43
Design Examples 1

High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Design Examples

1

Page 2: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Outlines

• Power Integrity Overview

• PI-induced EMI effect

• PI for LPDDR4 in InFO

2

Page 3: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Power Integrity

Overview

Page 4: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

High-f Caps

Mid-f Caps

Motherboard

VRM

Power Delivery Network

. VRM

. Interconnects

. DeCap’s on PCB & package

4

Page 5: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Hierarchical Power Delivery Network

Multiple power/

ground planes as

PDN

5

Page 6: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Challenges in Power Delivery System

• With clock speeds increasing, supply voltages decreasing

and the number of device on a chip increasing, the SSN is

getting seriously.

• SSN is one of the major concerns for designing high speed

circuit.

PQ

NQ

dd VSystem

GroundSystem

effL

effL

Vin Vout Vin Vout

Noise voltage↑

Number of device↑

Effective

inductance of PDN

Change of current↑

Rise/Fall time↓

diV N L

dt

6

Page 7: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Target Impedance

• Target impedance states that

voltage to current ratio has to

equal the impedance in the

network.

• If exceeds it at any freq.,

resultant power supply noise

will exceeds 5% of Vdd

7

0.1 1 10 100 1000Frequency(MHz)

0.001

0.01

0.1

1

Z r

es

po

nse

(Oh

ms)) (

Ripple

MAX

ddTarget

I

VZ

Page 8: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Power Noise Signature

8

Page 9: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

PI-Induced EMI

Page 10: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Overview – Ground Bounce Induced EMI

• Induced from ground bounce or other mechanisms.

• Fringing field and radiation.

• Interfere other devices.

• Signal-noise fluctuation, system crash.

10

Digital

IC Die

RF IC

Die

Ground

PowerParallel plates

stripline

Microstrip line

Bonding Wire

Bend

Through-hole

Vias

Solder Ball

Decoupling capacitor

GBN coupling to P/G

via of Digital IC Die

GBN coupling

to Signal Trace

Signal Trace

Edge Radiation

Bend structure

Radiation

Digital

IC Die

Radiation Radiation

Bonding wire

Page 11: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

20-H Rule vs. Edge Radiation

• 20-H rule – Back the edge of the power plane away from the edge of

the board by a distance equal to 20 times the separation distance

between the planes.

• Ground plane acts as a reflector.

• Maximum 6dB incremental in field strength ideally.

11

Cross View and Radiation 20-H rule

Page 12: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

De-Caps vs. Edge Radiation

• On the whole board

• Shift the resonances

• Work at lower frequency (depends on

the resonance of de-cap)

12

With capacitors

10nF/1nH/1mOhm

Without 20-H rule

With 20-H rule

Page 13: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

20-H Rule vs. Edge Radiation

13

Resonance Mode Frequency (MHz) Radiated E-Field (0H) Radiated E-Field (20H)

TM01 940 102.7dB 108.1dB

TM10 1490 110.9dB 115.9dB

TM02 1640 101.2dB 103.6dB

TM11 1840 107.6dB 113.1dB

Without capacitors (only 20-H rule)

Ref.: S. Ikami, and A. Sakurai, ―Practical analysis on 20H rule for PCB‖ Asia-Pacific

Symp. EMC, pp. 180-183, 2008

Page 14: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Key Parameters of Edge Radiation

• Cavity Model

• Radiation field

14

0

01 1

1( ', ')

'4

rad

jk R

ij

C

E F

n Z I x y eh h

dsR

h

2 f

j h

h

f

Board height

Frequency

Page 15: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Radiation Model of Three-Layer GPG

Structure

• Mode decomposition – even- and odd-mode.

• Array factor.

15

Ground

Power

Ground

: Equivalent magnetic current (outward the sheet)

: Equivalent magnetic current (inward the sheet)

h

h

Io

Ground

Power

Ground

Ground

Power

Ground

h

h

h

h

1

2oI

1

2oI

1

2oI

1

2oI

0 ,cos for even mode

2, for odd mode

jk hAF

Magnetic current pair of Even Mode

Even Mode

Odd Mode

Page 16: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Even- and Odd-Mode Radiation and

Attenuation Factor • With sufficient shorting vias, odd-

mode excitation can be greatly

reduced.

• Ratio of even-mode and odd-mode

radiation is given by an attenuation

factor:

• For example, EMI suppression of

20dB from dc to 3GHz layer

height h < 3.1mm so that A < 0.1 for

all .

16

h = 1mm

εr = 4.4

(0,0) (140,0)

(140,140)(0,140)

(70,70)

l = 1

40m

m

w = 140mm

0 1 2 3

Frequency (GHz)

-160

-140

-120

-100

-80

-60

To

tal R

ad

iate

d P

ow

er

(dB

W)

Three-Layer Radiation, Iinc = 1mA

Even-Mode Excitation, h = 1mm

Odd-Mode Excitation, h = 1mm

Even-Mode Excitation, h = 0.5mm

Odd-Mode Excitation, h = 0.5mm

Io = 1mA

Io

1

ideal ideal 02

rad, even

rad, odd

cos ; A A A k hE

E

Page 17: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Simplification of GPG Structure

with Shorting Vias

• Via stitched three-layer structure with odd-mode excitation can be

simplified to a two-layer structure with shorting vias.

17

h

h

h

1

2oI

1

2oI

Io

: Source: Shorting vias

Einc

P

D

r

PMC

PMC

PM

C

x

y

-DD

hr

P

Einc

x

y

z

Canonical problem

Top View Side View

Even Mode Excitation

Page 18: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Scattering Field Analysis in Canonical

Problem

• Incident wave is from the left side of canonical problem

• Boundary condition: total E-field should be zero at the via

• The odd-mode suppression factor Aodd:

18

(2)0

1

4( )z via

jE j I H k

Einc

P

D

x

y

-D D

Ivia

I'via I'via

I'via

I'viaI'via

: Real via with current Ivia : Image via with image current I'via

Einc

P

D

r

PMC

PMC

PM

C

x

y

-D

( , ) ( , )

2 cos , ,

tot jkx jkx s

z inc inc z

inc via

E x y E e E e E x y

E kx j I g x D y g x D y

,max

odd

2 2

(0, ) (0, 0)

2 ( , 0) 2 2 cos( )

( , ) (2 , )

total total

z z

inc inc

P P

E y EA

E E

g DkD kr

g r g D r

Ref.: K.-B. Wu, et. al., “Modeling and optimal design of shorting vias to

suppress radiated emission in high-speed alternating PCB planes,” IEEE T-

CPMT, vol. 1, no. 4, pp. 566-573, Apr. 2011.

Page 19: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Design Procedure for Shorting Vias

• Weighting : (kD<π/2)

• Design from low importance to high importance

• Choose 1mm for example

• Step1: Determine the distance D from edge to shorting via

• Maximum E-field suppression when kD = 0.15 ~ 0.6

• Choose kD=0.15, D1.138mm @3GHz

• Step3: Determine radius ―r‖

• kr given by PCB factory

• Suppose kr=0.02, r151.7um@3GHz

• Step4: Choose the via pitch P by Aodd

• Use the design chart

• Find corresponding kP=0.287

• For 3GHz, P2.178mm

19

kP kD kr

kD = 0.15 (rad)

kP

(ra

d)

kr (rad)

Page 20: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Measurement Environment

• GTEM cell (GHz Transverse Electromagnetic Cell)

• Function generator—SG-hp83650B (10MHz-50GHz)

• Spectrum analyzer—R&S FSP (9kHz-40GHz)

20

GTEM Cell

Spectrum AnalyzerFunction Generator

DUT

Cable BCable A

GTEM 500

Function Generator

Spectrum Analyzer

Page 21: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Measurement Results with Shorting Vias

21

0 1 2 3

Frequency (GHz)

-160

-140

-120

-100

-80

-60

To

tal R

ad

iate

d P

ow

er

(dB

W)

Three-Layer Radiation with Vias Comparison

Simulation Data (HFSS)

Measurement Data(P = 2.178mm, D = 1.138mm, r = 6mil)

Simulation Data (without vias))

2 2

0 11

08inc

inc

I meas

in

Z Z IP P

Z P

h = 1mm

εr = 4.4

(0,0) (140,0)

(140,140)(0,140)

(70,70)l =

14

0m

m

w = 140mm

h

h

Iinc

Ground

Power

GroundShorting vias

Cross View

Top View

Page 22: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Applications to Next

Generation DRAM @ 3DIC

Page 23: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Chip and Package Stacking

23

Page 24: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Next Generation DRAM

• Wide IO II / LPDDR4

• High-bandwidth and low-power DRAM

• Thin and compact: 3D integration

• Wafer level packaging (WLP) 3D-IC

– Integrated Fan-Out in TSMC.

– LPDDR3 / LPDDR4.

– Cost-effective technique for 3D-IC.

– Vertical interconnect of through

InFO via between stacked chips.

– Thinner

– Lower loss on molding

compound and routing area

but longer interconnect.

– Better thermal.

InterfaceVDD/VDDQ

Speed

Density

PKG

2010 2011 2012 2013 2014 2015

LPDDR2 1.2V/1.2V LPDDR3 1.2V/1.2V LPDDR4

Wide-IO and Wide-IO 2

6.4GB/s 8.5GB/s 12.8GB/s Up to 68GB/s

2Gb 4Gb 8Gb

Up to 4 die stacks : 1.0mm -> 0.9mm and below

24

Page 25: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Bandwidth of Mobile DRAM

25

Page 26: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Next Generation Mobile DRAM Using

3DIC Type Wide IO II LPDDR4

Chip photo

Pin amounts ~430 per die (4ch die) 66 per die

Signaling speed Max. 1066 Mpbs Max. 4266 Mpbs

Bandwidth Up to 68 GBps Up to 34 GBps

Package

TSV-based 3DIC Various, WLP or PoP

Cost Higher Lower

Energy per Byte ~40mW ~60mW

Wide IO DRAM

AP Die

Substrate

TSV

Micro bump

BumpLower Die

Upper Die

Bond wire Bond wire

Micro bump Micro bumpTI

V

TIV

TIV

TIV

TIV

TIV

RDL

Solder ballPCB

Molding compoundMolding compound

26

Page 27: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Who Uses LPDDR4?

27

Page 28: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Signal/Power Integrity in 3D

Packaging • Signal integrity: providing the solution space and guideline for RDL

routing design on InFO to meet LPDDR4 specification.

• Power integrity: developing and designing the decoupling capacitor for

InFO power integrity.

0.50.55

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.65

0.7

0.7

0.7

0.7

0.75

0.75

0.75

0.75

0.75

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.850.85

0.85

0.9

0.9

InFO RDL Length (mm)

Da

ta R

ate

(M

bps)

3 4 5 6 7 8 9 10

2000

2500

3000

3500

4000

Unit: UI

0.01 0.1 1 10Frequency (GHz)

0.01

0.1

1

10

100

1000

Inp

ut

Imp

ed

an

ce

(O

hm

)

Only with 1pF on-chip capacitance

5 de-caps (Cap 4+5+6+7+9)

1 de-cap (10pF)

1 de-cap (100pF)

Signal Integrity Power Integrity

Good eye-diagram

28

Page 29: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

– Set the upper and lower bound from

the requirement of Spec.

– Acquire the maximum eye height

Electrical Definition of Eye for

LPDDR4 – Set the right and left bound from

the requirement of Spec.

– Acquire the maximum eye width

Ref: LPDDR4 specification,JESD209-4 , JEDEC Standard (2014, Aug.).Available: http://www.jedec.org

Eye width

Eye height

requirement

from Spec.

psec

Vo

lta

ge Eye height

requirement

from Spec.

Eye width requirement

from Spec.

Eye width requirement

from Spec.

Eye height

psec

Vo

lta

ge

▪ Clear eye mask in JEDEC definition.

▪ Rectangular eye mask.

29

Page 30: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Bottleneck of Signal Integrity in InFO

LPDDR4

Substrate

RDL

Wire-bonding

100 μm50 μm

300 μm200 μm

Mounding Compound

Substrate

RDL

TIV and micro bump

G

G

G

PCB (Printed circuit board)

Micro bump

10000 μm

3000 μm ~ 8000 μm

TIV

RDL (Re-distribution layer)

Upper Stacked-die (LPDDR4)

Molding compound

RDLLower die (AP)

Solder ball

Wire-Bonding

DK = 4, Df = 0.01

Ground

Signal5 μm

Silicon Chip

Power

@ 2400Mbps @ 3200Mbps @ 4266Mbps

0.22UI

140mV

0.25UI

140mV

0.25UI

120mV

DK = 3.1, Df = 0.017Ground

Signal5 μm

5 μm

Silicon Chip

Power

30

Page 31: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Model Construction for Lower

RDL and TIV

PCB (Printed circuit board)

RDL

Upper Stacked-die (LPDDR4)

Lower die (AP)

Wire-Bonding

On-chip de-capIO

VRMOn package

de-cap

On board de-cap

On board de-cap

IO

Through InFO Via (TIV) Model

VSSQ(Ground)

DQ8_A

DQ9_A

DQ10_A

DQ11_A

DQ8_A

DQ9_A

DQ10_A

DQ11_A

Lower RDL

VSSQ(Ground)

VDDQ(Power)

VDDQ(Power)TIVTIVTIV

TIVTIVTIV

Lower RDL (AP) Model

VSSQ(Ground)

DQ8_A

DQ9_A

DQ10_A

DQ11_A

DQ8_A

DQ9_A

DQ10_A

DQ11_A

t

Vagg

PRBS1

Vvic

PRBS2

Con-chip

= 1pf

Vvic

Vagg

IO

IO

IO

IO

AP DieTIV

Vagg

Vagg

De-cap1

De-cap2

VSSQ(Ground)

VDDQ(Power)

VDDQ(Power)

On-package de-cap

31

Page 32: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Model Construction for Upper

RDL and PCB

Upper RDL (DRAM) Model

VSSQ(Gnd)

DQ8_A

DQ9_A

DQ10_A

DQ11_A

DQ8_A

DQ9_A

DQ10_A

DQ11_A

Con-chip

= 1pf

DRAM DieTIV

VSSQ(Ground)

VDDQ(Power)

VDDQ(Power)

Cterm=1pf

PCB (Printed circuit board)

RDL

Upper Stacked-die (LPDDR4)

Lower die (AP)

Wire-Bonding

On-chip de-capIO

VRMOn package

de-cap

On board de-cap

On board de-cap

IO

PCB Power plane

InFOVRM

Ground plane

50mm

50m

m

VDDQ(Power)

VSSQ(Ground)

PCB Power/Ground Model

4 mil

TIV

32

Page 33: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

PCB (Printed circuit board)

RDL

Upper Stacked-die (LPDDR4)

Lower die (AP)

Wire-Bonding

On-chip de-capIO

VRMOn package

de-cap

On board de-cap

On board de-cap

IO

Model Connection

• Vvic (victom) and Vagg

(aggressor) are

different patterns to

excite maximum

crosstalk condition.

• Voltage probes are at

victim (DQ10_A) and

btw power/ground

nets on IOs.

• Only on-chip and on-

package decaps are

in simulation

Lower RDL

(AP) Model

VSSQ(Ground)

DQ8_A

DQ9_A

DQ10_A

DQ11_A

t

Vagg

PRBS1

Vvic

PRBS2

Con-chip

= 1pf

Vvic

Vagg

IO

IO

IO

IO

Vagg

Vagg

De-cap1

De-cap2

VDDQ(Power)

On-package de-cap

Through InFO

Via (TIV)DQ8_A

DQ9_A

DQ10_A

DQ11_A

VSSQ(Ground)

VDDQ(Power)

VDDQ(Power)

VSSQ(Global Ground)

PCB Power/Ground

Model

VSSQ(Gnd)

DQ8_A

DQ9_A

DQ10_A

DQ11_A

Con-chip

= 1pf

VSSQ(Ground)

VDDQ(Power)

VDDQ(Power)

Cterm=1pf

Upper RDL

(DRAM) Model

V

DQ8_A

DQ9_A

DQ10_A

DQ11_A

Voltage probe

at Victim

V+

V-

Voltage probe

between power and

ground (V+-V-)

33

Page 34: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Signal Integrity by Lower RTL

Design

GSPSGSPSG @ 2400Mbps GSPSGSPSG @ 3200Mbps GSPSGSPSG @ 4266Mbps

GS SPS SG @ 2400Mbps GS SPS SG @ 3200Mbps GS SPS SG @ 4266Mbps

GSSPSSG @ 2400Mbps GSSPSSG @ 3200Mbps GSSPSSG @ 4266Mbps

5 μm5 μm

Silicon Chip

Ground Power DK = 3.1, Df = 0.017

DK = 3.1, Df = 0.017Ground

5 μm 5 μm

Silicon Chip

Power

DK = 3.1, Df = 0.017Ground

Signal5 μm

5 μm

Silicon Chip

Power

34

Page 35: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Solution Space for DQ

(GSPSGSPSG) • Dominant factor: InFO RDL length

• Bi-directional transmission.

• Under requirement of Spec.

0.50.55

0.55

0.6

0.6

0.6

0.65

0.65

0.65

0.65

0.7

0.7

0.7

0.7

0.75

0.75

0.75

0.75

0.75

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.850.85

0.85

0.9

0.9

InFO RDL Length (mm)

Da

ta R

ate

(M

bps)

3 4 5 6 7 8 9 10

2000

2500

3000

3500

4000

Unit: UI

PCB (Printed circuit board)10000 μm

RDL (Re-distribution layer)

Upper Stacked-die (LPDDR4)

Lower die (AP)

Wire-Bonding

De-cap De-capOn-chip decap

IO

De-cap

DK = 3.1, Df = 0.017Ground

5 μm 5 μm

Silicon Chip

Power

Eye width (normalized) Eye height

200220

220

240

240

260

260

260

280

280

280

300

300

300

300

320

320

320

320

320

340

340

340

340

340

340

360

360

360

360

380

380

380

InFO RDL Length (mm)

Da

ta R

ate

(M

bp

s)

3 4 5 6 7 8 9 10

2000

2500

3000

3500

4000

Unit: mV

35

Page 36: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Power Distribution System for

InFO

PCB (Printed circuit board)10000 μm

RDL

Upper Stacked-die (LPDDR4)

Lower die (AP)

Wire-Bonding

On-chip de-capIO

On board de-cap

VRMOn package

de-cap

On board de-cap

On board de-cap

IO

• Power Distribution System – LPDDR4 to AP

– AP to LPDDR4

• Improve power integrity – Change layout of power bus

– Add decoupling capacitors

• Decoupling capacitors – On-chip capacitance: without parasitic effect but small capacitance (~1pF)

– Off-chip capacitance

• On package de-cap: close to IO but small area and choice for de-cap

• On board de-cap: the most flexible but far away from IO

TIV Region

TIV Region

AP Die

AP Die

GSSPSSGSSPSSG

36

Page 37: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Single Node Analysis for De-caps

Design

1 1 1

2 2 ( )( )

i j

antii j i j j i

i j

i j

C Cf

C C C C L LL L

C C

( ) ( )1

1 1 ( )

i i j j

in

i j i j

i j

R jX R jXZ

R R j X X

Z Z

Z

Li

CjCi

Ri

Lj

Rj

1

1

i i i i i

i

j j j j j

j

X L Z R jXC

X L Z R jXC

37

Page 38: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

De-cap Design Example

▪ Current drawing per IO: ~10mA

▪ 10% tolerance of power noise(0.44V):0.44x10%

▪ Number of switching IO: 4

▪ Target impedance: 1 Ohm

5 various de-caps: type 3 4 6 7 10

2 identical de-caps: 47p + 47p

2 identical de-caps: 100p + 100p

1 de-cap: 100p

1 de-cap: 4.7n

Z

Li

CjCi

Ri

Lj

Rj

0.01 0.1 1 10Frequency (GHz)

0.01

0.1

1

10

100

1000

10000

Inp

ut

Imp

ed

an

ce

(O

hm

)

Only 1pF on-chip capacitance

1pF on-chip capacitance and 5 decaps

1pF on-chip capacitance and 47p+47p decaps

1pF on-chip capacitance and 100p+100p decaps

1pF on-chip capacitance and 100p decap

1pF on-chip capacitance and 4.7n decap

38

Page 39: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Comparison of Power Noise Signature

• As design for target impedance, the 5 de-caps case satisfies the 10% noise

requirement.

Only 1pF on-chip capacitance 100p decap 4.7n decap

47p + 47p decaps

210mV

53mV

31mV

100p + 100p decaps

33mV

48mV

5 μm5 μm

Silicon Chip

Ground Power DK = 3.1, Df = 0.016

39

Page 40: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

DQ Eye-Diagram Comparison @

4266MHz

EW EH

Only on-chip cap Out of Spec.

4.7n 0.34UI 192mV

100p 0.34UI 193mV

47p + 47p 0.35UI 208mV

100p + 100p 0.35UI 208mV

4.7n de-cap 100p de-cap

47p + 47p de-caps 100p + 100p de-caps

w/o decap

40

Page 41: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

DQ Eye-Diagram Comparison @ 4266MHz Using 100pF Decap and Different ESL

EW EH

Only on-chip cap Out of Spec.

Ideal power 0.54UI 289mV

100pF+1nF ESL 0.40UI 238mV

100pF+0.4nF ESL 0.45UI 261mV

0.4nH ESL (0.333nH total)

Only on-chip capacitance

5 μm5 μm

Silicon Chip

Ground Power DK = 3.1, Df = 0.016

1nH ESL (0.667nH total)

Ideal power

41

Page 42: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

PI Design by Meshed Ground/Power

85μm

135μ

m

Via

Silicon Chip

Ground Power1 2 3 4

Silicon Chip

Ground Power1 2 3 4

5 μm5 μm

Silicon Chip

Ground Power DK = 3.1, Df = 0.016

Only on-chip capacitance

EW: 0.49UI

EH: 276mV

42

Page 43: High-Speed Digital System Design簡介cc.ee.ntu.edu.tw/.../course/pi/PI15_Design_Examples.pdfDesign Procedure for Shorting Vias • Weighting : (kD

Conclusions

• Solution space is proposed and the pin assignment can meet the

specification up to 4266 Mbps.

• One 100p de-cap can meet the PI requirement at 4266 Mbps.

However, the large power noise will be induced when the

resonant frequency is excited at IO.

• For 8mm GSPSGSPSG routing, one 100p decap with smaller

than 2.1nH ESL can meet design requirement.

• Using meshed ground/power, InFO without on-package decap

but with improved performance deserves further study.

43