How Reliable is the Extrapolation_Localized Particle Deposition Patterns in Human_rat Nasal Cavities

  • Upload
    kiaoi

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 How Reliable is the Extrapolation_Localized Particle Deposition Patterns in Human_rat Nasal Cavities

    1/5

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/292159697

    How reliable is the extrapolation? Localizedparticle deposition patterns in human/rat nasalcavities

     ARTICLE · JANUARY 2016

    READS

    3

    4 AUTHORS, INCLUDING:

     Yidan Shang

    RMIT University

    7 PUBLICATIONS  6 CITATIONS 

    SEE PROFILE

    Jingliang Dong

    RMIT University

    23 PUBLICATIONS  75 CITATIONS 

    SEE PROFILE

    All in-text references underlined in blue are linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Yidan Shang

    Retrieved on: 30 January 2016

    https://www.researchgate.net/profile/Yidan_Shang?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_1https://www.researchgate.net/profile/Jingliang_Dong?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_7https://www.researchgate.net/institution/RMIT_University?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Jingliang_Dong?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Jingliang_Dong?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Yidan_Shang?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_7https://www.researchgate.net/institution/RMIT_University?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Yidan_Shang?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Yidan_Shang?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_1https://www.researchgate.net/publication/292159697_How_reliable_is_the_extrapolation_Localized_particle_deposition_patterns_in_humanrat_nasal_cavities?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_3https://www.researchgate.net/publication/292159697_How_reliable_is_the_extrapolation_Localized_particle_deposition_patterns_in_humanrat_nasal_cavities?enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw%3D%3D&el=1_x_2

  • 8/18/2019 How Reliable is the Extrapolation_Localized Particle Deposition Patterns in Human_rat Nasal Cavities

    2/5

      1 Copyright © 2015 by ASME

    Proceedings of the ASME 2015 International Mechanical Engineering Congress & Exposition

    2015 IMECE

    November 13-19, 2015, Houston, Texas, USA

    IMECE2015-52494

    HOW RELIABLE IS THE EXTRAPOLATION? LOCALIZED PARTICLE DEPOSITION

    PATTERNS IN HUMAN/RAT NASAL CAVITIES

     Yidan SHANG, Jingliang DONG, Kiao INTHAVONG, Jiyuan TU*

    School of Aerospace, Mechanical & Manufacturing Engineering of RMIT and Platform TechnologiesResearch Institute (PTRI).

    PO Box 71, Bundoora, VIC 3083, Australia.

    ABSTRACTTo improve the understanding of dose-response

    extrapolation from rat to human, regional micro-particle

    deposition patterns are numerically investigated and compared

     between human and rat realistic nasal cavities using

    Computational Fluid Dynamics (CFD). Resting breathing

    conditions are chosen and airflow patterns are visualised by

    streamlines. To have better comparisons of deposition patterns,

    deposited particles are projected into pre-divided 2D domains

     based on anatomical features using surface-mapping technique.

    The results show significant differences between human and rat

    due to the different nasal geometries, especially at vestibule

    regions. In human case, large micro-particles deposit primarily

    in vestibule, septum and pharynx and small micro-particlesrelatively scattered in the whole cavity. On the contrary, in the

    rat case, large and small micro-particles are captured by the first

    and second bend of vestibule region.

    INTRODUCTIONThe nasal cavity is an efficient filtering component of upper

    respiratory tract to protect the lung from airborne particles. To

    evaluate the health risk by inhalation exposure, toxicity data

    extrapolation from laboratory animals (e.g. rat, monkey) to

    humans is widely used. Previous in-vivo  and in-vitro 

    experimental studies indicated the nasal filtering is efficient when

    micro-sized particles larger than 10 µm (for human) or 5 µm

    (for rat), and nano-sized particles smaller than 10 nm (both forhuman and rat) [1-6]. Micro-particle deposition efficiency

    increases rapidly as inertial increases with the size.

    Experiments are costly and inefficient in this type of

    investigations. Particle dosimetry models such as MPPD model

    [7,  8] and semi-empirical model [9] have been developed to

     predict the deposition efficiencies of inhaled particles among

    different regions of the respiratory system for human and rat.

    Computational fluid dynamics (CFD) simulation is an alternate

    way to estimate airflow patterns and main particle depositionsites. Due to the intricate nasal cavity geometry, majority of

     previous studies focused their research efforts on overall particle

    deposition analysis. Numerous numerical studies roughly

    indicated that the deposited micro-sized particles are mainly

    concentrated at the nasal valve and the septum for the human

    model, and at the anterior region of the nose for rat [10-13]

    Besides, regional particle deposition efficiencies in the nasa

    cavity are important as particles can cross the respiratory

    epithelium and reach the underlying tissue, blood vessels and

    even brain via the Blood-Brain-Barrier [14]. However to date

    comparative studies of particle deposition patterns between

    human and rat nasal cavities are limited because visualization of

    deposition patterns are difficult even with a 3D viewer due tothe complexity of highly curved nasal geometries.

    In this paper, airflow patterns and micro-particle deposition

     patterns are investigated and compared between human and ra

    nasal cavities. To advance the analysis method of particle

    deposition, particle deposition patterns are visualized by surface

    mapping technique proposed by Inthavong et al. [15-17

    converting the complex 3D endothelial surface of nasal cavity

    into a flat 2D domain. Both human and rat nasal cavities are

    anatomically divided into seven regions accordingly fo

    analysing and comparing regional depositions. This comparative

    study can contribute towards improving extrapolations o

     physiological response to inhaled particles from rat to human.

    METHOD

    A. Geometry

    Two realistic models representing human (labeled as NC04

    48-year-old male) and rat (labeled as RNC01, 400g Sprague

    Dawley) nasal cavities are reconstructed from CT scans (Fig

    1a,1b), the detailed reconstruction method of which can be

    found in [18]. Each model includes both left and right nasa

    https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==

  • 8/18/2019 How Reliable is the Extrapolation_Localized Particle Deposition Patterns in Human_rat Nasal Cavities

    3/5

  • 8/18/2019 How Reliable is the Extrapolation_Localized Particle Deposition Patterns in Human_rat Nasal Cavities

    4/5

      3 Copyright © 2015 by ASME

    nostrils and decelerates slightly till it reaches the pharynx region,

    and then accelerates again to 6.5 m/s (Fig 2c). While in rat’s

    case the airflow immediately turns sharply followed by a 180

    degree bend and a 90 degree bend when inhaled into nostrils,

    drastically accelerating it from nearly 0 to 10 m/s (Fig 2d). This

    leads to significant impact of high inertial particles. The air

     predominantly flows through the middle passage and a largerecirculation is found in the pocket-like olfactory region (Fig

    2b), which may provide a possible site for particle deposition.

    B. 3D micro-particle deposition patterns

    Ten thousand particles are visualised in lateral view by dots

    in the 3D domain. The particle Stokes number (Stk ) was used to

    determine appropriate particles sizes representing equivalent

     particle behavior between these two species. The particle

    deposition efficiency is defined as the quantity of deposited

     particles over inhaled particles.

    Figure 3. 3D view of micro-sized particles deposition of two

     particular particle sizes representing Stk   < 0.1 and Stk   > 1 in

    human (a), and rat (b).

    Figure 3 illustrates deposition of small particles (Stk  < 0.1,

    2.5 µm for human, 1 µm for rat, and coloured by blue) and large

     particles (Stk  > 1, 20 µm for human, 3 µm for rat, and coloured by red). In the human case, major deposition sites for large

     particles are concentrated at the top of the vestibule, the main

     passage and pharynx region (Fig 3a). While small particles

    relatively scattered in the whole cavity. These patterns are

    consistent with previous reported conclusions [10].

    Comparing to the human model, the vestibule region of the

    rat model performs more significant filtration function as the

    majority of the inhaled particles deposits in this region,

    especially for large particles (100% deposition) as shown in the

    enlarged view. This is due to the unique nasal shape of two

    sharp bends with 180 degree for the first bend and 90 degree for

    the other one(Fig 2d). Small portion of small particles escaped

    from vestibule are scattered in the main passage.

    For both cases, particle deposition efficiencies for smal

     particles are below 5% while for large particles are nearly 100%However, further detailed deposition features could not be

    revealed from here due to data overlapping.

    C. 2D micro-particle deposition patterns

    Figure 4. 2D view of micro-sized particles deposition of two

     particular particle sizes representing Stk   < 0.1 and Stk   > 1 in

    human (a), and rat (b).

    Through converting the particle deposition patterns into 2D

    views, more deposition features can be observed. According to

    the human case in the Figure 4a, more particles deposit in the

    right nasal cavity due to the asymmetric geometry. Besides, the

    septum region captures almost all large particles which deposi

    in the main passage. For the rat case (Figure 4b), large particles

    are significantly concentrated at the top of the first bend in the

    vestibule. As a supplement to the deposition patterns in the 3D

    view, majority of small particles deposit in both bends in the ravestibule. Considerable portions of the remaining particles which

    are scattered in the main passage mainly deposit in the olfactory

    region.

    CONCLUSION

    To improve the data extrapolation from monitored

    exposures of laboratory animals to possible human exposure

  • 8/18/2019 How Reliable is the Extrapolation_Localized Particle Deposition Patterns in Human_rat Nasal Cavities

    5/5

      4 Copyright © 2015 by ASME

    scenarios, this study numerically compared micro- and nano-

    sized particle deposition patterns in human and rat nasal cavities.

    Simulations are based on realistic 3D models

    reconstructed from CT scans. Differences of nasal size, shape

    and structure between two species lead to different airflow

     patterns and affect particle motions. The major anatomical

    difference is found at the vestibule region, where two sharpturns (a U-turn 180 degree bend followed by a 90 degree bend)

    in the rat vestibule perform significant filtering functions

     primarily for micro-particles. Deposited particles are visualized

    in both 3D view and 2D view by applying the surface mapping

    technique. Significant discrepancies of micro- and nano-particle

    deposition patterns between the human and rat cases are

    observed.

    This study indicates that the extrapolation from laboratory

    animals to human should be carefully considered due to their

     physiological differences in the anatomical level. It also provides

    an approach towards interspecies dose-response comparisons,

    and facilitates policy makers and governments to conduct

     particulate matter risk assessment and outline policies forreducing emissions of certain particulates when necessary.

    ACKNOWLEDGMENTSThis work was supported by the Australian Research

    Council (ARC project ID DP120103958), and National Natural

    Science Foundation of China (NSFC 21277080).

    REFERENCES

    [1] Kelly, J.T., et al., Particle deposition in human nasal airway

    replicas manufactured by different methods. Part I: Inertial

    regime particles.  Aerosol Science and Technology, 2004.

    38(11): p. 1063-1071.[2] Kelly, J.T., et al., Particle deposition in human nasal airway

    replicas manufactured by different methods. Part II: Ultrafine

     particles.  Aerosol Science and Technology, 2004. 38(11): p.

    1072-1079.

    [3] Cheng, Y.S., et al., Nasal deposition of ultrafine particles in

    human volunteers and its relationship to airway geometry. 

    Aerosol Science and Technology, 1996. 25(3): p. 274-291.

    [4] Cheng, Y.S., et al.,  Deposition of Ultrafine Aerosols in Rat

     Nasal Molds.  Toxicology and Applied Pharmacology, 1990.

    106(2): p. 222-233.

    [5] Gerde, P., Y.S. Cheng, and M.A. Medinsky,  Invivo 

     Deposition of Ultrafine Aerosols in the Nasal Airway of the 

     Rat. Fundamental and Applied Toxicology, 1991. 16(2): p. 330-336. 

    [6] Kelly, J.T., J.S. Kimbell, and B. Asgharian,  Deposition of  

     fine and coarse aerosols in a rat nasal mold.  Inhalation 

    Toxicology, 2001. 13(7): p. 577-588. 

    [7] Anjilvel, S. and B. Asgharian,  A Multiple-Path Model of  

     Particle Deposition in the Rat Lung. Fundamental and Applied 

    Toxicology, 1995. 28(1): p. 41-50. 

    [8] Asgharian, B., F.J. Miller, and R.P. Subramaniam, Dosimetry

     software to predict particle deposition in humans and rats. CIIT

    Activities, 1999. 19(3): p. 1-6.

    [9] ICRP,  Human respiratory tract model for radiologica

     protection. Annals of ICRP, 1994. ICRP Publication 66(24): p

    231.

    [10] Wang, S.M., et al., Comparison of micron- andnanoparticle deposition patterns in a realistic human nasa

    cavity.  Respiratory Physiology & Neurobiology, 2009. 166(3)

     p. 142-151.

    [11] Schroeter, J.D., et al., Computational fluid dynamics

     simulations of submicrometer and micrometer particle

    deposition in the nasal passages of a Sprague-Dawley rat

    Journal of Aerosol Science, 2012. 43(1): p. 31-44.

    [12] Ghalati, P.F., et al.,  Numerical analysis of micro- and

    nano-particle deposition in a realistic human upper airway

    Computers in Biology and Medicine, 2012. 42(1): p. 39-49.

    [13] Garcia, G.J.M. and J.S. Kimbell,  Deposition of inhaled

    nanoparticles in the rat nasal passages: Dose to the olfactory

    region. Inhalation Toxicology, 2009. 21(14): p. 1165-1175.[14] Knudsen, K.B., et al.,  Differential toxicological response

    to positively and negatively charged nanoparticles in the ra

    brain. Nanotoxicology, 2014. 8(7): p. 764-774.

    [15] Y.D. Shang, K. Inthavong, and J.Y. Tu,  Application of

    Surface Mapping to Visualize Wall Shear Stress and Particles

     Deposition in a Realistic Human Nasal Cavity.  APCOM &

    ISCM 2013, 2013.

    [16] Y.D. Shang, K. Inthavong, and J.Y. Tu,  Detailed micro

     particle deposition patterns in the human nasal cavity

    influenced by the breathing zone.  Computers & Fluids, 2015

    114(0): p. 141-150.

    [17] K. Inthavong, Y.D. Shang, and J.Y. Tu, Surface mapping

     for visualization of wall stresses during inhalation in a humannasal cavity.  Respiratory Physiology & Neurobiology, 2014

    190(1): p. 54-61.

    [18] K. Inthavong, et al.,  From Ct Scans to Cfd Modelling

     Fluid and Heat Transfer in a Realistic Human Nasal Cavity

    Engineering Applications of Computational Fluid Mechanics

    2009. 3(3): p. 321-335.

    [19] Mauderly, J.L., J.E. Tesarek, and L.J. Sifford,  Respiratory

    measurements of unsedated small laboratory mammals using

    nonrebreathing valves. Laboratory animal science, 1979. 29(3)

     p. 323-329.

    *Correspondence email: [email protected]

    https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/14633009_A_Multiple-Path_Model_of_Particle_Deposition_in_the_Rat_Lung?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/11890030_Deposition_of_fine_and_coarse_aerosols_in_a_rat_nasal_mold?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==https://www.researchgate.net/publication/21101392_In_Vivo_Deposition_of_Ultrafine_Aerosols_in_the_Nasal_Airway_of_the_Rat?el=1_x_8&enrichId=rgreq-f3c8e4b7-76df-4037-b207-3a08135e317f&enrichSource=Y292ZXJQYWdlOzI5MjE1OTY5NztBUzozMjMzOTkwOTQ2MDM3NzZAMTQ1NDExNTc2MDU5Mw==