3
§2.1 11.  Let  A  and  B  be 2 × 2 matrices. a. Does  det(A + B) =  det(A) + det(B)? b. Does  det (AB) =  det(A)det(B)? c. Does  d et(AB) =  det(BA)? Justify your answers. Solution:(Joe) a. No: Let  A = a b c d  and  B = e f g h . Then, det( a b c d ) + det( e f g h ) = ad bc + eh f g and det( a b c d + e f g h ) = det( a + e b + f c + g d + h ) = ( a + e)(d + h) (b + f )(c + g) = ad + eh + ah + ed bc f g bg f c It is NOT true that for all values of  a,  b,  c,  d,  e,  f ,  g,  h  that  det(A) + det(B) equals  det (A + B). b. Yes: Let  A  = a b c d  and  B  = e f g h . Then, det( a b c d e f g h ) =  det( ae + bg af   + bh ce + dg cf   + dh ) = (ae+bg)(cf +dh)(af +bh)(ce+dg) = adeh + bcfg adfg bceh and det( a b c d )det( e f g h ) = ( ad bc)(eh f g) =  adeh + bcfg adf g bceh It IS true that for all values of  a,  b,  c,  d,  e,  f ,  g ,  h  that det(AB) =  det(A)det(B). c. Yes: Let  A  = a b c d  and  B  = e f g h . Then, from part (b), we have det(AB) =  adeh + bcfg adfg bceh and det( e f g h a b c d ) = (eh f g)(ad bc) =  adeh + bcfg adfg bceh It IS true that  de t(AB) =  det(BA). §2.2 5.  Let  A  be an  n × n matrix and  α  a scalar. Show that 1

hw912

Embed Size (px)

Citation preview

8/10/2019 hw912

http://slidepdf.com/reader/full/hw912 1/3

§2.1 11.   Let A  and  B  be 2 × 2 matrices.

a. Does det(A + B) =  det(A) + det(B)?b. Does  det(AB) =  det(A)det(B)?c. Does det(AB) =  det(BA)?Justify your answers.

Solution:(Joe)

a. No: Let  A =

a bc d

 and  B =

e f g h

.

Then,

det(

a bc d

) + det(

e f g h

) = ad − bc + eh − f g

and

det(a b

c d

+e f 

g h

) = det(a + e b + f 

c + g d + h

) = (a + e)(d + h)− (b + f )(c + g)

= ad + eh + ah + ed − bc − f g − bg − f c

It is NOT true that for all values of  a,  b,  c,  d,  e,  f ,  g,  h  that  det(A) + det(B)equals det(A + B).

b. Yes: Let A  =

a bc d

 and  B  =

e f g h

.

Then,

det(

a bc d

e f g h

) =  det(

ae + bg af   +  bhce + dg cf   +  dh

) = (ae+bg)(cf +dh)−(af +bh)(ce+dg)

= adeh + bcfg − adfg − bceh

and

det(

a bc d

)det(

e f g h

) = (ad − bc)(eh − f g) =  adeh + bcfg − adf g − bceh

It IS true that for all values of  a, b, c, d, e, f , g, h  that det(AB) =  det(A)det(B).

c. Yes: Let  A  =

a bc d

 and  B  =

e f g h

. Then, from part (b), we have

det(AB) =  adeh + bcfg − adfg − bceh

and

det(

e f g h

a bc d

) = (eh − f g)(ad − bc) =  adeh + bcfg − adfg − bceh

It IS true that  det(AB) =  det(BA).

§2.2 5.   Let A  be an  n × n matrix and  α  a scalar. Show that

1

8/10/2019 hw912

http://slidepdf.com/reader/full/hw912 2/3

det(αA) =  αndet(A)

Solution: (Jeff)For this particular problem there are two case. Specifically:Case 1:   A   is singular.Case 2:   A   is nonsingular.In case 1 if  A  is singular then it is not row equivalent to  I   and  det(A) = 0.

Clearly,   α  A   is not row equivalent to   I   because dividing each row in   α  A   by1/α   would get us back to   A   and   A   is singular. Thus,   α  A   is singular anddet(αA) = 0. Also,   αndet(A) =   αn(0) = 0. Therefore,   det(αA) =   αndet(A)when A   is singular.

In case 2 if  A  is nonsingular it can be reduced to strictly triangular form byusing only the first and third row operations. We will call the matrix to whichA is reduced T . Since we only used the first and third row operations to obtain

T  we know:det(A) = ±det(T ) = ±(t11t22 · · · tnn) where tii  are diagonal entries in  T .Thus,αndet(A) = αn(±t11t22 · · · tnn)= ±((αt11)(αt22) · · · (αtnn))= ±det(αT )= det(αA)Now we have shown what was desired.

Remark:(Li) It can proved without dividing into two cases. Each time wemultiply a row by α. Repeat n times.

αn det(A) =  αn−1

αa11   αa12   ... αa1na21   a22   ... a2na31   a32   ... a3n... ... ... ...

an1   an2   ... ann

= αn−2

αa11   αa12   ... αa1nαa21   αa22   ... αa2na31   a32   ... a3n... ... ... ...

an1   an2   ... ann

= ...  =  α

αa11   αa12   ... αa1nαa21   αa22   ... αa2n

... ... ... ...αan−1,1   αan−1,2   ... αan−1,n

an1   an2   ... ann

=

αa11   αa12   ... αa1nαa21   αa22   ... αa2n

... ... ... ...αan1   αan2   ... αann

= det(αA)

§2.2 6.   Let A  be a nonsingular matrix. Show that

det(A−1

) =

  1

det(A)

Solution:(Joe)We know that  AA−1 = I . If we take the determinant of each side, we get:

det(AA−1) =  det(I )

det(A)det(A−1) = 1

2

8/10/2019 hw912

http://slidepdf.com/reader/full/hw912 3/3

det(A−1) =  1

det(A)

as desired.

§2.2 14.   Let  A  and  B   be  n × n  matricies. Prove that the product  AB   isnonsingular if and only if  A  and  B   are both nonsingular.

Solution:(Jeff)I will first prove that if  AB is nonsingular then A and B are both nonsingular.If   AB   is nonsingular then   det(AB)  = 0 by theorem 2.2.2. We also know

that   det(AB) =   det(A) · det(B)  = 0 by theorem 2.2.3. Clearly the only waydet(A) · det(B) = 0 is if one or both of the determinants of  A  and  B  are zero. If one or both of the determinats of  A  and  B  equal zero then at least one of thematricies is singular by theorem 2.2.2. Therefore, the determinants of  A  and  Bmust both be nonzero in order to make the determinant of   AB  nonzero, andboth  A  and  B  are nonsingular when  AB   is nonsingular.

Now, I will prove that if  A  and  B  are both nonsingular then  AB  is nonsin-gular.

If  A  and  B  are both nonsingular then we have  det(A)  = 0 and  det(B)  = 0by theorem 2.2.2. We know from theorem 2.2.3 that  det(A) ·det(B) =  det(AB).Thus, it must be the case that  det(AB) = 0 and  AB  is nonsingular when bothA  and  B  are nonsingular.

We have clearly shown that the product  AB  is nonsingular if and only if  Aand  B   are both nonsingular.

3