clarification and BNR not adequate for TOrCs

Requires advanced treatment for reuse applications

TOrCs Removal – advanced treatment steps – chemical or physical (membranes)

Advanced oxidation processes (AOP)

NH3+

F

Cl

Br

Oxidant dosing

• Majority of TOrCs oxidized

• Formation of unknown byproducts

• Toxicity of byproducts unknown

(especially if using chlorine)

• May require post treatment

RO

permeate

RO

reject

• High rejection of TOrCs

• Near complete rejection of high

molecular weight and charged

TOrCs

• TOrCs are concentrated in RO

reject stream

Reverse osmosis (RO)

How does HTI fit in?

The FO membrane is a physical barrier rejecting nutrients (N and P)

and TOrCs

The FO membrane in combination with a conventional MBR UF

membrane concentrates N and P to economic levels for recovery as a

solid fertilizer from the UF permeate.

The de-fertilized UF permeate can be used for secondary water uses

such as irrigation

The combined FO/RO membranes provide two very tight barriers to

TOrCs and nutrients

The following slides will review the testing results from piloting at CSM

LONG-TERM UFO-MBR PERFORMANCE AT COLORADO SCHOOL OF MINES – CATH AND HOLLOWAY

Cath, T.Y., Holloway, R.W., Herron, J.R., Lampi, K., Pravin, M.S., “Water reuse system and

method” (UFO-MBR) Provisional application #61/751,195, filed on January 10, 2013

UFO-MBR System Diagram

Concentrated

DS

Wastewater Feed

Stream Diluted DS

UF Permeate and

Backwash Tank

DS

Tank

RO Permeate

Tank

Anoxic

Tank

R O

UFO-MBR – Constant Water Flux over 120 days with no membrane cleaning or upsets

0

2

4

6

8

10

12

14

16

0 14 28 42 56 70 84 98 112 126 140

Wat

er f

lux,

L/m

2 /h

r

Days of UFO-MBR operation

UF system online

Results – Ammonia and Nitrate non-detect in RO permeate

0

25

50

75

100

125

150

3 6

10 18 24 31 38 48 53 61 68 90 96

103

110

116

124

Am

mo

nia

(m

g/L

- N

)

Days of UFO-MBR operation

Influent

Anoxic tank

FO tank

Draw solution

RO permeate

UF permeate

0

25

50

75

100

125

150

3 6

10 18 24 31 38 48 53 61 68 90 96

103

110

116

124

Nit

rate

(m

g/L

- N

)

Days of UFO-MBR operation

Anoxic tank

FO tank

Draw solution

RO permeate

UF permeate

No ammonia detected in RO permeate

RO permeate nitrate conc. < 5 mg/L

Results – Phosphorus concentrated to levels of economic harvesting

0

25

50

75

100

125

150

175

200

225

250

3 6 10 18 24 31 38 48 53 61 68 90 96 103 110 116 124

Tota

l ph

osp

ho

rus

(mg/

L -

P)

Days of UFO-MBR operation

Influent

Anoxic tank

FO tank

Draw solution

RO permeate

UF pemeate

Phosphorus recovery > 50 mg/L

TOrCs removal – Step 1. Bioreactor + Step 2. FO Membrane + Step 3. RO Membrane = Total Removal Efficiency

Results – TOrCs feed 20 TOrCs measured in waste water fed to municipal treatment plant

UFO-MBR feed MW

TOrC ng/L Classification g/mol

Acesulfame 12,236±9,155 Sweetener 163.1

Acetaminophen 61,200±18,216 Analgesic 151.2

Atenolol 265±76 Beta-blocker 266.3

Bishpenol A 318±129 Plasticizer 228.2

Caffeine 82,457±16,903 Stimulant 194.2

DEET 1,011±413 Insect repellent 191.3

Diclofenac 85±24 Arthritis 296.1

Diphenhydramine 1,243±718 Antihistamine 255.4

Fluoxetine 72±21 Antidepressant 309.3

Ibuprofen 15,680±3,444 Pain reliever 206.2

Naproxen 8,389±5,521 Analgesic 230.2

Oxybenzone 3,442±1,232 UV blocker 228.2

Propylparaben 1,174±342 Antimicrobial 180.2

Sulfamethoxazole 15±7 Antibiotic 253.4

Surcalose 42,366±12,586 Sweetener 397.6

Triclocarban 1,384±565 Antimicrobial 315.5

Trimethoprim 13±22 Antibiotic 290.3

TCEP 810±687 Flame retardent 285.5

TCPP 3,678±2,327 Flame retardent 327.6

TDCP 1,576±1,288 Flame retardent 430.9

ng/L is one

million times

smaller than

ppm

TOrCs – Step 1. Bioreactor 12 of 20 TOrCs removed by >80%

0

20

40

60

80

100

Sucra

lose

(3

97

.6)

Flu

oxetine

(309

.3)

TC

EP

(285

.5)

Sulfa

meth

oxazole

(253

.4)

TD

CP

(43

0.9

)

TC

PP

(327

.6)

Bis

phen

ol A

(22

8.3

)

Dic

lofe

nac (

29

6.2

)

Dip

he

nh

ydra

min

e (

25

5.4

)

DE

ET

(191

.3)

Ate

no

lol (2

66

.3)

Acesu

lfam

e (

163.2

)

Na

pro

xe

n (

23

0.3

)

Trim

eth

oprim

(29

0.3

)

Ibup

rofe

n (

206.3

)

Triclo

carb

an (

31

5.6

)

Oxyben

zon

e (

228

.2)

Ca

ffein

e (

194.2

)

Pro

pylp

ara

ben (

18

0.2

)

Aceta

min

ophe

n (

151

.2)

Bio

reacto

r re

mo

val,

%

TOrCs – Step 2. FO Membrane Rejection. 14 of the 18 TOrCs rejected by > 90%

0 10 20 30 40 50 60 70 80 90 100

Ibuprofen (206.3)

Naproxen (230.3)

Sulfamethoxazole (253.4)

Diclofenac (296.2)

Acetaminophen (151.2)

Caffeine (194.2)

Acesulfame (201.2)

TCEP (285.5)

TCPP (327.6)

Sucralose (397.6)

TDCP (430.9)

DEET (191.3)

Bisphenol A (228.3)

Triclocarban (315.6)

Diphenhydramine (255.4)

Atenolol (266.3)

Trimethoprim (290.3)

Fluoxetine (309.3)

FO membrane rejection, %

TOrCs – Step 3. RO membrane rejection. 10 of the 12 TOrCs rejected by > 95%

50 60 70 80 90 100

Sulfamethoxazole (253.4)

Acetaminophen (151.2)

Caffeine (194.2)

Acesulfame (201.2)

TCEP (285.5)

TCPP (327.6)

Sucralose (397.6)

TDCP (430.9)

DEET (191.3)

Bisphenol A (228.3)

Diphenhydramine (255.4)

Trimethoprim (290.3)

RO membrane rejection, %

TOrCs – Total System Removal 19 of the 20 TOrCs removed by > 95%

80

85

90

95

100S

ucra

lose

(3

97

.6)

Acesu

lfam

e (

163.2

)

Su

lfa

me

tho

xazole

(253

.4)

Na

pro

xe

n (

23

0.3

)

Aceta

min

ophe

n (

151

.2)

TC

EP

(285

.5)

Dip

he

nh

ydra

min

e (

25

5.4

)

Ca

ffein

e (

194.2

)

TC

PP

(327

.6)

Flu

oxetine

(309

.3)

TD

CP

(43

0.9

)

Ibup

rofe

n (

206.3

)

DE

ET

(191

.3)

Ate

no

lol (2

66

.3)

Pro

pylp

ara

ben (

18

0.2

)

Bis

phen

ol A

(22

8.3

)

Oxyben

zon

e (

228

.2)

Dic

lofe

nac (

29

6.2

)

Triclo

carb

an (

31

5.6

)

Trim

eth

oprim

(29

0.3

)

To

tal

sys

tem

rem

oval, %

Conclusion:

A combination of conventional BNR and

UFO-MBR can economically treat

municipal waste water to:

1) Harvest nutrients from the UF permeate that

has been concentrated from the FO system

2) Very high rejection of TOrCs

3) Pursuing an opportunity to pilot the

technology with a municipality