23
Integrity Service Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic Technology Branch Aerospace Vehicles Division (RQV) Aerospace Systems Directorate

High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Integrity « Service « Excellence

High-Fidelity Multi-Disciplinary Simulation

2014

Dr. Miguel Visbal Principle Research Aerospace Engineer

Aerodynamic Technology Branch Aerospace Vehicles Division (RQV)

Aerospace Systems Directorate

Page 2: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

High-Fidelity Multidisciplinary Simulations: Background & Motivations

2  

High-­‐fidelity    first-­‐principles  simulation  attributes:  üAccurate  &    truly  predictive  üProvides  fundamental  understanding  of    flow  mechanisms  üLeverages  flow  receptivity  for  enhanced  system  performance  üCost-­‐effective  approach  for    “computational  experimentation”  ü Provides  guidance  to  physics-­‐based  design-­‐oriented  approaches  

• Spatial  &  time  resolved  •Enabled  by  High-­‐Performance  Computing  •Experimental/  computational  synergistic  comparisons  

ü  Challenges  persist  in  the  accurate  numerical  simulation  and  understanding  of  dynamic    multi-­‐physics  phenomena  relevant  to  aerospace  vehicles,  e.g.  transition,  turbulence,  separated  flows,  non-­‐linear  aero-­‐elasticity,  flow  control,  aero-­‐optics,  aero-­‐acoustics  

ü  Complex  non-­‐linear  multi-­‐disciplinary  physics  critical  to  FAD,  EE,  SUAS  ü  Failure  to  account  for  complex  multi-­‐disciplinary  physics  impacts  system  performance,  reliability  &  life-­‐cycle  costs  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 3: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Hierarchy of Viscous Flow Simulation

3  

Direct Numerical Simulation (DNS)

Num

eric

al A

ccur

acy

Large-Eddy Simulation (LES)

Hybrid RANS/LES

Implicit LES (ILES)

ü Unsteady loading ü Aero-elasticity ü Active flow control ü Transition ü Aero-optics ü Acoustics

Reynolds Averaged Navier-Stokes (RANS)

ü Mean flow üsteady loads

Reduced-Order Methods (ROM)

Tim

e-O

n-St

atio

n (h

rs)

70

60

50

40

30

20

10 Current-Day Technology

Extend Laminarr Flow

Advanced Structures

2015 SensorCraft

Acttiive Aerroelasttic Wing

AAddapapttiivvee StStrrucuctturesures

Flow Conttroll

Structural Anttennas

Computtattiional Methods

Rapid Assessment Fine-scale unsteadiness

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 4: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Computational Framework

4  DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 5: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Our Aim

5  

Discover,  Develop,  Demonstrate  &  Transi3on:  ü  High-­‐fidelity  solu3ons  &  approaches  ü  Fundamental  understanding  ü  Flow  control  strategies  of  complex  physical  phenomena  in  support  of  USAF’s  

dominant  aerospace  vehicles  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 6: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Synergistic Collaborative Structure

6  

In-house team Dr. M. Visbal (Lead) Dr. D. Rizzetta Dr. R. Gordnier Mr. C. Barnes (Co-Op) Dr. D. Garmann (OAI) Dr. M. White (OAI) Dr. P. Morgan (OAI)

AFOSR Dr. D. Smith NRC

Industry GE Research

Academia UM MSU Lehigh Stanford ERAU ….

Summer Faculty

International Bath Univ. (UK) RTO ECL (France)

DoD HPCMO

NASA DARPA

ARO

RQV RQH

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 7: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Product-Driven Research Focus

7  

Broad  speed  regime  :  0.1  <  Mach  <  3.0  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 8: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Unsteady Separation & Dynamic Stall

8  

ü  Dynamic  stall  is  induced  by  large  excursions  in  angle  of  attack  due  to    surface  motion  or  incoming  gusts.  

ü  Aggressive  use  of  laminar  flow  over  lightweight  structures  for  improved  energy  efficiency  brings  about  the  potential  for  unforeseen  interactions  excited  by  incoming  gusts.  

ü  Coupling  of  large  excursion  of  transition  location,  unsteady  separation  and  elastic  response  may  severely  impact  vehicle  dynamics.  

ü  Generation  of    abrupt  unsteady  loading,  noise  &  vibration  ü  Problem  has  defied  prediction  using  standard  techniques.  

ü  Outstanding  issues:  effects  of  transition  &  compressibility  at  realistic  Reynolds  number  

OBJECTIVES  üPerform  path-­‐Uinding  high-­‐Uidelity  LES  at  increased  Re  üProvide  fundamental  understanding  of  unsteady  separation  processes  üIdentification  strategies  for  effective  Ulow  control  -­‐  precursor  states  for  sensing  &  control  with  rapid  response  actuators  

ü  Discover  unforeseen  transition-­‐motion  induced  vehicle  response  with  significant  implications  for  energy  efUiciency  

ü  Guide  reduced-­‐Uidelity  approaches  ü  Transition/  leveraging    thru  army  rotorcraft  research  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 9: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Onset of Unsteady Separation & Dynamic Stall Over Pitching Airfoil

9  

U

α (t)

Ω SD7003 section

Ωo+ = Ω c /U = 0.05

Minf = 0.1 Rec = 0.5 x 106

αo = 4ο

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 10: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Spatio-Temporal Distribution of Surface Pressure

10  

transition  

x  

-­‐Cp  DSV  

SLV  

-­‐Cp  

α =  4o  

α =  30o  

LE  suction  collapse  

DSV  

LSB  pressure  plateau  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 11: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Role of Laminar Separation Bubble

11  

Low-­‐pass  Oiltered  near-­‐wall  velocity  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 12: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Exploration Dynamic Stall Flow Control

12  DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 13: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Control of Dynamic Stall Using HF Pulsed Actuation

13  

Baseline   Forced  

Leverage  OSU  experimental/comp  plasma  flow  control  research  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 14: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Streamwise-Oriented Vortex Interactions with Rigid & Flexible Wings

14  

ü  Homogeneous/heterogeneous,  close/extended  formation  flight  are  envisioned  as  a  potential  technology  for  reduced  fuel  consumption  &  improved  range;  important  to  operations  with  limited  forward  presence.  

ü  Outstanding  issues  include:  transonic  effects  at  high  subsonic  speeds,  buffeting,  coupling  of  non-­‐linear  flow  phenomena  near  the  wing  tip  with  structural  flexibility,    severe  dynamic  load  environment  with  impact  on  drag  reduction  beneOits  and  life-­‐cycle  fatigue.  

ü  Study  canonical  interaction  to  provide  insight  into  the  underlying  physics  of  vortex-­‐induced  separation  &  buffeting  and  role  of  aero-­‐elastic  coupling  

Multiple modes of interaction identified: dipole formation, loss of vortex coherence & vortex bifurcation

Incident  vortex  

Static aeroelastic deflection modifies interaction thru repositioning of incident vortex

Rigid wing Flexible wing

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 15: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Flow/Acoustic Interactions on SUAS

15  

ü  Close-­‐range  ISR  dictates  the  introduction  of  SUAS’s  ü  Need  to  remain  undetected  for  low-­‐altitude  operation  in  presence  of  moderate  gusts  ü  Vehicle  size/speed  result  in  transitional  flows  which  may  give  rise  to  tonal-­‐noise  emission  

compromising  location  due  to  aural  detection  ü  Difficult  to  do  experimentally  due  to  wind  tunnel  environment  

OBJECTIVES:  ü  Improve  understanding/prediction  of    noise  generation  in  transitional/turbulent  flows  

ü  Study  role  of  laminar  separation  and  transition  (T-­‐S  waves)  on  resonance  and  tonal  noise  generation  

ü  Study  impact  of    disturbances  (gusts,  maneuvering,  deUlections)  on  sound  radiation  

ü  Reveal  approaches  for  noise  abatement  ü  Guide  design-­‐oriented  approaches  

Canonical  conOigurations  High-­‐Oidelity  overset  simulations  

Leverage  OSU  acous3c  analysis  tool  development  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 16: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Example of Sound Radiation During Onset of Unsteady Separation Over Pitching Airfoil

16  

x/c  =  0.01  

LE  separation  

transition  

x/c  =  0.2  

DSV  

α =  18.6o  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 17: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Plasma-Based Control of Transitional Flows

17  

ü  Plasma-­‐based  flow  control  techniques  offers  potential  for  manipulation  of  transitional/turbulent  flows  in  future  vehicles  

ü  BeneOits  include:  delay/induce  transition,  drag  and  noise  reduction  ü  Strategies  for  effective  control  need  to  be  explored  ü  Active  flow  control  requires  high-­‐fidelity  physics-­‐based  approaches  

Objectives  ü  Explore  flow  control  strategies  for  canonical  conUigurations  including  control  of  transition  on  upswept  and  swept  wing  sections  using  several  plasma-­‐based  approaches  

üImproved  strategies  for  transition  manipulation  in  drag  and  noise  reduction  applications  üControl  of  dangerous  Ulexible  vehicle  response  due  to  large  excursions  in  transition  location  

Plasma-­‐based    control  devices  &  canonical  conOigurations  

Leverage  OSU  experimental/comp  plasma  flow  control  research

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 18: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Control of Transition Induced by Surface Imperfections

18  

ü  Surface  excrescences  such  as  bumps,  mismatched  panels,  gaps  and  other  imperfection  or  contamination  can  generate  premature  transition  to  turbulent  flow  over  a  wing  surface  

ü  Critical  to  system  performance  (i.e.,  range,  payload,  loiter  time,  fuel  consumption)  

ü  Difficult  to  do  experimentally  

Objectives  ü  Perform  high-­‐Uidelity  Uirst-­‐principles  simulation  of  canonical  conUigurations  for  T-­‐S  and  crossflow  instability  ü  Characterize  effects  of  pressure  gradient,  incoming  disturbances  ü  Compare  to  standard  lower-­‐Uidelity  approaches  (N-­‐factor,  PSE)  ü Help  establish  manufacturing  or  surface  damage  tolerances  

canonical  conOigurations  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 19: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Aero-Optical Aberration in Supersonic Flows

19  

ü  Laser  integration  is  being  considered  for  FAD  concepts  ü  Required  for  targeting,  lasercomm,  self-­‐protection,  soft  ground  targets,  etc..  ü  Limited  knowledge  is  available  on  aero-­‐optical  aberration  in  supersonic  flows  ü  This  brings  uncertainty  to  current    HEL-­‐FAD  trade    space  studies  

OBJECTIVES:  ü  Characterize  aero-­‐optical  aberration  in  canonical  transonic/supersonic  flows  relevant  to  HEL-­‐FAD  integration  

ü  Characterize  aberration  effects  of  post-­‐shock  boundary  layer  and  shock  motion  (jitter)  

üProvide  guidance  to  HEL-­‐FAD  trade  space  studies  üEstablish  computational  requirements  for  reliable  aero-­‐optic  prediction  üSuggest  strategies  for  aberration  mitigation  

canonical  conOigurations   Previous  emphasis:  ATL-­‐type  turrets  &  shear  layers  

Standard  grid   Aero-­‐optics  grid  

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 20: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Response of Flexible Panels in Supersonic Flow

20  

ü  Supersonic  low  over  elastic  surfaces  may  give  rise  to    complex  interactions  leading  to  limit-­‐cycle  oscillations,  fatigue  and  acoustic  radiation  

ü  Important  to  supersonic  aircraft  and  hot  descent  of  hypersonic  vehicles  

ü  Complex  coupling  of  deformations  with  transition  and  separation  due  to  shock  impingement  

ü  Impacts  vehicle  performance  due  to  weight  considerations  

canonical  conOigurations  

Shock  impingement  

Coupling  of  transition  with  surface  vibrations  

Flow parameters Mach No.,

p3 / p1 (or σ ) Re , δ / a, pc , xi /a

Large  number  of  Uluid/structural  parameters  

Objectives:  ü  Explore  complex  dynamics  of  flexible  panels  in  low  supersonic  flow    (M<  2)  using  LES  and  simple  structural  models  

ü  Explore  effects  of  shock  impingement,  non-­‐isotropic  structure  üDiscover  new  aero-­‐elastic  instability  regimes  and  potential  role  of  flexibility  as  passive  flow  control  mechanism  üIdentify  dangerous  panel  interactions  

Structural parameters λ = ρ2 U3 a /D h / a , µs = 0.1 ; a / b = 0

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 21: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Oblique Shock Impingement on a Flexible Panel: Inviscid Interaction

21  

supercritical bifurcation

subcritical bifurcation

M1 = 2, p3/p1 = 1.4, λ = 875

supercritical bifurcation

M1 = 2

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 22: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

Laminar Interactions over a Flexible Panel in Supersonic Flow

22  

oscillations correlate with stability analysis and is suppressed for a cooled wall

Coupling  of  instability  waves  with  flexible  panel  modes  

M = 2.0, Rea = 300,000, δ /a = 0.015, λ = 500

Comparison with linear stability analysis rigid flexible

Coupling of panel flexural waves with shear layer modes provides “passive” control of separation

rigid flexible

Laminar  SBLI  over  Ulexible  panel  p3 / p1 = 1.8, Rea = 120,000, λ = 875

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059

Page 23: High-Fidelity Multi-Disciplinary Simulation · Service ! Excellence High-Fidelity Multi-Disciplinary Simulation 2014 Dr. Miguel Visbal Principle Research Aerospace Engineer Aerodynamic

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 88ABW-2014-3059