15
7/30/2019 Heteroscedasticity[1] http://slidepdf.com/reader/full/heteroscedasticity1 1/15 1 Heteroscedasticity Assumption of CLRM:- The error term are homoscedastic [ n i  E i ,..., 2 , 1 ; ) ( 2 2   ]  the variance of each i  is constant For example: Given i i o i  X     1 , as income (x) increase mean value of savings (Y) increase but variance of savings remains constant. Remember: Heteroscedasticity more commonly found in cross-sectional rather than time series data, because cross sectional data usually deals with members of population at a given point in time (small, medium @ large firms) scale effect in cross-sectional data. When assumption 3 holds,  i.e. the errors u i  in the regression equation have common variance (ie constant or scalar variance) then we have homoscedasticity.  or a “scalar error covariance matrix” When assumption 3 breaks down, we have what is known as heteroscedasticity.  or a “non-scalar error covariance matrix” Homoskedasticity => variance of error term constant for each observation Each one of the residuals has a sampling distribution, each of which should have the same variance -- “  homoscedasticityscalar a is e wher 0 0 0 0 0 0  ) var( ) , cov( ) , cov( ) , cov( ) var( ) , cov( ) , cov( ) , cov( ) var( ) ,.... , cov( 2 2 2 2 2 1 2 2 1 2 1 2 1 1 2 1      n n n n n n u u u u u u u u u u u u u u u u u u

Heteroscedasticity[1]

Embed Size (px)

Citation preview

Page 1: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 1/15

1

Heteroscedasticity

Assumption of CLRM:-

The error term are homoscedastic [ ni E  i ,...,2,1;)(22    ]

  the variance of each i  is constant

For example: Given iioi  X Y      1 , as income (x) increase mean value of savings

(Y) increase but variance of savings remains constant.

Remember: Heteroscedasticity more commonly found in cross-sectional rather than time

series data, because cross sectional data usually deals with members of population at agiven point in time (small, medium @ large firms) scale effect in cross-sectional data.

When assumption 3 holds,

–  i.e. the errors ui  in the regression equation have common variance (ieconstant or scalar variance)

then we have homoscedasticity.–  or a “scalar error covariance matrix”

When assumption 3 breaks down, we have what is known as heteroscedasticity.

–  or a “non-scalar error covariance matrix”

Homoskedasticity => variance of error term constant for each observation

Each one of the residuals has a sampling distribution, each of which

should have the same variance -- “ homoscedasticity”

scalaraisewher

00

00

00

 

)var(),cov(),cov(

),cov()var(),cov(),cov(),cov()var(

),....,cov(

2

2

2

2

21

2212

1211

21

 

 

 

 

nnn

n

n

n

uuuuu

uuuuu

uuuuu

uuu

Page 2: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 2/15

2

Generalized Least Squared Estimation

For general linear statistical model

e X Y     

where

E[e]=0

Heteroscedasticity exists when diagonal element of  are not all identical

2

2

22

21

00

00

00

][  

 

 

 

ee E 

 

GLS for   (BLUE)

 y X  X  X  111')'(ˆ    

where  2  , with 2  unknown and known

These 2 estimators are same because

 y X  X  X  y X  X  X 

 y X  X  X 111

2

11

2

1111

')'(''

')'(

    

 

If  1'

PP , then

**'*)*'(

'')''(ˆ

1

1

 y X  X  X 

PyP X PX P X 

  

where

PX  X  *  Py y *  

The t th observation for whole model can be written as

t  e X  y

  

  

Page 3: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 3/15

3

The variance of transform disturbance t t t  ee   / * constant

1][1

][2

22

2

22*

 

  

 

t t 

t t 

t t  e E 

e E e E 

 

 

   

heteroscedasticity error model the GLS estimator obtained by(Weighted Least Squares):-

(a) Divide each observation (dependent & independent) by standard deviation of eror

term for that observations(b) Apply usual LS procedures to transformed observations

Recall:

GLS estimator is   that minimizes

)()'(1

2

1

   

 X  y X  ye

t  t 

t   

  

 

 

 

 

 

 

t t t 

t t t   y x x x

1

2

1

1

'2ˆ      

Covariance matrix for    

1

ˆ 1

'2111

)'(*)*'(

 

 

 

 

 

 

t t t   x x X  X  X  X 

Page 4: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 4/15

4

(a) Causes (Why variance of  i vary?) 

(i)  Omitted Variables

Suppose the “true” model of  y is:

 yi = a + b1 xi + b2 zi + ui

but the model we estimate fails to include z:

 yi = a + b1 xi + vi then the error term in the model estimated by SPSS (vi) will be capturing the effect of the

omitted variable, and so it will be correlated with z:vi = c  zi + ui

and so the variance of vi will be non-scalar 

(ii)  Non-constant coefficient

Suppose that the slope coefficient varies across i: yi = a + bi xi + ui 

suppose that it varies randomly around some fixed value b:

bi = b + ei

then the regression actually estimated by SPSS will be:

 yi = a + (b + ei)  xi + ui

= a + b xi + (ei xi + ui)

where (ei x + ui) is the error term in the SPSS regression. The error term will thus varywith x.

(iii)  Non-linearities

If the true relationship is non-linear: yi = a + b  xi

2+ ui

but the regression we attempt to estimate is linear:

 yi = a + b  xi + vi 

then the residual in this estimated regression will capture the non-linearity and itsvariance will be affected accordingly:

vi = f ( xi2, ui)

(iv)  Aggregation

Sometimes we aggregate our data across groups:

–  e.g. quarterly time series data on income = average income of a group of households in a given quarter

if this is so, and the size of groups used to calculate the averages varies,

variation of the mean will vary–  larger groups will have a smaller standard error of the mean.

Page 5: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 5/15

5

the measurement errors of each value of our variable will be correlatedwith the sample size of the groups used.

Since measurement errors will be captured by the regression residual

regression residual will vary the sample size of the underlying groups

on which the data is based.

Overall:

  Mis-specification error-  wrong functional form

-  Non-linearities-  Non-constant coefficient

-  incorrect data transformation-  omitted variables

-  Aggregation 

Outlier  Improvement in data collecting technique  Errors of behavior become smaller over time

(b) Consequences:

  OLS Estimators still linear and remain unbiased  The property of minimum variance no longer holds (not efficient)

  Heteroskedasticity does, however, bias the OLS estimated standard errors for theestimated coefficients:

–  which means that the t tests will not be reliable:t = b

hat /SE(b

hat ).

  F-tests are also no longer reliable

Page 6: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 6/15

6

Unbiased and Consistent Estimator

 Biased but Consistent Estimator

Asymptotic Distribution of OLS Estimatehat 

The Estimate is Unbiased and Consistent since as the sample size increases, the mean of the

distribution tends towards the population value of the slope coefficient

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

  -   4

  -   3 .   7

  -   3 .   3   -   3

  -   2 .   6

  -   2 .   3

  -   1 .   9

  -   1 .   6

  -   1 .   2

  -   0 .   9

  -   0 .   5

  -   0 .   2

   0 .   2

   0 .   5

   5   0

 .   9

   1 .   2

   5   1

 .   6

   1 .   9

   5   2

 .   3

   2 .   6

   5 3

   3 .   3

   5   3

 .   7

   4 .   0

   5   4

 .   4

   4 .   7

   5   5

 .   1

   5 .   4

   5   5

 .   8

   6 .   1

   5   6

 .   5

   6 .   8

   5   7

 .   2

   7 .   5

   5   7

 .   9

 hat

n = 1,000 

n = 500 

n = 300 

n = 200 

n = 150 

Asymptotic Distribution of OLS Estimatehat 

The Estimate is Biased but Consistent since as the sample size increases, the mean of the

distribution tends towards the population value of the slope coefficient

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

  -   4

  -   3 .   7

  -   3 .   3   -   3

  -   2 .   6

  -   2 .   3

  -   1 .   9

  -   1 .   6

  -   1 .   2

  -   0 .   9

  -   0 .   5

  -   0 .   2

   0 .   2

   0 .   5

   5   0

 .   9

   1 .   2

   5   1

 .   6

   1 .   9

   5   2

 .   3

   2 .   6

   5 3

   3 .   3

   5   3

 .   7

   4 .   0

   5   4

 .   4

   4 .   7

   5   5

 .   1

   5 .   4

   5   5

 .   8

   6 .   1

   5   6

 .   5

   6 .   8

   5   7

 .   2

   7 .   5

   5   7

 .   9

 hat

n = 1,000 

n = 500 

n = 300 

n = 200 

n = 150 

Page 7: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 7/15

7

(c) Detecting:

1.  Graphical Examination of residuals (Informal Tests)

-plot residual square against y

-plot residual square against x

If we plot the residual against Rooms, we can see that its variance

increases with No. rooms:

Number of rooms

14121086420

   U  n  s   t  a  n   d  a  r   d   i  z  e   d   R  e  s   i   d  u  a   l

300000

200000

100000

0

-100000

-200000

Page 8: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 8/15

8

Formal Test2.  White’s General Hetero Test

Given the model:

iiii u X  X Y  33221      

White Test Prosedure (basic idea):

(1) Estimate the model and obtain the residuals

]ˆˆˆ[ˆ33221 iiiiiii

u X  X Y Y Y e      

(2) Estimate the auxiliary regression

iiiiiiii v X  X  X  X  X  X u 326

2

35

2

2433221

2ˆ         

squared terms of all the X’s & cross products

(3) Obtain the R-squared from the auxiliary regression then can be used tocompute the test statistics

2

1

2 ~ k  Rn    

test-stat22

 Rn    

critical value  f d .2

    

k-1=degree of freedom

(4) H0 = no heteroscedasticity (variance constant)

H0 = heteroscedasticity@

22

0:   

i H  for all i.

01 :  H  Not  H   

If test-stat > critical value, then reject H0 Hetero 

If test-stat < critical value, then fail to reject H0 No Hetero

Page 9: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 9/15

9

 Or

The correct covariance matrix for the LS estimator is112 ]][[][]|[  X  X  X  X  X  X  X bVar  i  and 12 ][  X  X sV  . Is there is no

heteroscedasticity, then V will give a consistent estimator of  ]|[  X bVar  .

3.  Spearman’s rank correlation test

Spearman’s rank correlation

)1(

612

2

nn

d r 

i

s  

where

d i = difference in ranks assigned to 2 different characteristics of phenomenon

n = number of phenomena ranked 

Steps:1)  Fit the regression to data on Y and X and obtain residuals

2)  Ignore sign of residuals, take & rank  iu & i X  (or iY ) & compute sr   

3)  Assume population rank correlation coefficient = 0 & n>8 . Use

21

2

s

s

nr t 

, df = n-2

If computed t value < critical t value, fail to reject homoscedasticity

Page 10: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 10/15

10

4.  Park test (strictly exploratory method) 

The Park test is a test of the hypothesis: 

H0 = 01  [which is constant]

H1 = 01   [hetero]

2 stage procedure:

(1) run OLS regressionii u X Y  lnˆˆˆ

10    disregarding heteroscedasticity

question

(2) runiii

v X u lnˆln 2      to test particular which independent variable

causing hetero.

Park suggests

viii e X    

22 or iii v X  lnlnln22

     

Unknown, using 2ˆiu as proxy

iii v X u lnlnˆln22

    

ii

v X  ln    

If    insignificant, fail to reject assumption of homoscedasticity.

Page 11: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 11/15

11

5.  Glejser test

-Similar in spirit to Park test

Step:

After obtain residuals from OLS regression, regress absolute values of residualson regressor variable that close associated with 2

i  .

6.  Goldfeld-Quandt test

-critic the error term may not satisfy OLS assumption (hetero) in Park test

-assumes the heteroscedastic variance positive related to one of regressors in

Model 222ii  X    ------hetero if  2

i  large when i X  larger

-need to depend on number of central observation to be omitted & identify

correct regressor variable to order observation (on of the limitation of this test )

The Goldfeld-Quandt test is a test of the hypothesis: 

H0 = 0...32 m    [ 12

   i , which is constant]

H1 = 2221

2... T      

Steps:

1)  rank observation according to the values of  i X   

2)  omit c (specified prior) central observations, divide remaining (n-c)

into 2 groups each 2 / )( cn observations

3)  fit separate OLS regressions to first and last observation, obtain

respective residual sums of squares RSS1 and RSS2

k cn

2

)(or df 

k cn

2

)2(  

4)  compute

df  RSS 

df  RSS 

 / 

 / 

1

2   

-If computed )(  f   < critical F, fail to reject hypothesis of 

homoscedasticity

RSS from regression

corresponding to smaller i X  values

Page 12: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 12/15

12

7.  Breusch-Pagan-Godfrey test

The limitation of Goldfeld-Quandt test can be avoided by using BPG test.

If it known that a set of variables influence the error variance such as Z 1, Z2,…, Zm , we

can write:

mimii  Z  Z       ...2212  

The Breusch-Pagan-Godfrey test is a test of the hypothesis: 

H0 = 0...32 m    [ 12

   i , which is constant]

Steps:

1)  Estimate linear regression model by OLS, obtain residuals

2)  Get nuii  / ˆ~ 22   

3)  Construct variables 22 ~ / ˆ  ii u p  

4)  Regress imimii v Z  Z  p     ...221  

5)  Obtain ESS from steps 4, define ][2

1 ESS   

If computed < critical value [ 12

m   ], fail to reject hetero.

Page 13: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 13/15

13

(d) Remedial Measures:

 Weighted Least Square (WLS)

The GLS estimator is

 y X  X  X  111 )(ˆ    

Consideriii  X Var       22]|[ . 1 is a diagonal matrix whose ith diagonal

element isi 

1. The GLS estimator is obtained by regressing

n

n y

 y

 y

Py

 

 

 

2

2

1

1

on

n

n X 

 X 

 X 

Px

 

 

 

2

2

1

1

 

Applying OLS to transformed model, we obtained the WLS estimator

],[][ˆ1

1

1

n

i iii

n

i iii

 y X w X  X w  wherei

i   

1 . 

For simplify version

-  When2i  known

Given model:

ii X Y      10  

Assume the true error variance 2i  is know, then we can transform the model

(divide both side by error variance for this case):  

i

i

i

i

ii

i  X Y 

 

 

  

  

 

 

  

 

 

  

  10

Page 14: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 14/15

14

Is the i

i

i v 

 homescedastic?

As we knowni

iiv

 

   

2

2

2

i

iiv

    

1

1

)()(

2

2

2

22

 

  

 

i

i

i

ii  E v E 

  

 

 

 

Since 222)()var(   

ii E v (homoscedastic)

Page 15: Heteroscedasticity[1]

7/30/2019 Heteroscedasticity[1]

http://slidepdf.com/reader/full/heteroscedasticity1 15/15

15

-  When2i  unknown

If the variance is proportional to X2, divide all variables by i X 2  

i

i

i

i

ii

i

 X  X 

 X 

 X  X 

Y   

  

 

 

 

 

 

 

 

 

10

1

 

Is thei

i

i v X 

 

homescedastic?

As we knowni

ii

 X v

   

i

ii

 X v

22    

2

2

2

2 )()(

 

 

 

 

  

 

i

i

i

i

ii

 X 

 X 

 X  E v E 

 

Since 222 )()var(    ii  E v (homoscedastic)

If the variance is proportional to X22, divide all variables by X2 

  Re-specification model

-Note: Hetero problem may be reduced as log transformation compresses the scale

  White’s Heteroscedasticity Corrected Standard Error

-Take into consideration of hetero without changing the value of estimated

coefficient.