HKDSE Practice Paper 2012 Mathematics_Module 2

Embed Size (px)

Citation preview

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    1/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    1

    Section A

    1. Find the coefficient of 5x in the expansion of9(2 ) .

    (4 marks)

    2. Consider the following system of linear equation inx,y,z

    7 7 0

    3 0

    2 0

    x y z

    x ky z

    x y kz

    , where kis a real number.

    If the system has non-trivial solutions, find the two possible values ofk.

    (4 marks)

    3. Prove by mathematical induction that 4 15 1n

    n is divisible by 9 for all positive integers n.

    (5 marks)

    4. (a) Let tanx , show that 22

    sin21

    x

    x .

    (b) Using (a), find the greatest value of

    2

    2

    (1 )

    1

    , wherex is real.

    (5 marks)

    5. (a) It is given that cos( 1) cos( 1) cos x k x for any realx. Find the value ofk.

    (b) Without using a calculator, find the value of

    cos1 cos2 cos3

    cos4 cos5 cos6

    cos7 cos8 cos9

    .

    (6 marks)

    6. Find1d

    dx x

    from the first principle.

    (4 marks)

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    2/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    2

    7. Let ( ) (sin cos )x f x e x x

    (a) Find '( )f x and ''( )f x .

    (b) Find the value ofx such that ''( ) '( ) ( ) 0f x f x f x .

    (4 marks)

    8. (a) Using integration by substitution, find24

    dx

    .

    (b) Using integration by parts, find ln dx .

    (5 marks)

    9. Find the equations of the two tangents to the curve 2 22 1 0 x xy y which are parallel to

    the straight line 2 1y x .

    (5 marks)

    10. (a) Find2

    x xe dx .

    (b)

    In Figure 1, the shaded region is bounded by the curves2

    2

    xy and

    2xe , where

    1 2x . Find the volume of the solid generated by revolving the shaded region about

    they-axis.

    (5 marks)

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    3/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    3

    Section B

    11. Let1 0

    A

    where and are distinct numbers. LetIbe the 2 2

    identity matrix.

    (a) Show that 2 ( ) A A I .

    (2 marks)

    (b) Using (a), or otherwise, show that

    2( ) ( )( ) A I A I and 2( ) ( )( ) A I A I .

    (3 marks)

    (c) Let ( )X s A I and ( )Y t A I wheres and tare real numbers.

    Suppose A X Y .

    (i) Finds and tin terms of and .

    (ii) For any positive integern, prove that

    ( )n

    n X A I

    and ( )n

    nY A I

    .

    (iii) For any positive integer n, expressn

    A in the form of pA qI , wherep and q are

    real numbers.

    [Note: It is known that for any 2 2 matricesHandK, if0 0

    0 0 HK KH

    ,

    then ( )n n n H K H K for any positive integern.]

    (9 marks)

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    4/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    4

    12.

    Let OA i

    , OB

    and OC i j k

    (see Figure 2).

    Let MandNbe the points on the straight linesAB and OCrespectively such that

    : : (1 ) AM MB a a and : : (1 )ON NC b a , where 0 1a and 0 1b .

    Suppose that MNis perpendicular to bothAB and OC.

    (a) (i) Show that ( 1) ( )MN a b b a b i j k

    .

    (ii) Find the values ofa and b.

    (iii) Find the shortest distance between the straight linesAB and OC.

    (8 marks)

    (b) (i) Find AB AC

    .

    (ii) Let G be the projection ofO on the planeABC, find the coordinates of the

    intersecting point of the two straight lines OG and MN.

    (5 marks)

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    5/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    5

    13. (a) Let ( )f x be an odd function for p x p , wherep is a positive constant.

    Prove that2

    0( ) 0

    p

    f x p dx .

    Hence evaluate 20

    ( )p f x p q dx , where q is a constant.

    (4 marks)

    (b) Prove that

    3 tan1 3 tan6

    23 tan

    6

    xx

    x

    .

    (2 marks)

    (c) Using (a) and (b), or otherwise, evaluate 30

    ln 1 3 tan x dx

    .

    (4 marks)

    14. (a)

    In Figure 3, the shaded region enclosed by the circle 2 2 25x y , thex-axis and the

    straight line y = h (where 0 5h ) is revolved about the y-axis. Show that the volume

    of the solid of revolution is3

    253

    hh

    .

    (2 marks)

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    6/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    6

    14. (cont)

    (b) In Figure 4, an empty coffee cup consists of two portions. The lower portion is in the

    shape of the solid described in (a) with height 4 cm. The upper portion is a frustum of

    a circular cone. The height of the frustum is 8 cm. The radius of the top if the cup is 6

    cm. Hot coffee is poured into the cup to a depth h cm at a rate of 8 cm3s-1, where

    0 12h . Let Vcm3 be the volume of coffee in the cup.

    (i) Find the rate of increase of the depth of coffee when the depth is 3 cm.

    (ii) Show that 4164 3

    ( 4)3 64

    V h

    for 4 12h .

    (iii) After the cup is fully filled, suddenly it cracks at the bottom. The coffee leaks at

    a rate of 2 cm3s

    -1. Find the rate of decrease of the depth of coffee after 15

    seconds of leaking, giving your answer correct to 3 significant figures.

    (11 marks)

    End of Paper

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    7/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    7

    Solution

    1. The term with 5 is 9 4 55(2) ( )C x

    Coefficient of

    5

    x is

    9 4

    5 (2) 2016C

    2.

    1 7 7 1 7 77 4

    1 3 0 7 4 05 14

    2 1 0 15 14

    kk k

    kk k

    ( 7)( 14) 60 0k k

    2

    21 38 0k k

    2k or 19k

    3. 14 15(1) 1 18 2 9 , which is divisible by 9.

    Assume for some positive integers k, 4 15( ) 1 9k k M where Mis an integer.

    When 1n k ,

    14 15( 1) 1 4(9 1 15 ) 15 15 1 9(4 5 2)k k M k k M k

    , which is divisible by 9.

    Proved by induction, 4 15 1n n is divisible by 9 for all positive integers n.

    4. (a)22 2 2

    2

    sin2

    2 tan 2sin coscosL.H.S. sin 2 R.H.S.sin1 tan sin cos

    1cos

    (b)2 2

    2 2 2

    (1 ) 1 2 211 1 1

    x x x

    x x

    Using (a), consider2

    2

    (1 )1 sin 2

    1

    x

    x

    where tanx

    Sincex is real, is also real, so 1 sin 2 1 for all real

    2

    2

    (1 )1 (1) 2

    1

    x

    . Hence the greatest value of

    2

    2

    (1 )

    1

    x

    x

    is 2.

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    8/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    8

    5. (a)( 1) ( 1) ( 1) ( 1)

    cos( 1) cos( 1) 2cos cos 2 cos1cos2 2

    x x x x x x x

    Since 2 cos1cos cos x k x , 2cos1k

    (b)

    cos1 cos 2 cos3 cos1 cos3 cos2 cos3

    cos 4 cos5 cos6 cos 4 cos6 cos5 cos6

    cos7 cos8 cos9 cos 7 cos9 cos8 cos9

    1 3 1C C C

    2 cos1cos 2 cos 2 cos 3

    2 cos1cos 5 cos 5 cos 6

    2 cos1cos 8 cos8 cos 9

    (Using (a))

    = 0

    6.20 0 0

    1 1

    1 1 ( ) 1 1 1lim lim lim

    ( ) ( ) ( 0)h h h

    d x x hx h x

    dx x h h x x h x x h x x x

    7. (a) '( ) (cos sin ) (sin cos ) 2 cos x x x f x e x x x x e e x

    ''( ) 2 sin 2 cosx x f x e x e x

    (b) 2 sin 2 cosx xe x e x 2 cosxe x sin cos 0x xe x e x

    xe cos xx e sin x [ 0xe for all realx]

    tan 1x

    4x

    8. (a) Let 2sinx , 2cosdx d

    1

    2 2

    2cos 2 cossin

    2cos 24 4 4sin

    dx d d xd C C

    x

    (b)1

    ln ln ln ln ln lndx x x xd x x x x d x x x dx x x x C

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    9/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    9

    9. 2 4 0dy dy

    x x y ydx dx

    2

    4

    dy x y

    dx x y

    Let (a, b) be the contact points,

    ( , )

    22

    4a b

    dy a b

    dx a b

    0b

    To find a, 2 2(0) 2(0) 1 0a a 1a

    The contact points are (1,0) and ( 1, 0) .

    The equation of tangent at (1,0) is0

    21

    y

    x

    2 2 0x y

    The equation of tangent at ( 1, 0) is0

    2

    1

    y

    x

    2 2 0x y

    10. (a) 2 2 221 1

    2 2

    x x x xe dx e d x e C

    (b)2 2

    2 32 2 2

    1 1 1Volume 2 2 2

    2 2

    x xx xe dx dx xe dx

    c

    2

    22

    4

    11

    4 1

    1

    4

    1 1(16) (1)

    4 4

    x

    x e

    e e

    4 115

    4e e

    sq. units

    11. (a)2

    1 0 1 0A

    2

    20

    00

    1 0

    1 0 0 1

    ( )A I

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    10/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    10

    11. (b) 2( ) ( )( )A I A I A I

    2

    2 2

    2

    2

    2

    ( ) 2

    ( ) ( )

    ( )( )

    AA AI IA II

    A A I

    A I A I

    A A I I

    A I

    A I

    Similarly,

    2 2 2

    ( ) 2 A I A A I 2( ) 2

    ( ) ( )

    ( )( )

    A I A I

    A I

    A I

    (c) (i) ( ) ( )A X Y s A I t A I

    1 0 1 1

    s t

    1 0

    s t s t

    s t s t

    ...........(1)

    1 ........................(2)

    ........................(3)

    s t

    s t

    s t

    From (1) and (3),t

    t

    2 2

    ( )t

    From (2), 1 1s t

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    11/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    11

    11. (c) (ii) ( ) ( )X s A I A I

    and ( ) ( )Y t A I A I

    Assume for some positive integers n,

    ( )k

    k X A I

    and ( )k

    kY A I

    .

    When 1n k ,

    11 2

    2( ) ( ) ( )

    ( )

    k kk k X X X A I A I A I

    1

    2( )( )

    ( )

    k

    A I

    [Using (b)]

    1

    ( )k

    A I

    11 2

    2( ) ( ) ( )

    ( )

    k kk kY Y Y A I A I A I

    1

    2( )( )

    ( )

    k

    A I

    [Using (b)]

    1

    ( )k

    A I

    Proved by induction, ( )n

    n X A I

    and ( )n

    nY A I

    for all

    positive integern.

    (iii) Check 2( )( ) ( ) XY st A I A I st A I

    ( ) ( )

    0 0

    0 0

    st A I I

    Similarly, 0 00 0

    YX

    ( ) ( ) ( )n n

    n n n nA X Y X Y A I A I

    n n n n

    A I

    n n n n

    A I

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    12/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    12

    12. (a) (i) MN ON OM s

    ( ) ( )( 1) ( )

    bOC OA a AB

    b a

    a b b a b

    i j k i j i

    i j k

    (ii) Since MN AB

    , 0MN AB

    ( 1) ( ) ( ) 0a b b a b i j k j i

    ( 1) ( ) 0a b b a

    1

    2

    a

    Since MN OC

    , 0MN OC

    ( 1) ( ) ( ) 0a b b a b i j k i j k

    ( 1) ( ) 0a b b a b

    1

    3b

    (iii) Since MNis perpendicular to bothAB and OC,

    the required shortest distance is MN

    .

    2 2 21 1 1 1 1 6

    12 3 3 2 3 6

    MN

    units

    (b) (i) AB j i

    , AC OC OA i j k i j k

    1 1 0

    0 1 1

    AB AC

    i j k

    i j k

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    13/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    13

    12. (b) (ii) ( ) i j k is a vector perpendicular to the planeABC,

    Note that OG

    is also perpendicular to the planeABC, therefore //( )OG i j k

    LetR be the point of intersection ofOG and MN, and we let ( )OR i j k

    ,

    where is a non-zero real constant.

    RN ON OR

    1( ) ( )

    3

    1 1 1

    3 3 3

    i j k i j k

    i j k

    1 1 1 1 11

    2 3 3 2 3MN

    i j k

    1 1 1

    6 6 3 i j k

    Consider // RN MN

    (sinceR is a point on MN)

    1 1

    3 3

    1 1

    6 3

    1

    HenceR = (1,1, 1)

    13. (a) Let u x p , du dx . When 2x p , u p ;when 0x , u p

    2 0

    0 0( ) ( ) ( ) ( )

    p p p

    p p f x p dx f u du f u du f u du

    For0

    ( )p

    f u du , let v u , dv du , When 0u , 0v ;when u p , v p

    0 0 0

    ( ) ( )( ) ( ) p p p

    f u du f v dv f v dv

    (since ( )f x is odd for p x p )

    Hence2 0

    0 0( ) ( ) ( )

    p p

    p f x p dx f v dv f u du

    0 0( ) ( ) 0

    p p

    f x dx f x dx

    2 2

    0 0( ) 0 2

    p p

    f x p q dx q dx pq

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    14/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    14

    13. (b)

    tan tan63

    3 tan 1 tan tan6 6

    tan tan3 tan66 3

    1 tan tan6

    x

    x x

    xx

    x

    1 13 1 tan tan

    3 3

    1 13 1 tan tan

    3 3

    x x

    x x

    13 2 tan

    31

    33

    x

    3 1 2 3 tan

    3 1

    1 3 tan

    2

    x

    (c) 3 tan

    1 3 tan 6ln 1 3 tan ln ln 2 ln ln 2

    23 tan

    6

    xx

    x

    x

    Let3 tan

    ( ) ln3 tan

    xf x

    , where

    6 6x

    Since

    3 tan 3 tan( ) ln ln

    3 tan 3 tan

    x xf x

    x

    1

    3 tan 3 tanln ln ( )

    3 tan 3 tan

    x xf x

    x x

    ,

    ( )f x is odd function for6 6

    x

    Hence 3 30 0

    3 tan6

    ln 1 3 tan ln ln 2

    3 tan6

    x x dx dx

    x

    3

    0ln 2

    6 f x dx

    2 ln 2 ln 26 3

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    15/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    15

    14. (a)3 3

    2 2

    0 00

    Volume (25 ) 25 253 3

    hh h y h x dy y dy y h

    (b) (i)3

    25

    3

    hV h

    for 0 4h

    225dV dh

    hdt dt

    23

    8 25 3h

    dh

    dt

    3

    1

    2h

    dh

    dt

    The required rate of increase of the depth of coffee is1

    2cm s-1.

    (ii)

    From the figure, the required volume Vis given by

    32 24 1 125(4) ( ) ( 4) (3) (8)

    3 3 3V r h

    where

    ( 4)

    3 8

    r h

    2164 1 3( 4)

    ( 4)3 3 8

    hh

    3164 3 ( 4)3 64

    h

    where 0 12h

  • 8/3/2019 HKDSE Practice Paper 2012 Mathematics_Module 2

    16/16

    HKD SE Practice Paper 2012 Mathematics (Module 2)

    16

    15. (b) (iii) The total volume of the cup is 3164 3 740

    (12 4)3 64 3

    cm3

    After 15 seconds of leaking, the depth of coffee is given by

    3740 164 330 ( 4)3 3 64

    h

    33192 30 ( 4)64

    h

    11.73021845h cm

    29 ( 4)64

    dV dhh

    dt dt

    2

    15

    92 (11.73021845 4)64 t

    dh

    dt

    15

    0.018295659t

    dh

    dt cm s-1

    The required rate of decrease of the coffee is 0.0183 cm s-1

    End of Solution