47
High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Embed Size (px)

DESCRIPTION

Fit to exponential curves and determination of the glow discharge voltage. glow discharge

Citation preview

Page 1: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

High rate studies of TRD at GSI (update)

D. Gonzalez-Diaz, GSI27-02-2008

Page 2: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Experimental setup

Page 3: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

)(ln thVVaM

Fit to exponential curves and determination of the glow discharge voltage.

glow discharge

Page 4: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Slopes of the gain curve

Page 5: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

The onset of the glow discharge

Page 6: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

The onset of the glow discharge

chamber unstable (not understood yet)

maximum gainroughly constant

maximum gaindepends on the fraction of quencher

Page 7: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

bM

MrCshnqaMML

oeo ln2

exp2

2

●Chamber parameters: s=4 mm, h=3 mm.●Fit parameters: μnoble and μCO2 combined by assuming the Blanc's additive law (with f being the fraction of noble gas):

2

11

COnoble

ff

Global fit to the Mathieson formula

Page 8: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

XenonA. Kalweit

Page 9: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

ArgonG.Hamar

Page 10: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Neon

Page 11: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

F

shC

nqaMFbMFr L

oeo

o

1ln21

11ln

22

After obtaining the parameters of the fit (2x3 mobilities), the rate capability r at arbitrary gain drop F can be re-obtained as:

Rate capability.

Page 12: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

systematic error

Rate capability. A handy representation.

ΔE = 6.7 keV~2 ΔEmips

CBM goal

Page 13: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Beam size dependence

r [mm]2 4 6 8 10

oVrV

)(

0

5.0)(

o

eff

VrV

AA

Preliminary

A. Kalweit

Therefore: the rate capability is overestimated by the same factor (an independent measurement with de-focused beam points also to a factor around 0.6).

Page 14: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

very conservatively one can assign a systematic uncertainty of up to a factor 2x2 [maximum] in the rate capability (more systematic measurements are on the way!)

Page 15: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Some scalings

Page 16: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Gap h (~1/h2)

Page 17: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Wire pitch s (~1/s)

Page 18: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Gain drop F (~F)

Page 19: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Gain Mo (~Mo)

Page 20: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Conclusions.

●Existing data (from different measurements conducted at GSI) on gain and rate capability was compiled and re-analized by using a common framework. A rate capability of 100x2 Hz/cm2 for mips at Mo=104 and F=5% drop was demonstrated on 3 mm gap chambers with 4 mm pitch.●The uncertainty coming from the finite beam size and partially inconsistent sets of data is conservatively below a factor 4.●The rate capability improves linearly with MoF. Therefore, operation of this geometry at gains below 104 provides a safe margin regarding the rate capability required by CBM (100 Hz/cm2), a wide dynamic range for primary ionizations (glow discharge at Mo~2 105

for Xenon) and reduced ageing.●Measurements will continue in order to reduce the systematic uncertainties and to extract the ion mobilities and compare with existing data.●Hopefully next meeting we can show the final picture!

Page 21: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Appendix

Page 22: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Experimental procedure for gain measurements.

● The rate was monitored with a CAMAC scaler and corrections for the system dead-time applied. In these measurements this correction is at most 13%.● The current was measured with a power supply of 1 nA resolution. At low gains, a Keithley picoamperemeter with resolution below pA was used.● The pressure and temperature were monitored continuously, and the operating voltage re-normalized to the corresponding voltage at P=1000 bar and T=20 oC, to account for changes in density.● The rate over the chamber was kept at the level of 10 kHz for gains M>105 and at the level of 120 kHz for gains M<105 (this reduces the space-charge at high gains, simplifying the theoretical description). This was achieved for all the gas mixtures studied, by accommodating the different X-ray conversion probabilities with changes in the current of the tube.●Measurements for s = 2, 3, 4 mm and gas mixtures of Ne,Ar,Xe/CO2 at concentrations of noble gas f = 0, 10, 20, 40, 60, 80, 90, 99 were performed

Page 23: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

X-ray tube vs (reference) Fe55 source (I).

The energy distributions are very similar but, in the case of the source, the measured distribution is dominated by the detector resolution and in the case of the tube it is dominated by the shape of the primary X-ray distribution.

Ar/CO2(80/20)

escapepeak

Page 24: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

SO: Once calibrated in energy, the tube was used for the whole data taken

X-ray tube vs (reference) Fe55 source (II).

Good mutual agreement (below 5%) between both!

Page 25: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

2.1. Measurements on gain.

Page 26: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Typical measurements (Xenon).

baVM lnCurves fitted to the phenomenological expression

Page 27: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Typical measurements (Argon).

baVM lnCurves fitted to the phenomenological expression

Page 28: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Gain systematics as a function of the fraction of Xenon and chamber pitch s.

baVM ln

Page 29: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Gain systematics as a function of the gas mixture.

Page 30: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

2.2 The glow-discharge.

Page 31: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

The glow discharge.Photon or ion feedback may result in re-generation of electrons close to the cathode that causes a self-sustained current in the detector (glow-discharge).

A. Battiato

In this kind of mixtures and at this temperature and pressure conditions, it is the main cause of gain limitation of the detectors

Page 32: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Maximum gain before the onset of the glow discharge for Xenon.

The maximum achievable gain is rather independent on the quencher, being suggestive of the presence of ion feedback.

PRELIMINARY!

Page 33: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Maximum gain in Neon and Argon mixtures depend strongly on the quencher, being suggestive of photon feedback.

Maximum gain before the onset of the glow discharge for different gas mixtures.

PRELIMINARY!

Page 34: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Comparison with models (Magboltz).

Meta-stable Ar* always appear during the avalanche process. If Ar* finds a CO2 molecule, it can be de-excited upon ionization of it (Penning effect).The fraction of Ar* atoms that undergoes Penning or ‘Penning fraction’ is a free parameter, but can be constrained by our data since it depends only on the mixture.

C. Garabatos

Ar/CO2(80/20)

PRELIMINARY!

Page 35: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

2. Measurements on rate capability.

Page 36: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Experimental procedure for rate capability measurements.

● The gain was measured as a function of the primary rate. The dead-time of the system was estimated (and corrected) by making use of the proportionality between the current of the X-ray tube and the primary rate, and using a phenomenological model with only 1 free parameter.● The area of illumination has been measured by exposing a Polaroid film.● The current was measured through the power supply. ● The rate was measured witha NIM scaler.

Page 37: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. The ‘standard model’ (I).E. Mathieson, NIM A 249(1986)413

In the particular case where , the dependence of the gain with rate is given by the transcendental equation:

baVM ln

)])(ln[2

exp(112

MMVCshbanqMM b

loeo

Where no is the initial number of clusters, φ the primary flux in [Hz/cm2], Cl is the capacitance per unit length, μ the ion mobility, s the wire pitch and h the gap between anode and cathode.

Page 38: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. Data and model. XENON.A. Kalweit

Xenon/CO2 (90/10)

Page 39: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

A. KalweitRate capability. Data and model. XENON.

Xenon/CO2 (80/20)

Page 40: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. Data and model. ARGON.G. Hamar

Page 41: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. Data and model. ARGON.G. Hamar

Page 42: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. Data and model. NEON.

Page 43: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. The ‘standard model’ (2).

)])(ln[2

exp(112

MMVCshbanqMM b

loeo

From expression:

The flux at arbitrary drop in gain (F), can be obtained:

]1ln[121

)1(])1ln[()( 22 FqnbashC

MFMFF

eo

l

o

bo

That we denote as ‘rate capability’

Page 44: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Parameters of the model:●For the mobility it is assumed that it is the CO2 who actually drifts and the Blanc’s additive law is valid. The values of the mobility in pure gases are then obtained from existing tables. For simplicity, the mobility at zero field is taken and assumed to be constant.●For the primary ionization, the values reported in Sauli’s yellow paper are used.●The mobility of CO2

+ in Xe has not been directly measured (up to my knowledge) so I took as an ansatz that the mobility of Xe+ in Xe scales to the one of CO2

+ in Xe in the same way that Ar+ in Ar scales to CO2

+ in Ar.

Rate capability. The ‘standard model’ (3).

Page 45: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Rate capability. All in one.

PRELIMINARY!

required byCBM

Page 46: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Conclusions.

●The gain and rate capability has been measured for several chambers and gases, and seems to be reasonably well described by transport models (Magboltz).●The maximum operating gain in Xenon mixtures is systematically below Argon and Neon.●The rate capability of the chambers has been measured and is well described within 20% for Xenon, Argon and Neon mixtures by using the Mathieson formula. The good agreement gives some confidence on how to extrapolate to different geometries, mixtures and primary ionization.● Given the energy loss for mips in Xe (ΔE~5 KeV/cm), it seems that the rate capability in Xe/CO2 based mixtures for 4 mm chambers and M=104 fits to the CBM requirements. Drops in gain are expected to be below 5%.

Page 47: High rate studies of TRD at GSI (update) D. Gonzalez-Diaz, GSI 27-02-2008

Outlook.

●Improve the quality of the analysis of the existing data on rate capability under X-ray illumination. In particular, the existing data has been analyzed independently by different people.●An assessment of the dependence of the rate capability with the beam size must be pursued before extracting further conclusions.●Analysis of data under illumination with ionizing particles will be pursued in short term.