4
Notes and references document for how iron is absorbed www.medium.com/@learngirl 1 How iron is absorbed This is my research notes for this section which I’ve left in incase they’re useful. References are at the end. 1.1. Dissolution in the stomach (Zariwala 2013) "During the digestion of food in the stomach, bound iron is liberated from its matrix via a combination of factors that include gastric acidity, enzymatic action, and the churning action of the stomach muscles established by the specialised oblique muscle layer, which is unique to the stomach [3]. The released iron is then available for absorption, which occurs predominantly in the duodenal segment ofthe small intestine [4]." http://sickle.bwh.harvard.edu/iron_absorption.html "At physiological pH, ferrous iron (Fe2+) is rapidly oxidized to the insoluble ferric (Fe3+) form. Gastric acid lowers the pH in the proximal duodenum, enhancing the solubility and uptake of ferric iron (Table 1). When gastric acid production is impaired (for instance by acid pump inhibitors such as the drug, prilosec), iron absorption is reduced substantially." 1.2. Inside the upper intestines (duodenum) (Zariwala 2013) "Most dietary nonhaem iron is in the insoluble ferric form which is first reduced to ferrous iron by the ferric reductase DcytB (duodenal cytochrome b) located on the brush border surface of duodenal enterocytes [5]." (Hurrell 1997) "Fe is absorbed by an active, saturable process, primarily in the duodenum (Charlton and Bothwell, 1983), and is moved across the mucosal cell and serosal membrane into the blood where it is transported by transferrin to the cells or to the bone marrow for erythropoeisis." (Lynch 1997) "As previously discussed, the most important interaction between ascorbic acid and iron from the point of view of nutritional anemia is its effect on bioavailability. This appears to be a direct interaction between ascorbic acid and nonheme iron in the lumen of the upper small bowel, which is not related to the individual’s ascorbic acid status." (Edison, Bajel, and Chandy 2008) "Iron absorption occurs predominantly in the apical surface of the duodenum and upper jejunum. The two forms of dietary iron namely heme and nonheme iron are absorbed by the enterocyte noncompetitively." (Lönnerdal 2010) "The comparatively low pH of the proximal duodenum in combination with the acidic microenvironment at the brush border membrane stabilizes iron in the divalent form and

How$iron$is$absorbed$ - tinc designtincdesign.com.au/iron/iron_absorption.pdfNotes&and&references&document&for&how&ironis&absorbed& learngirl& 1! How$iron$is$absorbed$ This&is&my&researchnotes&for&this&sectionwhichI’ve&leftin

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

 Notes  and  references  document  for  how  iron  is  absorbed  www.medium.com/@learngirl  

1  

How  iron  is  absorbed  This  is  my  research  notes  for  this  section  which  I’ve  left  in  incase  they’re  useful.  References  are  at  the  end.  

1.1. Dissolution  in  the  stomach  

(Zariwala  2013) "During  the  digestion  of  food  in  the  stomach,  bound  iron  is  liberated  from  its  matrix  via  a  combination  of  factors  that  include  gastric  acidity,  enzymatic  action,  and  the  churning  action  of  the  stomach  muscles  established  by  the  specialised  oblique  muscle  layer,  which  is  unique  to  the  stomach  [3].  The  released  iron  is  then  available  for  absorption,  which  occurs  predominantly  in  the  duodenal  segment  ofthe  small  intestine  [4]."  http://sickle.bwh.harvard.edu/iron_absorption.html "At  physiological  pH,  ferrous  iron  (Fe2+)  is  rapidly  oxidized  to  the  insoluble  ferric  (Fe3+)  form.  Gastric  acid  lowers  the  pH  in  the  proximal  duodenum,  enhancing  the  solubility  and  uptake  of  ferric  iron  (Table  1).  When  gastric  acid  production  is  impaired  (for  instance  by  acid  pump  inhibitors  such  as  the  drug,  prilosec),  iron  absorption  is  reduced  substantially."  

1.2. Inside  the  upper  intestines  (duodenum)  

(Zariwala  2013) "Most  dietary  non-­‐haem  iron  is  in  the  insoluble  ferric  form  which  is  first  reduced  to  ferrous  iron  by  the  ferric  reductase  DcytB  (duodenal  cytochrome  b)  located  on  the  brush  border  surface  of  duodenal  enterocytes  [5]."

(Hurrell  1997) "Fe  is  absorbed  by  an  active,  saturable  process,  primarily  in  the  duodenum  (Charlton  and  Bothwell,  1983),  and  is  moved  across  the  mucosal  cell  and  serosal  membrane  into  the  blood  where  it  is  transported  by  transferrin  to  the  cells  or  to  the  bone  marrow  for  erythropoeisis."

(Lynch  1997) "As  previously  discussed,  the  most  important  interaction  between  ascorbic  acid  and  iron  from  the  point  of  view  of  nutritional  anemia  is  its  effect  on  bioavailability.  This  appears  to  be  a  direct  interaction  between  ascorbic  acid  and  nonheme  iron  in  the  lumen  of  the  upper  small  bowel,  which  is  not  related  to  the  individual’s  ascorbic  acid  status."

(Edison,  Bajel,  and  Chandy  2008)  "Iron  absorption  occurs  predominantly  in  the  apical  surface  of  the  duodenum  and  upper  jejunum.  The  two  forms  of  dietary  iron  namely  heme  and  non-­‐heme  iron  are  absorbed  by  the  enterocyte  non-­‐competitively."  

(Lönnerdal  2010) "The  comparatively  low  pH  of  the  proximal  duodenum  in  combination  with  the  acidic  microenvironment  at  the  brush  border  membrane  stabilizes  iron  in  the  divalent  form  and  

 Notes  and  references  document  for  how  iron  is  absorbed  www.medium.com/@learngirl  

2  

provides  protons  essential  for  driving  iron  uptake  across  the  apical  membrane  of  the  mucosa  [3,6]."    

1.3. The  enterocyte  cell  

(Theil  2011) Currently,  the  iron  absorbed  from  the  intestine  can  be  divided  into  3  categories:  heme,  nonheme  small  iron  salts  or  complexes,  and  nonheme  iron  minerals  (FTN).  (FTN  = Nonheme  food  ferritin )  "iron  from  the  absorbed  exogenous  FTN  enters  the  cellular  iron  pool  and  the  protein  cage  is  degraded  (10).  Neither  FeSO4  nor  hemoglobin  compete  with  absorption  of  ferritin  iron  in  humans  and  iron  from  exogenous  ferritin  is  transported  across  rat  intestine  ex  vivo  (E.C.  Theil,  H.  Chen,  M.T.  Nunez,  F.  Pizarro,  and  K.  Schumann,  unpublished  data).  FTN  iron  or  iron  ions,  found  in  many  supplements  and  absorbed  by  DMT-­‐1,  are  clearly  2  distinct  chemical  species  of  nutritional  nonheme  iron  that  are  recognized  and  absorbed  differently  by  the  apical  surface  of  the  intestine."

(Edison,  Bajel,  and  Chandy  2008)  "Once  heme  enters  the  cell,  it  is  opened  up  by  heme  oxygenase  to  release  Fe2+  and  thereafter  the  fate  of  both  heme  and  non-­‐heme  iron  are  the  same."    "The  non-­‐heme  iron  mainly  exists  in  the  Fe3+  state.  The  ferric  iron  is  reduced  to  ferrous  iron  before  it  is  transported  across  the  intestinal  epithelium.  This  is  accomplished  by  dietary  components  and  duodenal  cytochrome  b  reductase  (Dcytb)  which  is  highly  expressed  in  the  brush  border  of  enterocytes  (3)"   "The  Fe2+  inside  the  cell  can  undergo  two  fates  –  either  it  can  be  stored  as  ferritin  or  transported  across  the  basolateral  surface  into  the  blood  stream.  The  mechanism  by  which  Fe2+  reaches  the  basolateral  membrane  is  poorly  understood."    http://courses.washington.edu/conj/bess/iron/iron.htm  "For  the  most  part,  iron  bound  to  ferritin  in  the  enterocyte  will  remain  there.  This  iron  will  be  lost  from  the  body  when  the  enterocyte  dies  and  is  sloughed  off  from  the  tip  of  the  villus."    

1.4. Through  IV  (Lyseng-­‐Williamson  and  Keating  2009)  (Cançado  and  Muñoz  2011)  

My  summary  of  these  

The  dose  bypasses  the  gastrointestinal  tract,  and  goes  straight  into  the  blood.  A  small  part  of  it  is  taken  up  directly  by  transferrin  in  the  blood  plasma,  but  most  of  it  is  taken  up  by  white  blood  cells  in  the  liver,  spleen  and  bone  marrow  where  the  carbohydrate  shell  is  broken  down  and  the  iron  is  released.  The  iron  is  then  either  stored  as  ferritin  or  transported  by  transferrin  to  where  it’s  needed.  Some  of  the  iron  may  get  released  into  the  serum  which  

 Notes  and  references  document  for  how  iron  is  absorbed  www.medium.com/@learngirl  

3  

can  cause  oxidative  stress.  Because  the  IV  iron  gets  released  straight  into  the  blood,  there  is  no  effect  from  the  usual  iron  inhibitors  and  enhancers.      

1.5. iron  in  the  body  

(Edison,  Bajel,  and  Chandy  2008)  "About  0.1%  of  total  body  iron  is  circulating  bound  to  Tf.  Nearly  80%  of  iron  is  utilized  for  hemoglobin  synthesis  in  the  bone  marrow.  Approximately  10–15%  is  present  in  muscle  fibers  (myoglobin)  and  in  other  tissues  as  enzymes  and  cytochromes  (functional  iron)."  

(Nagababu  et  al.  2008)  "Approximately  75%  of  total  body  iron  is  associated  with  hemoglobin,  which  is  responsible  for  oxygen  transport."  

(Gkouvatsos,  Papanikolaou,  and  Pantopoulos  2012)  "The  adult  human  body  contains  approximately  3–5  g  of  iron  (about  55  mg  and  44  mg  per  kilogram  of  body  weight  for  males  and  females  respectively),  with  more  than  two  thirds  (>  2  g)  incorporated  in  the  hemoglobin  of  developing  erythroid  precursors  and  mature  red  blood  cells  [9–11].  Most  of  the  remaining  body  iron  is  found  in  a  transit  pool  in  reticuloendothelial  macrophages  (~600  mg)  or  stored  in  hepa-­‐  tocytes  (~1000  mg)  within  ferritin,  an  iron  storage  protein.  A  smaller  fraction  is  present  in  muscles  within  myoglobin  (~  300  mg),  while  only  a  minuscule  amount  (~8  mg)  is  constituent  of  other  cellular  iron-­‐  containing  proteins  and  enzymes."    "Of  the  approximately  30  mg  of  Tf-­‐bound  iron  circulating  every  day,  more  than  80%  is  delivered  to  bone  marrow  erythroblasts  [13]"  

     

   

 Notes  and  references  document  for  how  iron  is  absorbed  www.medium.com/@learngirl  

4  

1.6. References  used  in  this  section  Cançado,  Rodolfo  Delfini,  and  Manuel  Muñoz,  ‘Intravenous  Iron  Therapy:  How  Far  Have  We  Come?’,  Revista  Brasileira  de  Hematologia  e  Hemoterapia,  33  (2011),  461–69  <http://dx.doi.org/10.5581/1516-­‐8484.20110123>  

Edison,  Eunice  S.,  Ashish  Bajel,  and  Mammen  Chandy,  ‘Iron  Homeostasis:  New  Players,  Newer  Insights’,  European  Journal  of  Haematology,  81  (2008),  411–24  <http://dx.doi.org/10.1111/j.1600-­‐0609.2008.01143.x>  

Gkouvatsos,  Konstantinos,  George  Papanikolaou,  and  Kostas  Pantopoulos,  ‘Regulation  of  Iron  Transport  and  the  Role  of  Transferrin’,  Biochimica  et  Biophysica  Acta  (BBA)  -­‐  General  Subjects,  Transferrins:  Molecular  mechanisms  of  iron  transport  and  disorders,  1820  (2012),  188–202  <http://dx.doi.org/10.1016/j.bbagen.2011.10.013>  

Hurrell,  R.f.,  ‘Bioavailability  of  Iron’,  European  Journal  of  Clinical  Nutrition,  51  (1997),  S4–8  

Lönnerdal,  Bo,  ‘Alternative  Pathways  for  Absorption  of  Iron  from  Foods’,  Pure  and  Applied  Chemistry,  82  (2010),  429–36  <http://dx.doi.org/10.1351/PAC-­‐CON-­‐09-­‐06-­‐04>  

Lynch,  Sean  R.,  ‘Interaction  of  Iron  with  Other  Nutrients’,  Nutrition  Reviews,  55  (1997),  102–10  

Lyseng-­‐Williamson,  Katherine  A.,  and  Gillian  M.  Keating,  ‘Ferric  Carboxymaltose:  A  Review  of  Its  Use  in  Iron-­‐Deficiency  Anaemia’,  Drugs,  69  (2009),  739–56  

Nagababu,  Enika,  Seema  Gulyani,  Christopher  J.  Earley,  Roy  G.  Cutler,  Mark  P.  Mattson,  and  Joseph  M.  Rifkind,  ‘Iron-­‐Deficiency  Anemia  Enhances  Red  Blood  Cell  Oxidative  Stress’,  Free  radical  research,  42  (2008),  824–29  <http://dx.doi.org/10.1080/10715760802459879>  

Theil,  Elizabeth  C.,  ‘Iron  Homeostasis  and  Nutritional  Iron  Deficiency’,  The  Journal  of  Nutrition,  141  (2011),  724S  –  728S  <http://dx.doi.org/10.3945/jn.110.127639>  

Zariwala,  Mohammed  Gulrez,  ‘Comparison  Study  of  Oral  Iron  Preparations  Using  a  Human  Intestinal  Model’,  Scientia  Pharmaceutica,  81  (2013),  1123–39  <http://dx.doi.org/10.3797/scipharm.1304-­‐03>