20
Homogeneous Modeling and Simulation of Cyber-Physical Energy Systems using HDLs Sara Vinco Politecnico di Torino Electronic Design Automation Group http://eda.polito.it

Homogeneous Modeling and Simulation of Cyber-Physical

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Homogeneous Modeling and Simulation of Cyber-Physical

Homogeneous Modeling and Simulation of Cyber-Physical Energy Systems using HDLs

Sara Vinco

Politecnico di Torino

Electronic Design Automation Group http://eda.polito.it

Page 2: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Why CP Energy Systems?

• Embedded systems are inherently energy-autonomous – Equipped with devices that store power/harvest power

– This implies significant challenges for simulation and validation • What is the «functionality» of a battery?

• Can not be incorporated in standard functional simulation (e.g., RTL)

• Requires «native» power simulation – Power as quantity explicitly tracked

in simulation

2

Page 3: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Power Perspective of CPS

• Functional blocks ≈ their power consumption – Energy systems as systems where electrical energy is

generated, stored, consumed and distributed

3

ENVIRONMENT SENSOR AMP ADC DIGITAL

PROCESSING DAC ACTUATOR

CONV CONV

CONV CON

V CONV

CONV

CONV

POWER SOURCE POWER STORAGE

CONV

POWER BUS

Page 4: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Modeling and Simulation of ES

• ES design is strongly manual and dependent on expertise of designers – Wish to enhance design automation and optimization

• Design methodology based on formalization and standardization 1. Formalization of the architecture

• Precise role and interface for each class of components

2. Adoption of functional languages for homogeneous modeling and simulation

3. Automated model construction • Models of actual devices are fitted to the defined interface

4

Page 5: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

LOAD(S)

POWER SOURCE(S)

CONV

BRIDGE

l

CTI BUS

CONV

CONV

s

b

p`

STORAGE DEVICE(S)

1. ES Modeling

5

V: voltage I: current E: ESD capacity SOC: State of Charge En: control signal May have environmental parameters

EES subsystem 3 EES subsystem 2 EES subsystem 1

LOAD(S)

STORAGE DEVICE(S)

BRIDGE

CTI BUS

CONV

CONV

V

V

I

I

V

V

I

I

POWER SOURCE(S)

CONV V

V

I

I

V

V

I

I

En E SOC

Page 6: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

2. Modeling and simulation languages

• Interfaces modeled with IP-XACT – XML format for

describing interfaces

– Extensions for AMS available

– Descriptions: • Component

– Interface as ports

• Design – Connection between

components

<component> <vendor> polito </vendor> <library> es_lib </library> <name> battery </name> … <ports> <port> <name> V </name> <vendorExtension> <value unit = «volt» prefix = «»> 3.3 </value> <typeName> voltage </typeName> </vendorExtension> </port> … <vendorExtension> <typeName>storage device </typeName> </vendorExtension> </component>

6

Page 7: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

2. Modeling and simulation languages

• Interfaces constitute a skeleton of the framework

• Need a simulatable language for the implementation – Enhance reuse

– Different levels of abstraction • Functional models (state

machines, functions,..)

• Circuit-equivalent models

• SystemC-AMS – Several different

abstraction levels to cover a wide variety of domains

7

• Timed Data-Flow (TDF) – Data sampled in time

– Static scheduling

• Electrical Linear Network (ELN) – Conservative

– Predefined linear network primitives

– AD solver

Page 8: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

SC_MODULE (battery)

{

};

sca_tdf::sca_in<double> I;

sca_tdf::sca_in<bool> En;

sca_tdf::sca_out<double> V,SOC,E;

sc_main(){

battery * b = new battery("b");

converter * c = new converter("c");

sc_signal double current, voltage, …;

b->I(current);

b->V(voltage);

c->I(current);

c->V(voltage);

}

2. Modeling and simulation languages

• SystemC-AMS – Code generation from

IP-XACT descriptions • Instantiate one module

per component

• IP-XACT ports converted to TDF ports

• Design connections to build hierarchy of modules

8

Page 9: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

3. Automatic model generation

• Plug and play models for the various components… – Follow the standardized interfaces

– Model construction • Rather than populating a chosen template with data

– Obtained with measurements or publicly available

• …the data available determines the degree of accuracy of the model

9

Peukert’s equation :

LT = C/Ik

Page 10: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Overall ES design flow

10

XML Parser* .xml XML

design

description

XML

component

descriptions

.xml

interfaces & architecture:

one “empty” SystemC file per component

with interfaces + the relative “toplevel”

.sc .sc

.sc

Model library Implementation binding

interfaces & architecture + implementation:

each SystemC file now contains

“behavior”

L

C

B

CTI BUS

B

C

ESD PS

.sc .sc

.sc

Page 11: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

3. Automatic model generation

11

SC_MODULE (battery) { sca_tdf::sca_in<double> I; sca_tdf::sca_in<bool> En; sca_tdf::sca_out<double> V,SOC,E; double Vnom, Cm, I0, n; ... }; esd_battery:run(){ double input, C, soc;

input = I.read(); C = Cm * pow((I0/input), n-1); soc = 1 - (input/Cm); E.write(C); SOC.write(soc); V.write(Vnom); }

battery

V I En E SOC

CIRCUIT MODEL

+-

V OC(V S

OC)

C M

VSOC

I B

+

-IB

VB

+

R(VSOC)

SC_MODULE (battery) { sca_tdf::sca_in<double> I; sca_tdf::sca_in<bool> En; sca_tdf::sca_out<double> V, SOC, E; sca_eln::sca_tdf::sca_isource* Ib; sca_eln::sca_tdf::sca_vsink* Vsoc; sca_eln::sca_c* Cm; sca_eln::sca_node n1; sca_eln::sca_node_ref gnd; … SC_CTOR (battery_lt) { Ib = new sca_isource("Ib"); Ib->inp(in); Ib->p(n1); Ib->n(gnd); … … } };

Page 12: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Case study

• Loads – A STM8L processor and a Wifi Transceiver active every 10s – Power profile extracted from functional simulation

• Battery: – Lithium thin film battery by ST (C=700Ah, V=3.9V)

• Supercapacitor – NessCap supercapacitor with 10 F capacitance

• CTI voltage = 3V (fixed) • Converter

– Efficiency function of Vin, Vout, Iout

12

BATTERY

CONV

LOAD1

V I

POWER BUS + CONTROL

V I En E SOC

CONV

LOAD2

V I

V I

CONV

V I

V I

SUPERCAP

CONV

V I

V I En E SOC

Charge allocation policy:

supercap for high load

demand intervals, battery

for low load demand

intervals

Page 13: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Case study

• Accuracy and speed-up

13

Average error <1%

w.r.t. Simulink

28x speedup w.r.t.

Simulink

Supercap active on

high load demand

intervals

Page 14: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Case study

• Accuracy and speed-up • Design space exploration

14

Converter not suitable for

super-capacitor

Efficiency decreases too quickly

Design space exploration

allows to find the correct

converter

Page 15: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

What’s next: extra-functional properties

• Power is not the only relevant extra-functional dimension for embedded systems… – Other metrics must be considered to ensure their correct

operations, including temperature and reliability

• Modeling in isolation is not a new problem – …but how to manage their complex interactions is still an

open problem

– Specific tools and simulators

– Co-simulation frameworks • Miss mutual effects, e.g., between power and temperature

15

Page 16: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Extra-functional properties simulation

• Proposed solution: – Multi-layer

• One layer per property

• Models energy and information flows

– Bus-based template • Property-specific bus

conveys and elaborates property-specific information

• Derive status of the overall system

16

Reliability layer

Layer-

specific

data

Temperature layer

Power layer

Functional layer

Functional BUS

Cn

C1

C2

Temperature BUS

C1

C2

Cn

Power BUS

C1

C2

Cn …

Reliability BUS

C1

C2

Cn …

Page 17: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

• Enhanced by the adoption of standard functional languages

Extra-functional properties simulation

• IP-XACT

– Interface standardization

• SystemC-AMS

– Simulate all properties in a single simulator run • Different abstraction levels • Different timesteps

– Reproduce the mutual impact of properties • Instantaneous reaction

17

Page 18: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

• Enhanced by the adoption of standard functional languages

Extra-functional properties simulation

• IP-XACT

– Interface standardization

• SystemC-AMS

– Simulate all properties in a single simulator run • Different abstraction levels • Different timesteps

– Reproduce the mutual impact of properties • Instantaneous reaction

18

0.1 mW

0.1005mW

Page 19: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Conclusions

• Presented a unified approach to simulate the flow of power in embedded systems – Based on functional languages: IP-XACT and SystemC-AMS

• Extended to the simulation of other non-functional properties – Allows to simulate and validate different aspects in a single

simulator run

• Future directions – Modeling for non “functional” metrics

– Automated design/optimization

19

Page 20: Homogeneous Modeling and Simulation of Cyber-Physical

IWES 2016 – EDAGroup, Politecnico di Torino IWES 2016 – EDAGroup, Politecnico di Torino

Thank you!