46
Heterogeneous Data Mining for Brain Disorder Identification Bokai Cao 04/07/2015

Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Heterogeneous Data Mining for Brain Disorder Identification

Bokai Cao 04/07/2015

Page 2: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Outline• Introduction

• Tensor Imaging Analysis

• Brain Network Analysis

• Multi-view Feature Analysis

• Future Work

2

Davidson et al. Network discovery via constrained tensor analysis of fMRI data. In KDD, 2013.

Wee et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 2012.

Ye et al. Heterogeneous data fusion for Alzheimer’s disease study. In KDD, 2008.

Page 3: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Outline• Introduction

• Tensor Imaging Analysis

• Brain Network Analysis

• Multi-view Feature Analysis

• Future Work

3

Page 4: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Introduction• Brain Disorders

• HIV, AD, ADHD

• Neuroimaging Techniques

• fMRI, DTI, PET, EEG

• Data Representations

• Tensor, graph, vector

4

What is the data about?

Where does the data come from?

What does the data look like?

Page 5: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Introduction• Brain Disorders

• HIV infection on brain

• Bipolar disorder

• Alzheimer's disease (AD)

• Attention deficit hyperactivity disorder (ADHD)

• Schizophrenia

5

Page 6: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Introduction• Neuroimaging Techniques

• Functional magnetic resonance imaging (fMRI)

• Diffusion tensor imaging (DTI)

• Positron emission tomography (PET)

• Electroencephalogram (EEG)

6

Page 7: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Introduction• Data Representations

• Tensor: raw images

• Graph: brain networks

• Vector: multi-view features

7

View3

View2

View1

Page 8: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Outline• Introduction

• Tensor Imaging Analysis

• Brain Network Analysis

• Multi-view Feature Analysis

• Future Work

8

Page 9: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Tensor Imaging Analysis• Tensor Data in Neuroimaging

9

vector matrix tensor1st-order

tensor2nd-order

tensor3rd-order

tensor

Xx X

A voxel is the smallest three-dimensional point volume referenced in a neuroimaging of the brain. Typically, 256*256*256.

Page 10: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Tensor Imaging Analysis• Brain Network Discovery

1. Node discovery

2. Edge discovery

3. Network verification

10

Davidson et al. Network discovery via constrained tensor analysis of fMRI data. In KDD, 2013.

Page 11: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Brain Network Discovery

• Tensor factorization

Tensor Imaging Analysis

11

≈ + ⋯+ +a1

c1b1

c2b2

a2

cRbR

aR X

Davidson et al. Network discovery via constrained tensor analysis of fMRI data. In KDD, 2013.

≈ + ⋯+ +a1

c1b1

c2b2

a2

cRbR

aR Xanatomical structures

fMRI data

constraints

Page 12: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Tensor Imaging Analysis• Brain Network Discovery

• Contributions: (1) simultaneously discover nodes and edges (2) facilitate better understanding about interaction mechanism between brain regions

• Drawback: fail to leverage relationships between neuroimages and their associated labels

12

Davidson et al. Network discovery via constrained tensor analysis of fMRI data. In KDD, 2013.

Page 13: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Supervised Tensor Learning

• Classification (review)

features: <age, weight>

label: diseased (positive) or healthy (negative)

Tensor Imaging Analysis

13

He et al. DuSK: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In SDM, 2014.

+ ++

++-

- --

-

-

age

weight?

?

Page 14: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Supervised Tensor Learning

• Tensor classification

1. High dimensionality

Tensor Imaging Analysis

14

He et al. DuSK: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In SDM, 2014.

+ ++

++-

- --

-

-

age

weight

m=256*256*256=16,777,216

x1

x2

x3

xm

.

.

.

Page 15: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Supervised Tensor Learning

• Tensor classification

1. High dimensionality

2. Structural complexity

Tensor Imaging Analysis

15

He et al. DuSK: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In SDM, 2014.

+ ++

++-

- --

-

-

Page 16: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Supervised Tensor Learning

• Tensor classification

1. High dimensionality

2. Structural complexity

3. Nonlinear separability

Tensor Imaging Analysis

16

He et al. DuSK: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In SDM, 2014.

+ ++

++-

- --

-

- +-

Page 17: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Supervised Tensor Learning

• Support tensor machine

Tensor Imaging Analysis

17

max↵1,··· ,↵n

nX

i=1

↵i �1

2

nX

i,j=1

↵i↵jyiyj h�(Xi),�(Xj)i

s.t.

nX

i=1

↵iyi = 0

0 ↵i C, 8i = 1, · · · , n.

where ↵i are the Lagrangian multipliers and h�(Xi),�(Xj)i are the inner productbetween the mapped tensors of Xi and Xj in the Hilbert space.

minW,b,⇠

1

2kWk2F + C

nX

i=1

⇠i

s.t. yi(hW,Xii+ b) � 1� ⇠i

⇠i � 0, 8i = 1, · · · , n.

where W can be regarded as the weight tensor of the separating hyperplanein the tensor product space RI1⇥···⇥Im , b is the bias, ⇠i is the error of the i-thtraining sample, and C is the trade-o↵ between the margin and empirical loss.The above optimization problem is a generalization of the standard SupportVector Machine (SVM) from vector data to tensor data.

primary form dual form

He et al. DuSK: A dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In SDM, 2014.

Page 18: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Tensor Imaging Analysis• Tensor Data in Neuroimaging

• Brain Network Analysis

• Node discovery, edge discovery, network verification, tensor factorization

• Supervised Tensor Learning

• Tensor classification, support tensor machine

18

Page 19: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Outline• Introduction

• Tensor Imaging Analysis

• Brain Network Analysis

• Multi-view Feature Analysis

• Future Work

19

Page 20: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Brain Network Data

20

• Nodes: brain regions e.g., insula, hippocampus, thalamus

• fMRI links: correlations between the functional activities of brain regions DTI links: number of neural fibers connecting different brain regions

Graph

Page 21: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

• Kernel Learning on Graphs

Brain Network Analysis

21

+ ++

++-

- --

-

-

?

?

Wee et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 2012.

how to ?

Page 22: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Kernel Learning on Graphs

1. Extracting clustering coefficients

2. Selecting the most discriminative features

3. Constructing kernel matrices

4. Training classifiers

22

Wee et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 2012.

Page 23: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Kernel Learning on Graphs

23

clustering coefficient of region 1

Wee et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 2012.

+ ++

++-

- --

-

-

.

.

.

clustering coefficient of region 2 clustering

coefficient of region 3

clustering coefficient of region m

classifiers

Page 24: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Kernel Learning on Graphs

• Contributions: (1) integrate complementary DTI and fMRI (2) achieve 96% classification accuracy (3) select the most discriminative brain regions

• Drawbacks: (1) connectivity structures are blinded (2) interpretability is limited

24

Wee et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 2012.

Page 25: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Subgraph Pattern Mining

25

Kong et al. Discriminative feature selection for uncertain graph classification. In SDM, 2013.

+ Alzheimer's disease + Alzheimer's disease + Alzheimer's disease

- Normal - Normal - Normal

A discriminative subgraph pattern

Page 26: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Subgraph Pattern Mining

• Binary links: {0,1} e.g. gSpan [Yan and Han 2002]

• fMRI links: [-1,1]

• DTI links: N (0,1,2,…,1e6,…)

26

Kong et al. Discriminative feature selection for uncertain graph classification. In SDM, 2013.

Page 27: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Subgraph Pattern Mining

• Mining uncertain graphs

27

Kong et al. Discriminative feature selection for uncertain graph classification. In SDM, 2013.

Page 28: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Brain Network Analysis• Brain Network Data

• Kernel Learning on Graphs

• Extracting clustering coefficients

• Subgraph Pattern Mining

• Mining uncertain graphs

28

Page 29: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Outline• Introduction

• Tensor Imaging Analysis

• Brain Network Analysis

• Multi-view Feature Analysis

• Future Work

29

Page 30: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Multi-view Data in Medical Studies

30

HIV/seronegative

View 1

View 3

View 2

View 6

View 4

View 5

Immunologic measures

Clinical measuresSerologic measures

MRI sequence B

MRI sequence A Cognitive measures

limited subjects available yet introducing a large number of measurements

multi-view learning + feature selection

Page 31: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling View Correlations

• Tensor and AAL features from MRI images

• Demographic information: age and gender

• Genetic information

31

Ye et al. Heterogeneous data fusion for Alzheimer’s disease study. In KDD, 2008.

Page 32: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling View Correlations

32

Ye et al. Heterogeneous data fusion for Alzheimer’s disease study. In KDD, 2008.

++ +

++

--- ---

++

++

+

--- - -- + +

+

++-

- --

-

-

x2(1)

x1(1)x2(2)

x1(2)

x2(1)

x1(1)

x1(2)

x2(2)

concatenation

Page 33: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling View Correlations

33

Ye et al. Heterogeneous data fusion for Alzheimer’s disease study. In KDD, 2008.

++ +

++

--- ---

++

++

+

--- - --

x2(1)

x1(1)x2(2)

x1(2)

multi-kernel learning

α1

α 2

Page 34: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling View Correlations

• Contributions: (1) integrate different types of features (2) identify biomarkers (brain regions) from multiple data sources

• Drawbacks: fail to explicitly consider correlations between features

34

Ye et al. Heterogeneous data fusion for Alzheimer’s disease study. In KDD, 2008.

Page 35: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling Feature Correlations

• Vector-based method

35

View3

View2

View1 modeling feature selection

multi-view data

neglect multi-view knowledge accuracy dropsinformation loss

Cao et al. Tensor-based multi-view feature selection with applications to brain diseases. In ICDM, 2014.

Page 36: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling Feature Correlations

• Tensor-based method

36

View3

View2

View1 modeling feature selection

multi-view data

suffer from redundancy and irrelevance accuracy dropsnoise

Cao et al. Tensor-based multi-view feature selection with applications to brain diseases. In ICDM, 2014.

Page 37: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling Feature Correlations

• Dual method

37

View3

View2

View1 modeling feature selection

multi-view data

Cao et al. Tensor-based multi-view feature selection with applications to brain diseases. In ICDM, 2014.

Page 38: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling Feature Correlations

• Wrapper-based feature selection

38

Feature selection

Classification algorithm

Feature set Hypothesis

Classification algorithm

Training set

Classification evaluation

Feature set

Test set

Training set

Estimated performance

Cao et al. Tensor-based multi-view feature selection with applications to brain diseases. In ICDM, 2014.

Page 39: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Modeling Feature Correlations

39

View 1

View 2

View 3

xi(1)

xi(2)

xi(3)

Xi W

W:,...,:,iv ,:,...,: Xi

*

tensor productsupport tensor

machine feature evaluation

feature selection

iteration

Cao et al. Tensor-based multi-view feature selection with applications to brain diseases. In ICDM, 2014.

Page 40: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Multi-view Feature Analysis• Multi-view Data in Medical Studies

• Modeling View Correlations

• Multi-kernel method

• Modeling Feature Correlations

• Vector-based method, tensor-based method, dual method

40

Page 41: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Outline• Introduction

• Tensor Imaging Analysis

• Brain Network Analysis

• Multi-view Feature Analysis

• Future Work

41

Page 42: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Future Work• Learning on Different Data Representations

42

neuroimaging experiments tensor data

brain network data

multi-view dataother sources, e.g., clinical and serologic experiments

heterogeneous data fusion

single modality

Page 43: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Future Work• Integrating Multiple Imaging Modalities

• fMRI: functional connections

• DTI: structural connections

43

multiple thresholds [Jie. et al. 2014], multi-spectrum [Wee et al. 2012]

multiple physiological parameters: fiber count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities [Wee et al. 2011]

Page 44: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Future Work• Mining Bioinformatics Information Networks

44

Page 45: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Future Work• BRAIN Initiative

President Obama is making over $300 million investments in the “BRAIN” Initiative to revolutionize our understanding of the human mind and uncover new ways to treat, prevent, and cure brain disorders like Alzheimer’s, schizophrenia, autism, epilepsy, and traumatic brain injury.

45

http://www.whitehouse.gov/BRAIN

Page 46: Heterogeneous Data Mining for Brain Disorder Identificationbcao1/doc/WCP_slides.pdf · • Brain Network Analysis • Multi-view Feature Analysis • Future Work 2 Davidson et al

Thank you.!