46
EXAMPLE Hierarchical Modeling Hierarchical Modeling Linking to Science-Support Models Linking to Science-Support Models Groundwater Modeling System RT3D and MT3DMS FRAMES-2.0 Workshop U.S. Nuclear Regulatory Commission Bethesda, Maryland November 15-16, 2007 Pacific Northwest National Laboratory Richland, Washington

Hierarchical Modeling Linking to Science-Support Models EXAMPLE Hierarchical Modeling Linking to Science-Support Models Groundwater Modeling System RT3D

Embed Size (px)

Citation preview

EXAMPLE

Hierarchical ModelingHierarchical ModelingLinking to Science-Support ModelsLinking to Science-Support Models

Groundwater Modeling SystemRT3D and MT3DMS

EXAMPLE

Hierarchical ModelingHierarchical ModelingLinking to Science-Support ModelsLinking to Science-Support Models

Groundwater Modeling SystemRT3D and MT3DMS

FRAMES-2.0 Workshop

U.S. Nuclear Regulatory Commission

Bethesda, Maryland

November 15-16, 2007

Pacific Northwest National Laboratory

Richland, Washington

2

PurposePurposePurposePurpose

Demonstrate Hierarchical Modeling by Linking to Science-Support Models

Perform a 3-D Numerical RT3D Groundwater Simulation

Perform a Semi-analytical Groundwater Simulation

3

FRAMES and GMSFRAMES and GMSFRAMES and GMSFRAMES and GMS

GMS is the most sophisticated/comprehensive groundwater modeling package, containing numerous numerical models and support features ONLY GROUNDWATER

FRAMES seamlessly links user-defined disparate models, databases, and modeling systems to transfer data

4

MT3DMS and RT3DMT3DMS and RT3DMT3DMS and RT3DMT3DMS and RT3D

MT3DMS is a modular, 3-D, multi-species transport model for the simulation of advection, dispersion, and limited chemical reactions Zero- or first-order decay of individual chemicals (no chain formation)

RT3D is essentially MT3DMS with significantly enhanced reaction capabilities Multi-species reactive transport with chain formation Complex reaction kinetics with linked reactions, parallel pathways, etc. Reaction kinetics for any chemical system of interest, including a

mixture of mobile and immobile components

5

FRAMES and GMS Linkage/Run ProtocolFRAMES and GMS Linkage/Run ProtocolFRAMES and GMS Linkage/Run ProtocolFRAMES and GMS Linkage/Run Protocol

Set up a calibrated problem within GMS Stand-alone application Generate a GMS Project file (*.gpr) and associated files No intent to duplicate GMS functionality within FRAMES

Map GMS contaminant names to FRAMES contaminant names

Identify boundary conditions that will change

Automatically build all linkages and files

Build the CSM

Choose the GMS stand-alone calibrated run

Identify output location

Run models

6

Discussion TopicsDiscussion TopicsDiscussion TopicsDiscussion Topics

Example Application of Hierarchical Modeling RT3D Area Source Simulation Semi-analytical Groundwater Simulation

7

Example ApplicationExample Applicationof Hierarchical Modelingof Hierarchical Modeling

Example ApplicationExample Applicationof Hierarchical Modelingof Hierarchical Modeling

8

Example ApplicationExample Applicationof Hierarchical Modelingof Hierarchical Modeling

Example ApplicationExample Applicationof Hierarchical Modelingof Hierarchical Modeling

RT3D

Semi-analytical Model

Compare Semi-analytical and Numerical modeling results

9

Problem DescriptionProblem DescriptionProblem DescriptionProblem Description

A source of Non-Aqueous Phase Liquid (NAPL) TCE, which is leaching into an aquifer.

TCE degrades to DCE and VC

No DCE or VC initially exists at the source

TCE concentration emanating from the source simulates first-order loss over a vertical plane.

Simulate the fate and transport of TCE, DCE, and VC to and within the Saturated Zone

10

Top View of Source AreaTop View of Source AreaTop View of Source AreaTop View of Source Area

AnaerobicReaction

ZoneBoundary(Layers 1-3)

N100 ft

50 m

AerobicReaction

Zone

1

2

• Simulation Output Locations

◦ 50 ft

◦ 180 ft

• Source Term (1 layer)

• Simulation Output Locations

◦ 50 ft

◦ 180 ft

• Source Term (1 layer)

12

11

TCE Concentrations Emanating from the Source

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Time from Start of Release (yr)

Co

nc

en

tra

tio

n (

mg

/L)

12

A

A’

A

A’

13

N100 ft

50 m

• Hydraulic Head Contours • Horizontal Conductivity • Flow Vectors • Source Term

• Hydraulic Head Contours • Horizontal Conductivity • Flow Vectors • Source Term

Ho

rizo

nta

l Hyd

rau

lic C

on

du

ctiv

ity

(ft/

day

)

100

35

20

10

5.0

1.0

0.5

0.1

1E-2

1E-3

1E-4

1E-5

0

Ho

rizo

nta

l Hyd

rau

lic C

on

du

ctiv

ity

(ft/

d)

28

29

39

14

Problem SummaryProblem SummaryProblem SummaryProblem SummaryArea source release to an aquifer

Dispersivity (x, y, z: 20, 2, 0.2 ft) Kd (TCE, DCE, VC: 0.57, 0.25, 0.17 mL/g) Bulk Density (1.6 g/cm3) Porosity (total and effective) (30%) Numerical grid Chain degradation (TCE → DCE → VC)

Representative Source-term Values Time-varying source-term (i.e., aquifer) concentrations (see curve) Source-term dimensions (L, W, Th: 221.4, 700, 19.75 ft) Darcy velocity (317.6 cm/yr) Half Life: TCE, DCE, VC: 4.744 (RT3D), 10.7 (Source), 3.795, 9.489 yr

Aquifer Downgradient output location: 50 ft, 180 ft Aquifer thickness (numerical grid) (59.75 ft) Darcy velocity: 317.6 cm/yr Water solubility: TCE, DCE, VC: 1100, 2250, 2670 mg/L Half Life (anaerobic zone): TCE, DCE, VC: 4.74, 3.795, 9.489 yr Half Life (aerobic zone): TCE, DCE, VC: 1.90, 3.795, 9.489 yr

15

TCE

DCE and VC

TCE

16

RT3D ApplicationRT3D Application

17

Select a GMS Project File(pre-calibrated RT3D model)

1. Under the Tools menu, choose GMSImport2. Browse for the location of the Calibrated

GMS Project File (*.gpr file). The user originally stored the file, so the user knows where it is located.1

2

18

Left Click on Chemicals to Map GMS Chemicals to FRAMES Chemicals

2

1

3

4

19

RT3D and MT3DMS may require a Synchronization Operator for multiple constituents.

Construct a CSM

20

Choose Modules

21

ConstituentDatabase

GeoReference

Constituent Database and GeoReference Modules

22

SourceTerm

SynchronizationOperator

Source Term and Synchronization Operator Modules

23

Aquifer

ExposurePathway

Aquifer and Exposure Pathway Modules

24

Input Data to Each Module

25

ConstituentDatabase

GeoReference(just Save and Exit)

ConstituentDatabase

AndGeoReference

Input

26

Source in an AquiferInput

27

Source in an AquiferInput

28

RT3D User Input(OBS Option):● Location of Output Results● Duration of Simulation

21

1 13 50

29

Run Each ModuleRun Each ModuleRun Each ModuleRun Each Module

Constituent DatabaseGeoReference ModuleSource TermSynchronization OperatorAquifer

30

VC Concentrations Emanating from the Source

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100

Time from Start of Release (yr)

Co

nc

en

tra

tio

n (

mg

/L)

DCE Concentrations Emanating from the Source

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 20 40 60 80 100

Time from Start of Release (yr)

Co

nc

en

tra

tio

n (

mg

/L)

TCE Concentrations Emanating from the Source

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Time from Start of Release (yr)

Co

nc

en

tra

tio

n (

mg

/L)

Source in an AquiferSource-term Output ResultsTime-varying ConcentrationsEmanating from the Source

31

Synchronization Operator Module

32

RT3D Output ResultsTime-varying Concentrations50 ft from SourceRow 13, Column 21, Layer 1

VC Concentrations from RT3Dat 50 ft, Row 13, Column 21, Layer 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

Time from Start of Release (yr)

Co

nce

ntr

ati

on

(m

g/L

)

DCE Concentrations from RT3Dat 50 ft, Row 13, Column 21, Layer 1

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

Time from Start of Release (yr)

Co

nce

ntr

atio

n (

mg

/L)

TCE Concentrations from RT3Dat 50 ft, Row 13, Column 21, Layer 1

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

Time from Start of Release (yr)

Co

nce

ntr

atio

n (

mg

/L)

33

RT3D Output ResultsTime-varying Concentrations180 ft from SourceRow 15, Column 23, Layer 1

VC Concentrations from RT3Dat 180 ft, Row 15, Column 23, Layer 1

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

Time from Start of Release (yr)

Co

nce

ntr

atio

n (

mg

/L)

DCE Concentrations from RT3Dat 180 ft, Row 15, Column 23, Layer 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100

Time from Start of Release (yr)

Co

nce

ntr

atio

n (

mg

/L)

TCE Concentrations from RT3Dat 180 ft, Row 15, Column 23, Layer 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

Time from Start of Release (yr)

Co

nce

ntr

atio

n (

mg

/L)

34

N200 ft

100 m

Concentration(mg/L)

50.0

0.005

1.0

0.1

0.05

10.0

5.0

0.01

0.5

100.0

TCE at 25 yr

Ho

rizo

nta

l Hyd

rau

lic C

on

du

ctiv

ity

(ft/

day

)100

35

20

10

5.0

1.0

0.5

0.1

1E-2

1E-3

1E-4

1E-5

0

Ho

rizo

nta

l Hyd

rau

lic C

on

du

ctiv

ity

(ft/

d)

35

N200 ft

100 m

Concentration(mg/L)

50.0

0.005

1.0

0.1

0.05

10.0

5.0

0.01

0.5

100.0

Water Table

Vertical Exaggeration = 10X

TCE at 25 Years(looking to the West at column 22)

TCE at 25 Years(looking to the West at column 22)

Ho

rizo

nta

l Hyd

rau

lic C

on

du

ctiv

ity

(ft/

day

)100

35

20

10

5.0

1.0

0.5

0.1

1E-2

1E-3

1E-4

1E-5

0

Ho

rizo

nta

l Hyd

rau

lic C

on

du

ctiv

ity

(ft/

d)

36

Semi-analytical AquiferSemi-analytical AquiferModel ApplicationModel Application

37

Assumptions/ConstraintsAssumptions/ConstraintsAssumptions/ConstraintsAssumptions/Constraints

Semi-analytical model assumes that the progeny travel at the same speed as the parent one average, linear, unidirectional, pore-water velocity that Dispersivities/Dispersion coefficients (in three

dimensions) are spatially constant that all hydrogeochemical properties are spatially

constant progeny formation based on Bateman’s equation

38

• Remove the Synchronization Operator• Choose the MEPAS 5.0 Aquifer Module• Save simulation with a different name

Build the CSM with the Semi-analytical Model

39

40

41

TCE Aquifer Modeling Results(at 50 ft = R13, C21, L1)

exp5:Aquifer Constituent Concentration for TCE (79016)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

yr

mg

/L

Aquifer Constituent Concentration for TCE (79016)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

yr

mg

/L

RT3DResults

Semi-analyticalResults

42

DCE Aquifer Modeling Results(at 50 ft = R13, C21, L1)

exp5:Aquifer Constituent Concentration for 1,1 dichloroethylene (75354)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60

yr

mg

/L

Aquifer Constituent Concentration for 1,1 dichloroethylene (75354)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60

yr

mg

/L

RT3DResults

Semi-analyticalResults

43

VC Aquifer Modeling Results(at 50 ft = R13, C21, L1)

exp5:Aquifer Constituent Concentration for Vinyl chloride (75014)

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60

yr

mg

/L

RT3DResults

Semi-analyticalResults

44

TCE Aquifer Modeling Results(at 180 ft = R15, C23, L1)

exp5:Aquifer Constituent Concentration for TCE (79016)

0.00

0.10

0.20

0.30

0.40

0.50

0 10 20 30 40 50 60 70 80 90 100

yr

mg

/L

Aquifer Constituent Concentration for TCE (79016)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

yr

mg

/L

RT3DResults

Semi-analyticalResults

45

DCE Aquifer Modeling Results(at 180 ft = R15, C23, L1)

exp5:Aquifer Constituent Concentration for 1,1 dichloroethylene (75354)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100

yr

mg

/L

Aquifer Constituent Concentration for 1,1 dichloroethylene (75354)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100

yr

mg

/L

RT3DResults

Semi-analyticalResults

46

VC Aquifer Modeling Results(at 180 ft = R15, C23, L1)

exp5:Aquifer Constituent Concentration for Vinyl chloride (75014)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

yr

mg

/L

Aquifer Constituent Concentration for Vinyl chloride (75014)

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70 80 90 100

yr

mg

/L

RT3DResults

Semi-analyticalResults